Vector Addition System Reachability Problem

Jérôme Leroux

LaBRI (CNRS and University of Bordeaux), France.

January 20, 2011

Jérôme Leroux (CNRS)

Vector Addition System Reachability Problem

January 20, 2011 1 / 104

Vector Addition System Reachability Problem

Definition

A vector addition system (VAS) is a finite set $\mathbf{A} \subseteq \mathbb{Z}^d$.

A set of <u>actions</u>. \mathbb{N}^d set of markings.

A <u>run</u> is a non-empty word $\rho = \mathbf{m}_0 \dots \mathbf{m}_k$ of markings such that:

$$\forall j \in \{1,\ldots,k\}$$
 $\mathbf{m}_j \in \mathbf{m}_{j-1} + \mathbf{A}$

In this case, \mathbf{m}_k is said to be <u>reachable</u> from \mathbf{m}_0 .

 Theorem (Mayr 1981, Kosaraju 1982)

 The reachability problem is decidable.

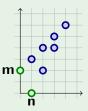
 <u>Jérôme Leroux</u> (CNRS)

 Vector Addition System Reachability Problem

 January 20, 2011
 2 / 104

Reachable Case

Example



n is reachable from m.

 $\rho = (0,2) \ (1,3) \ (2,4) \ (3,5) \ (4,6) \ (3,4) \ (2,2) \ (1,0)$

Jérôme Leroux (CNRS)

Vector Addition System Reachability Problem

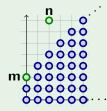
January 20, 2011 3 / 104

3

Unreachable Case

Example

 $\mathbf{A} = \{ \begin{array}{c} \mathbf{A} \\ \mathbf{A} \\$



n is <u>not</u> reachable from **m**.

$$\phi(x_1, x_2) := 0 \le x_1 \land 0 \le x_2 \land x_2 \le x_1 + 2$$

Jérôme Leroux (CNRS)

Vector Addition System Reachability Problem

3

イロト 人間ト イヨト イヨト

Vector addition systems are equivalent to other models:

- Vector addition systems with states
- Petri nets.

Jérôme Leroux (CNRS)

3

Definition

A vector addition system with states (VASS) is a graph $G = (Q, \Delta)$ where:

Q is a non-empty finite set of <u>control states</u> $\Delta \subseteq Q \times \mathbb{Z}^d \times Q$ is a finite set of <u>transitions</u>.

 $Q imes \mathbb{N}^d$ set of configurations

A <u>run</u> is a non-empty word $(q_0, \mathbf{m}_0) \dots (q_k, \mathbf{m}_k)$ of configurations such that $(q_{j-1}, \mathbf{m}_j - \mathbf{m}_{j-1}, q_j) \in \Delta$ for every $j \in \{1, \dots, k\}$. In this case (q_k, \mathbf{m}_k) is said to be <u>reachable</u> from (q_0, \mathbf{m}_0) .

Let **A** be a VAS.

We introduce the VASS $G = (\{q\}, \Delta)$ with $\Delta = \{q\} \times \mathbf{A} \times \{q\}$.

Lemma

n is reachable from m in the VAS A if and only if (q, n) is reachable from (q, m) in the VASS G.

Jérôme Leroux (CNRS)

Vector Addition System Reachability Problem

January 20, 2011 7 / 104

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Reductions : VASS 2 VAS

Assume that $G = (Q, \Delta)$ is a VASS without any self loop and such that $Q = \{1, \ldots, k\}$.

We introduce the unitary vector \mathbf{e}_i :

$$\mathbf{e}_i = (0, \dots, 0, 1, 0, \dots, 0)$$

We introduce the VAS $\mathbf{A} = \{(\mathbf{e}_j - \mathbf{e}_i, \mathbf{z}) \mid (i, \mathbf{z}, j) \in \Delta\}.$

Lemma

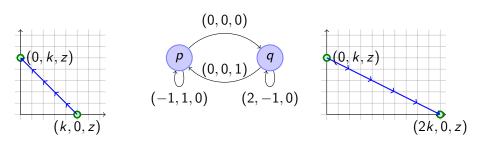
(j, n) is reachable from (i, m) in the VASS G if and only if (e_j, n) is reachable from (e_i, m) in the the VAS A.

Jérôme Leroux (CNRS)

Vector Addition System Reachability Problem

イロト 不得下 イヨト イヨト 三日

The Hopcroft-Pansiot 1979 Example



Configurations reachable from (p, (1, 0, 0))

$$\{p\} \times \{(x, y, z) \in \mathbb{N}^3 \mid x + y \le 2^z\} \\ \cup \{q\} \times \{(x, y, z) \in \mathbb{N}^3 \mid x + 2y \le 2^{z+1}\}$$

Jérôme Leroux (CNRS)

Vector Addition System Reachability Problem

< 🗇 🕨

- 4 ∃ →

э

Definition (Equivalence Problem)

 $\mbox{INPUT}:(\mbox{A}_1,\mbox{m}_1)$ and (\mbox{A}_2,\mbox{m}_2) two vector addition systems equipped with initial markings.

OUTPUT : Decide the equality of the reachability sets.

Theorem (Hack 1976)

The equivalence problem is undecidable.

 \implies No decidable logic for denoting reachability sets.

・何・ ・ヨ・ ・ヨ・ ・ヨ

Subconclusion

Some equivalent models:

- Vector addition systems (ideal for proofs)
- Vector addition systems with states (ideal for examples)
- Petri nets (ideal for modeling parallel processes)

No decidable logic for denoting reachability sets. In the sequel, we show that there is a decidable logic for geometrical properties asymptotically verified by these sets:

Example

$$\{p\} imes \{(x, y, z) \in \mathbb{N}^3 \mid x + y \le 2^z\}$$

 $\cup \{q\} imes \{(x, y, z) \in \mathbb{N}^3 \mid x + 2y \le 2^{z+1}\}$

 \implies x and y can be very large compared to z.

Outline

Dense Sets

- **Discrete Sets**
- Almost Semilinear Sets
- 5 Precise Approximations
- 6 Inductive Invariants
- Well Orders
- Production Relations
- 9 Reachability Relations
- 10 One More Thing...
 - Conclusion

э

Definition (Vector Spaces) A set $\mathbf{V} \subseteq \mathbb{Q}^d$ is called a vector space if $\mathbf{0} \in \mathbf{V}$, $\mathbf{V} + \mathbf{V} \subseteq \mathbf{V}$ and $\mathbb{Q}\mathbf{V} \subseteq \mathbf{V}$.

Example

The vector spaces \boldsymbol{V} included in \mathbb{Q}^2 are exactly:

- The whole set \mathbb{Q}^2 ,
- The line vector spaces $\mathbb{Q}\mathbf{v}$ with $\mathbf{v} \neq (0,0)$, or
- The zero vector space $\{(0,0)\}$.

Lemma

For every vector space $\mathbf{V} \subseteq \mathbb{Q}^d$ there exists at most d vectors $\mathbf{v}_1, \ldots, \mathbf{v}_r \in \mathbf{V}$ satisfying:

$$\mathbf{V} = \mathbb{Q}\mathbf{v}_1 + \cdots + \mathbb{Q}\mathbf{v}_r$$

Definition (Rank)

The <u>rank</u> of a vector space **V** is the minimal $r \in \mathbb{N}$ denoted by rank(**V**) such that there exists a sequence $\mathbf{v}_1, \ldots, \mathbf{v}_r$ of vectors in **V** satisfying:

$$\mathbf{V} = \mathbb{Q}\mathbf{v}_1 + \cdots + \mathbb{Q}\mathbf{v}_r$$

Example

The vector spaces \boldsymbol{V} included in \mathbb{Q}^2 are exactly:

- rank(\mathbf{V}) = 2 : The whole set \mathbb{Q}^2 ,
- $\bullet \mbox{ rank}({\bm V})=1$: The line vector spaces $\mathbb{Q}{\bm v}$ with ${\bm v} \neq (0,0),$ or
- rank(\mathbf{V}) = 0 : The zero vector space {(0,0)}.

Jérôme Leroux (CNRS)

Lemma (Strict Monotonic Property) rank(\mathbf{V}) < rank(\mathbf{W}) for every vector spaces $\mathbf{V} \subset \mathbf{W}$.

Vector Addition System Reachability Problem

January 20, 2011 1

15 / 104

Definition

A set $\mathbf{C} \subseteq \mathbb{Q}^d$ is said to be <u>conic</u> if $\mathbf{0} \in \mathbf{C}$, $\mathbf{C} + \mathbf{C} \subseteq \mathbf{C}$ and $\mathbb{Q}_{\geq 0}\mathbf{C} \subseteq \mathbf{C}$. A conic set \mathbf{C} is said to be <u>finitely generated</u> if there exist $\mathbf{c}_1, \ldots, \mathbf{c}_k \in \mathbf{C}$ such that:

$$\mathbf{C} = \mathbb{Q}_{\geq 0}\mathbf{c}_1 + \cdots + \mathbb{Q}_{\geq 0}\mathbf{c}_k$$

 $\mathbb{Q}_{\geq 0}(1,1) + \mathbb{Q}_{\geq 0}(1,0)$

Jérôme Leroux (CNRS)

Vector Addition System Reachability Problem

✓ □ → < □ → < □ → </p>
January 20, 2011

16 / 104

Lemma

The set $\mathbf{V} = \mathbf{C} - \mathbf{C}$ is a vector space for every conic set \mathbf{C} . This vector space is the unique minimal one that contains \mathbf{C} .

Definition

The vector space $\mathbf{V} = \mathbf{C} - \mathbf{C}$ is called the vector space generated by the conic set \mathbf{C} .

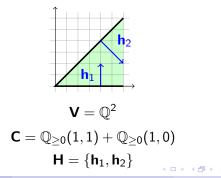
・聞き くほき くほき 二日

Duality

Theorem (Duality)

Let **V** be a vector space. A conic set $\mathbf{C} \subseteq \mathbf{V}$ is finitely generated if and only if there exists a finite set $\mathbf{H} \subseteq \mathbf{V} \setminus \{\mathbf{0}\}$ such that:

$$\mathbf{C} = igcap_{\mathbf{h}\in\mathbf{H}} \left\{ \mathbf{c}\in\mathbf{V}\mid \sum_{i=1}^d \mathbf{h}(i)\mathbf{c}(i)\geq 0
ight\}$$



Jérôme Leroux (CNRS)

Vector Addition System Reachability Problem

э

A conic set that is <u>not</u> finitely generated:

$\{(0,0)\} \cup \{(c_1,c_2) \in \mathbb{Q}^2_{\geq 0} \mid 0 < c_2 \leq c_1\}$

Jérôme Leroux (CNRS)

Vector Addition System Reachability Problem

January 20, 2011

э

Definition

A conic set **C** is said to be <u>definable</u> if there exists a formula in FO ($\mathbb{Q}, +, \leq, 0$) denoting **C**.

 $\phi(x_1, x_2) = (x_1 = 0 \land x_2 = 0) \lor ((\neg x_2 \le 0) \land x_2 \le x_1)$

Lemma

Every finitely generated conic set is definable.

Proof.

Jérôme Leroux (CNRS)

The conic set $\mathbf{C} = \mathbb{Q}_{\geq 0}\mathbf{c}_1 + \cdots + \mathbb{Q}_{\geq 0}\mathbf{c}_k$ is denoted by the formula $\phi(x_1, \ldots, x_d)$ equals to:

$$\exists \lambda_1 \dots \exists \lambda_k \left(\bigwedge_{j=1}^k 0 \leq \lambda_j \right) \land \left(\bigwedge_{i=1}^d x_i = \sum_{j=1}^k \lambda_j \mathbf{c}_j(i) \right)$$

Vector Addition System Reachability Problem

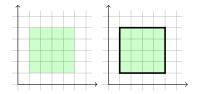
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Definition

The topological closure of $\mathbf{X} \subseteq \mathbb{Q}^d$ is the set $\overline{\mathbf{X}}$ of vectors $\mathbf{y} \in \mathbb{Q}^d$ such that for all $\varepsilon \in \mathbb{Q}_{>0}$ the following intersection is non empty:

$$\mathbf{X} \cap (\mathbf{y} + (-\varepsilon, \varepsilon)^d) \neq \emptyset$$

Let $X = (1,5) \times (1,5)$. Then $\overline{X} = [1,5] \times [1,5]$.



3

22 / 104

Lemma
$\overline{{\bf X}\cup{\bf Y}}=\overline{{\bf X}}\cup\overline{{\bf Y}}$
$X \subseteq \overline{X}$
$\overline{\mathbf{X}} + \overline{\mathbf{Y}} \subset \overline{\mathbf{X} + \mathbf{Y}}$
· _ ·
$\mathbb{Q}_{\geq 0}\overline{X}\subseteq\overline{\mathbb{Q}_{\geq 0}X}$

Example

 $\ensuremath{\overline{X}+Y} \neq \ensuremath{\overline{X}} + \ensuremath{\overline{Y}} \neq \ensuremath{\overline{X}} + \ensuremath{\overline{Y}} \ensuremath{\text{with}}:$ $\ensuremath{\overline{X}} = \{ \ensuremath{\textbf{x}} \in \ensuremath{\mathbb{Q}}^2_{>0} \mid \ensuremath{\textbf{x}}(2) = \ensuremath{\frac{1}{\textbf{x}(1)}} \} \text{ and } \\ \ensuremath{\overline{Y}} = \ensuremath{\mathbb{Q}}_{\geq 0}(0, -1). \end{cases}$

Example

 $\begin{array}{l} \overline{\mathbb{Q}_{\geq 0} \boldsymbol{\mathsf{X}}} \neq \mathbb{Q}_{\geq 0} \overline{\boldsymbol{\mathsf{X}}} \text{ with:} \\ \boldsymbol{\mathsf{X}} = \{ \boldsymbol{\mathsf{x}} \in \mathbb{Q}_{\geq 0}^2 \mid \boldsymbol{\mathsf{x}}(2) = \frac{1}{\boldsymbol{\mathsf{x}}(1)} \} \end{array}$

Corollary

The topological closure of a conic set is a conic set.

Proof.

$$\begin{array}{l} \mathbf{0} \in \mathbf{C} \subseteq \overline{\mathbf{C}} \\ \overline{\mathbf{C}} + \overline{\mathbf{C}} \subseteq \overline{\mathbf{C} + \mathbf{C}} \subseteq \overline{\mathbf{C}} \\ \mathbb{Q}_{\geq 0} \overline{\mathbf{C}} \subseteq \overline{\mathbb{Q}_{\geq 0} \mathbf{C}} \subseteq \overline{\mathbf{C}} \end{array}$$

<u>Jérôme Leroux</u> (CNRS)

Lemma

The topological closure of a set definable in FO $(\mathbb{Q}, +, \leq, 0)$ is a finite union of finitely generated conic sets.

Example

$$\begin{aligned} \mathbf{X} &= \mathbf{X}_1 \cup \mathbf{X}_2 \cup \mathbf{X}_3 \text{ with:} \\ \mathbf{X}_1 &= \{ (x, y) \in \mathbb{Q}^2 \mid 2x + 3y > 0 \land x - y \ge 0 \} \\ \mathbf{X}_2 &= \{ (x, y) \in \mathbb{Q}^2 \mid x > 0 \land x - y > 0 \} \\ \mathbf{X}_3 &= \{ (x, y) \in \mathbb{Q}^2 \mid x > 0 \land y > 0 \land -x - y > 0 \} \end{aligned}$$

Then

$$\overline{\mathbf{X}} = \overline{\mathbf{X}}_1 \cup \overline{\mathbf{X}}_2 \cup \overline{\mathbf{X}}_3$$
 with:
 $\overline{\mathbf{X}}_1 = \{(x, y) \in \mathbb{Q}^2 \mid 2x + 3y \ge 0 \land x - y \ge 0\}$
 $\overline{\mathbf{X}}_2 = \{(x, y) \in \mathbb{Q}^2 \mid x \ge 0 \land x - y \ge 0\}$
 $\overline{\mathbf{X}}_3 = \emptyset$

Jérôme Leroux (CNRS)

January 20, 2011 24 / 104

イロト イ理ト イヨト イヨト 二日

Lemma

The topological closure of a definable conic set is a finitely generated conic set.

Lemma

Let **C** be a definable conic set. Since **C** is a conic set then $\overline{\mathbf{C}}$ is a conic set. Since **C** is definable then $\overline{\mathbf{C}} = \bigcup_{j=1}^{k} \mathbf{C}_{j}$ with \mathbf{C}_{j} a finitely generated conic set.

Just observe that in this case:

$$\overline{\mathsf{C}} = \sum_{j=1}^k \mathsf{C}_j$$

Jérôme Leroux (CNRS) Vector Addition System Reachability Problem January 20, 2011 25 / 104

Definition

A conic set $\mathbf{C} \subseteq \mathbb{Q}^d$ is said to be locally finitely generated if for every vector space $\mathbf{V} \subseteq \mathbb{Q}^d$ the conic set $\overline{\mathbf{C} \cap \mathbf{V}}$ is finitely generated.

Theorem

A conic set is definable if and only if it is locally finitely generated.

Example:

- With $\mathbf{V} = \mathbb{Q}^2$ we have $\overline{\mathbf{C} \cap \mathbf{V}} = \mathbb{Q}_{\geq 0}(1,1) + \mathbb{Q}_{\geq 0}(1,0).$
- With $\mathbf{V} = \mathbb{Q}\mathbf{v}$ then $\overline{\mathbf{C} \cap \mathbf{V}}$ is $\{(0,0)\}$, $\mathbb{Q}_{\geq 0}\mathbf{v}$, or $-\mathbb{Q}_{\geq 0}\mathbf{v}$.
- With $\boldsymbol{V}=\{(0,0)\}$ then $\overline{\boldsymbol{C}\cap\boldsymbol{V}}=\{(0,0)\}.$

Jérôme Leroux (CNRS)

Assume that **C** is a definable conic set. For every vector space **V** the conic set $\mathbf{C} \cap \mathbf{V}$ is definable. From the previous lemma $\overline{\mathbf{C} \cap \mathbf{V}}$ is finitely generated. Thus **C** is locally finitely generated.

Lemma

Let **C** be a conic set such that \overline{C} is finitely generated and $C \cap V$ is definable for every vector space $V \subset C - C$. Then **C** is definable.

Proof.

Let W = C - C. There exists a finite set $H \subseteq W \setminus \{0\}$ such that:

$$\overline{\mathbf{C}} = \bigcap_{\mathbf{h}\in\mathbf{H}} \left\{ \mathbf{c}\in\mathbf{W} \mid \sum_{i=1}^{d} \mathbf{h}(i)\mathbf{c}(i) \ge 0
ight\}$$

We prove that $\mathbf{X} \subseteq \mathbf{C}$ where $\mathbf{X} = \bigcap_{\mathbf{h} \in \mathbf{H}} \left\{ \mathbf{c} \in \mathbf{W} \mid \sum_{i=1}^{d} \mathbf{h}(i)\mathbf{c}(i) > 0 \right\}$. Observe that $\mathbf{C} = \mathbf{X} \cup \bigcup_{\mathbf{h} \in \mathbf{H}} (\mathbf{C} \cap \mathbf{V}_{\mathbf{h}})$ where:

$$\mathbf{V}_{\mathbf{h}} = \left\{ \mathbf{v} \in \mathbf{W} \mid \sum_{i=1}^{d} \mathbf{h}(i) \mathbf{c}(i) = 0 \right\}$$

Jérôme Leroux (CNRS)

 H_k : Locally finitely generated conic sets **C** such that rank(**C** - **C**) $\leq k$ are definable.

 H_0 is clearly true since rank $(\mathbf{C} - \mathbf{C}) = 0$ implies $\mathbf{C} = \{\mathbf{0}\}$. Assume H_k true and let \mathbf{C} be a locally definable conic set such that rank $(\mathbf{W}) = k + 1$ where $\mathbf{W} = \mathbf{C} - \mathbf{C}$. We observe that $\overline{\mathbf{C}}$ is finitely generated and for every vector space $\mathbf{V} \subset \mathbf{W}$ the conic set $\mathbf{C} \cap \mathbf{V}$ is locally finitely generated. Since rank $(\mathbf{V}) < \operatorname{rank}(\mathbf{W}) \le k + 1$ we can apply H_k . We deduce that $\mathbf{C} \cap \mathbf{V}$ definable. From the previous lemma we deduce that \mathbf{C} is definable. Thus H_{k+1} is true.

- * 帰 * * き * * き * … き

An Application

A conic set that is <u>not</u> definable:

$$\mathbf{C} = \{(c_1,c_2) \in \mathbb{Q}^2_{\geq 0} \mid \sqrt{2} \ c_2 \leq c_1\}$$

The conic set **C** is not finitely generated. Let $\mathbf{V} = \mathbb{Q}^2$. Since $\overline{\mathbf{C} \cap \mathbf{V}} = \mathbf{C}$ we deduce that **C** is not definable.

We have introduced the class of <u>definable conic sets</u> and provided an algebraic criterion for membership of conic sets in this class.

Theorem (Algebraic Criterion)

Jérôme Leroux (CNRS)

A conic set $\mathbf{C} \subseteq \mathbb{Q}^d$ is definable in FO $(\mathbb{Q}, +, \leq, 0)$ if and only if the conic set $\overline{\mathbf{C} \cap \mathbf{V}}$ is finitely generated for every vector space $\mathbf{V} \subseteq \mathbb{Q}^d$.

Outline

Dense Sets

- **Discrete Sets**
- Almost Semilinear Sets
- 5 Precise Approximations
- 6 Inductive Invariants
- Well Orders
- Production Relations
- 9 Reachability Relations
- 10 One More Thing...
 - Conclusion

э

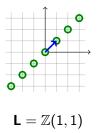
Definition

A <u>lattice</u> is a subset $L \subseteq \mathbb{Z}^d$ such that $0 \in L$, $L + L \subseteq L$ and $-L \subseteq L$.

Lemma

For every lattice L there exists a sequence $I_1, \ldots, I_k \in L$ such that:

$$\mathsf{L} = \mathbb{Z}\mathsf{I}_1 + \cdots + \mathbb{Z}\mathsf{I}_k$$

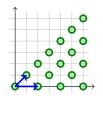


Jérôme Leroux (CNRS)

Definition

A set $\mathbf{P} \subseteq \mathbb{Z}^d$ is said to be <u>periodic</u> if $\mathbf{0} \in \mathbf{P}$ and $\mathbf{P} + \mathbf{P} \subseteq \mathbf{P}$. A periodic set \mathbf{P} is said to be finitely generated if there exist $\mathbf{p}_1, \ldots, \mathbf{p}_k \in \mathbf{P}$ such that:

 $\mathbf{P} = \mathbb{N}\mathbf{p}_1 + \cdots + \mathbb{N}\mathbf{p}_k$



 $\mathbf{P}=\mathbb{N}(1,1)+\mathbb{N}(2,0)$

Jérôme Leroux (CNRS)

Vector Addition System Reachability Problem

January 20, 2011

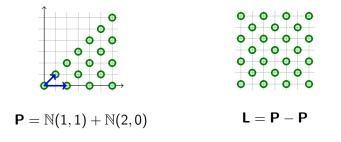
Lattices And Periodic Sets

Lemma

The set L = P - P is a lattice for every periodic set P. This lattice is the unique minimal one that contains P.

Definition

The lattice $\mathbf{L} = \mathbf{P} - \mathbf{P}$ is called the lattice generated by the periodic set \mathbf{P} .



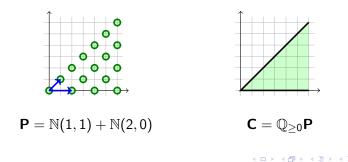
Conic Sets And Periodic Sets

Lemma

The set $C = \mathbb{Q}_{\geq 0}P$ is a conic set for every periodic set P. This conic set is the unique minimal one that contains P.

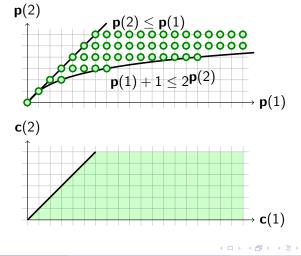
Definition

The conic set $\bm{C}=\mathbb{Q}_{\geq 0}\bm{P}$ is called the conic set generated by the periodic set $\bm{P}.$



Definition

A periodic set **P** is said to be asymptotically definable if the conic set $\mathbf{C} = \mathbb{Q}_{\geq 0}\mathbf{P}$ is definable in FO $(\mathbb{Q}, +, \leq, 0)$.



Jérôme Leroux (CNRS)

Vector Addition System Reachability Problem

January 20, 2011

37 / 104

Lemma

The class of asymptotically definable periodic sets is stable by intersection.

Proof.

Let $\boldsymbol{\mathsf{P}}_1, \boldsymbol{\mathsf{P}}_2$ be two periodic sets. We have:

$$\mathbb{Q}_{\geq 0}(\mathsf{P}_1 \cap \mathsf{P}_2) \; = \; (\mathbb{Q}_{\geq 0}\mathsf{P}_1) \cap (\mathbb{Q}_{\geq 0}\mathsf{P}_2)$$

Assume that:

 $\mathbb{Q}_{\geq 0}\mathbf{P}_1$ is denoted by $\phi_1(\mathbf{x})$. $\mathbb{Q}_{\geq 0}\mathbf{P}_2$ is denoted by $\phi_2(\mathbf{x})$. Then $\mathbb{Q}_{\geq 0}(\mathbf{P}_1 \cap \mathbf{P}_2)$ is denoted by $\phi_1(\mathbf{x}) \wedge \phi_2(\mathbf{x})$.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Lemma

The class of asymptotically definable periodic relations is stable by composition.

Proof.

Let $R_1, R_2 \subseteq \mathbb{Z}^d \times \mathbb{Z}^d$ be two periodic relations. We have:

$$\mathbb{Q}_{\geq 0}(R_1 \circ R_2) = (\mathbb{Q}_{\geq 0}R_1) \circ (\mathbb{Q}_{\geq 0}R_2)$$

Assume that:

 $\mathbb{Q}_{\geq 0}R_1$ is denoted by $\phi_1(\mathbf{x}, \mathbf{y})$. $\mathbb{Q}_{\geq 0}R_2$ is denoted by $\phi_2(\mathbf{y}, \mathbf{z})$. Then $\mathbb{Q}_{\geq 0}(R_1 \circ R_2)$ is denoted by $\exists \mathbf{y} \ \phi_1(\mathbf{x}, \mathbf{y}) \land \phi_2(\mathbf{y}, \mathbf{z})$.

Jérôme Leroux (CNRS)

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ 三臣 - のへで

We introduced the class of asymptotically definable periodic sets.

From an asymptotically definable periodic set \mathbf{P} , we can extract two properties:

- the "repeated motif", i.e. the lattice ${\bm L}={\bm P}-{\bm P}$ denoted by a finite sequence of vectors in ${\bm L}.$
- the "asymptotic direction", i.e. the conic set $\mathbf{C} = \mathbb{Q}_{\geq 0}\mathbf{P}$ denoted by a formula in FO $(\mathbb{Q}, +, \leq, 0)$.

Stability properties:

- asymptotically definable periodic sets are stable by intersection.
- asymptotically definable periodic relations are stable by composition.

Outline

Dense Sets

- **Discrete Sets**
- Almost Semilinear Sets
- 5 Precise Approximations
- 6 Inductive Invariants
- Well Orders
- Production Relations
- 9 Reachability Relations
- 10 One More Thing...
 - Conclusion

э

Definition

A set $\mathbf{X} \subseteq \mathbb{Z}^d$ is said to be <u>Presburger</u> if it can be denoted by a formula in FO ($\mathbb{Z}, +, \leq, 0, 1$).

Theorem (Ginsburg and Spanier - 1966)

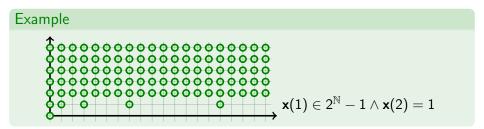
A set $\mathbf{X} \subseteq \mathbb{Z}^d$ is Presburger if and only if it is <u>semilinear</u>, i.e. a finite union of sets $\mathbf{b} + \mathbf{P}$ where $\mathbf{b} \in \mathbb{Z}^d$ and $\mathbf{P} \subseteq \mathbb{Z}^d$ is a finitely generated periodic set.

Almost Semilinear Sets

Jérôme Leroux (CNRS)

Definition

A set $\mathbf{X} \subseteq \mathbb{Z}^d$ is said to be <u>almost semilinear</u> if for every Presburger set $\mathbf{S} \subseteq \mathbb{Z}^d$, the set $\mathbf{X} \cap \mathbf{S}$ is a finite union of sets $\mathbf{b} + \mathbf{P}$ where $\mathbf{b} \in \mathbb{Z}^d$ and $\mathbf{P} \subseteq \mathbb{Z}^d$ is an asymptotically definable periodic set.

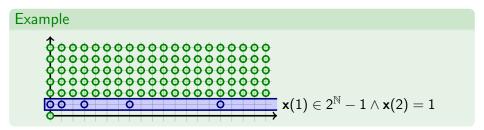


Almost Semilinear Sets

Jérôme Leroux (CNRS)

Definition

A set $\mathbf{X} \subseteq \mathbb{Z}^d$ is said to be <u>almost semilinear</u> if for every Presburger set $\mathbf{S} \subseteq \mathbb{Z}^d$, the set $\mathbf{X} \cap \mathbf{S}$ is a finite union of sets $\mathbf{b} + \mathbf{P}$ where $\mathbf{b} \in \mathbb{Z}^d$ and $\mathbf{P} \subseteq \mathbb{Z}^d$ is an asymptotically definable periodic set.



Jérôme Leroux (CNRS)

We introduced the class of almost semilinear sets.

In the sequel we show that this class:

- Contains VAS reachability relations.
- Is sufficient to deduce inductive invariants in the Presburger arithmetic.

Outline

Dense Sets

- **Discrete Sets**
- Almost Semilinear Sets
- 5 Precise Approximations
- 6 Inductive Invariants
- Well Orders
- Production Relations
- 9 Reachability Relations
- 10 One More Thing...
 - Conclusion

э

Let $\mathbf{P} \subseteq \mathbb{Z}^d$ be an asymptotically definable periodic set.

Definition

The linearization of **P** is:

$$\mathsf{lin}(\mathsf{P}) = (\mathsf{P} - \mathsf{P}) \cap \overline{\mathbb{Q}_{\geq 0}\mathsf{P}}$$

Lemma

 $lin(\mathbf{P})$ is a finitely generated periodic set.

Proof.

 $\mathbf{L} = \mathbf{P} - \mathbf{P}$ is a lattice.

 $\overline{\mathbb{Q}_{\geq 0}\mathbf{P}}$ is a finitely generated conic set.

Jérôme Leroux (CNRS)

Vector Addition System Reachability Problem

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

The linearization lin(**P**) provides an over-approximation of **P**. Let $\mathbf{P}_1, \mathbf{P}_2 \subseteq \mathbb{Z}^d$ be two asymptotically definable periodic sets and $\mathbf{b}_1, \mathbf{b}_2 \in \mathbb{Z}^d$ be two vectors such that:

$$(\mathbf{b}_1 + \mathbf{P}_1) \cap (\mathbf{b}_2 + \mathbf{P}_2) = \emptyset$$

In general:

Jérôme Leroux (CNRS)

$$(\mathbf{b}_1 + \operatorname{lin}(\mathbf{P}_1)) \cap (\mathbf{b}_2 + \operatorname{lin}(\mathbf{P}_2)) \neq \emptyset$$

Dimension

Definition

The dimension dim(X) of a non-empty set $X \subseteq \mathbb{Z}^d$ is the minimal integer $r \in \{0, ..., d\}$ such that:

$$\mathbf{X} \subseteq igcup_{j=1}^k \mathbf{b}_j + \mathbf{V}_j$$

where $\mathbf{b}_j \in \mathbb{Z}^d$ and \mathbf{V}_j is a vector space satisfying rank $(\mathbf{V}_j) \leq r$.

 $\dim(\emptyset) = -1$ by convention.

Example

$$\begin{split} &\dim(\mathbb{N}) = 1 \\ &\dim(\{(0,1),(1,0)\}) = 0 \\ &\dim(\{(x,y) \in \mathbb{N}^2 \mid x \leq y\}) = 2 \end{split}$$

Theorem

Let $\mathbf{P}_1, \mathbf{P}_2 \subseteq \mathbb{Z}^d$ be two asymptotically definable periodic sets and $\mathbf{b}_1, \mathbf{b}_2 \in \mathbb{Z}^d$ such that:

$$(\mathbf{b}_1 + \mathbf{P}_1) \cap (\mathbf{b}_2 + \mathbf{P}_2) = \emptyset$$

In this case, the set

$$\mathbf{X} = (\mathbf{b}_1 + \mathsf{lin}(\mathbf{P}_1)) \ \cap \ (\mathbf{b}_2 + \mathsf{lin}(\mathbf{P}_2))$$

satisfies:

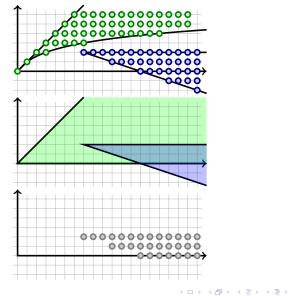
$$\mathsf{dim}(\mathbf{X}) < \mathsf{max}\{\mathsf{dim}(\mathbf{b}_1 + \mathbf{P}_1), \mathsf{dim}(\mathbf{b}_2 + \mathbf{P}_2)\}$$

Jérôme Leroux (CNRS)

Vector Addition System Reachability Problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Example



Jérôme Leroux (CNRS)

January 20, 2011

Jérôme Leroux (CNRS)

We introduced a way to over-approximate asymptotically definable periodic sets into finitely generated ones. The approximation is proved precise in some sense.

3

・ 同 ト ・ 三 ト ・ 三 ト

Outline

Dense Sets

- **Discrete Sets**
- Almost Semilinear Sets
- 5 Precise Approximations
- 6 Inductive Invariants
- Well Orders
- Production Relations
- 9 Reachability Relations
- 10 One More Thing...
 - Conclusion

э

Context

Let $R \subseteq \mathbb{Z}^d \times \mathbb{Z}^d$ be a relation definable in FO ($\mathbb{Z}, +, \leq, 0, 1$). Decide the membership in the reflexive and transitive closure R^* .

Example

Let **A** be a VAS. We introduce:

$$R = \{ (\mathbf{m}, \mathbf{n}) \in \mathbb{N}^d \times \mathbb{N}^d \mid \mathbf{n} - \mathbf{m} \in \mathbf{A} \}$$

Then R^* is the reachability relation.

In general <u>undecidable</u> since the one step reachability relation R of a Minsky machine is definable in FO ($\mathbb{Z}, +, \leq, 0, 1$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Inductive Invariants

Let $R \subseteq \mathbb{Z}^d \times \mathbb{Z}^d$.

Definition

The forward image $\text{post}_R(\mathbf{X})$ of a set $\mathbf{X} \subseteq \mathbb{Z}^d$ by R is defined by:

$$\mathsf{post}_R(\mathsf{X}) = \bigcup_{\mathsf{x}\in\mathsf{X}} \{\mathsf{y}\in\mathbb{Z}^d \mid (\mathsf{x},\mathsf{y})\in R\}$$

If $post_R(\mathbf{X}) \subseteq \mathbf{X}$ then \mathbf{X} is called a <u>forward inductive invariant</u> for R.

Definition

The backward image $pre_R(\mathbf{Y})$ of a set $\mathbf{Y} \subseteq \mathbb{Z}^d$ by R is defined by:

$$\mathsf{pre}_R(\mathbf{Y}) = \bigcup_{\mathbf{y}\in\mathbf{Y}} \{\mathbf{x}\in\mathbb{Z}^d \mid (\mathbf{x},\mathbf{y})\in R\}$$

If $\operatorname{pre}_R(\mathbf{Y}) \subseteq \mathbf{Y}$ then \mathbf{Y} is called a <u>backward inductive invariant</u> for R.

Definition (Separators)

A separator for a binary relation $R \subseteq \mathbb{Z}^d \times \mathbb{Z}^d$ is a pair (\mathbf{X}, \mathbf{Y}) of subsets of \mathbb{Z}^d such that $\text{post}_{R^*}(\mathbf{X}) \cap \text{pre}_{R^*}(\mathbf{Y}) = \emptyset$. The set $\mathbf{D} = \mathbb{Z}^d \setminus (\mathbf{X} \cup \mathbf{Y})$ is called the domain. A separator is said to be closed if its domain is empty.

If (X, Y) is a closed separator for R then X is a forward invariant and Y is a backward invariant.

Example

Separators (\mathbf{X}, \mathbf{Y}) are included in closed separators, for instance:

$$(\operatorname{post}_{R^*}(\mathbf{X}) \ , \ \mathbb{Z}^d ackslash \operatorname{post}_{R^*}(\mathbf{X}))$$

 $(\mathbb{Z}^d ackslash \operatorname{pre}_{R^*}(\mathbf{Y}) \ , \ \operatorname{pre}_{R^*}(\mathbf{Y}))$

Jérôme Leroux (CNRS)

・聞き くほき くほき 二日

Main result of this section:

Theorem

Let $R \subseteq \mathbb{Z}^d \times \mathbb{Z}^d$ be a binary relation such that its reflexive and transitive closure R^* is an almost semilinear relation. Presburger separators are included in closed Presburger separators.

Corollary

Let $R \subseteq \mathbb{Z}^d \times \mathbb{Z}^d$ be a binary relation such that its reflexive and transitive closure R^* is an almost semilinear relation. For every $(\mathbf{x}, \mathbf{y}) \notin R^*$ there exists a Presburger forward invariant \mathbf{I} such that $\mathbf{x} \in \mathbf{I}$ and $\mathbf{y} \notin \mathbf{I}$.

Proof.

Observe that $(\{x\}, \{y\})$ is a Presburger separator. There exists a closed Presburger separator (I, J) such that: $\{x\} \subseteq I$ and $\{y\} \subseteq J$. Since $I \cap J = \emptyset$ we get $y \notin I$.

3

イロト 人間ト イヨト イヨト

Assume that R^* is almost semilinear.

Lemma

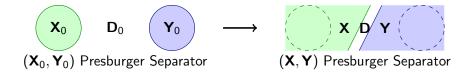
 $\text{post}_{R^*}(\mathbf{X})$ and $\text{pre}_{R^*}(\mathbf{Y})$ are almost semilinear sets for every Presburger sets $\mathbf{X}, \mathbf{Y} \subseteq \mathbb{Z}^d$.

Proof.

Jérôme Leroux (CNRS)

Let $\mathbf{S} \subseteq \mathbb{Z}^d$ be a Presburger set. We have:

$$\mathsf{post}_{R^*}(\mathsf{X}) \cap \mathsf{S} = \{\mathsf{y} \in \mathbb{Z}^d \mid \exists (\mathsf{x}, \mathsf{y}) \in R^* \cap (\mathsf{X} \times \mathsf{S}) \}$$



with $dim(\mathbf{D}_0) > dim(\mathbf{D})$

<u>Jérôme Leroux</u> (CNRS) Vector Addition System Reachability Problem January 20, 2011

3 x 3

58 / 104

(X_0, Y_0) Presburger Separator

Jérôme Leroux (CNRS)

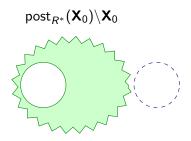
Vector Addition System Reachability Problem

January 20, 2011

A D > A B > A B

59 / 104

문 > 문



This is a finite union $\bigcup_i (\mathbf{b}_i + \mathbf{P}_i)$.

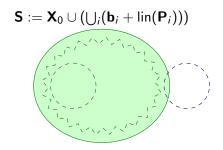
Vector Addition System Reachability Problem

Jérôme Leroux (CNRS)

January 20, 2011

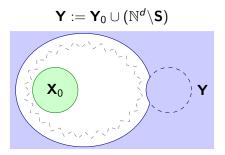
ም.

3. 3



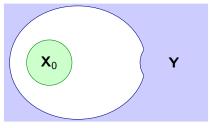
S is an over-approximation of $post_{R^*}(\mathbf{X}_0)$.

 $\boldsymbol{S} \cap \boldsymbol{Y}_0$ is not necessary empty.



 $(\textbf{X}_0,\textbf{Y})$ is a Presburger separator such that $\textbf{Y}_0 \subseteq \textbf{Y}$

Jérôme Leroux (CNRS)



 (X_0, Y) Presburger Separator

Jérôme Leroux (CNRS)

Vector Addition System Reachability Problem

January 20, 2011

イロト イポト イヨト イヨト

æ

This is a finite union $\bigcup_j (\mathbf{c}_j + \mathbf{Q}_j)$.

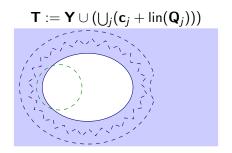
Jérôme Leroux (CNRS)

Vector Addition System Reachability Problem

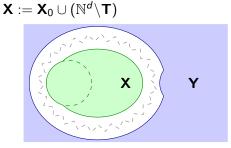
January 20, 2011

イロト イポト イヨト イヨト

æ



T is an over-approximation of $pre_{R^*}(\mathbf{Y})$. **T** \cap **X**₀ is not necessary empty.



 (\mathbf{X}, \mathbf{Y}) is a Presburger separator such that $\mathbf{X}_0 \subseteq \mathbf{X}$

Jérôme Leroux (CNRS)

э

Induction

The domain **D** of (\mathbf{X}, \mathbf{Y}) satisfies $\mathbf{D} = \mathbf{D}_0 \cap (\bigcup_{i \in I} \mathbf{D}_{i,j})$ where:

$$\mathbf{D}_{i,j} = (\mathbf{b}_i + \mathrm{lin}(\mathbf{P}_i)) \cap (\mathbf{c}_j + \mathrm{lin}(\mathbf{Q}_j))$$

As $(\mathbf{b}_i + \mathbf{P}_i) \cap (\mathbf{c}_i + \mathbf{Q}_i) = \emptyset$ we get:

 $\dim(\mathbf{D}_{i,i}) < \max\{\dim(\mathbf{b}_i + \mathbf{P}_i), \dim(\mathbf{c}_i + \mathbf{Q}_i)\}$

As $\mathbf{b}_i + \mathbf{P}_i$ and $\mathbf{c}_i + \mathbf{Q}_i$ are both included in \mathbf{D}_0 , we get:

 $\dim(\mathbf{b}_i + \mathbf{P}_i) \leq \dim(\mathbf{D}_0) \qquad \dim(\mathbf{c}_i + \mathbf{Q}_i) \leq \dim(\mathbf{D}_0)$

Thus:

$$\dim(\mathbf{D}) < \dim(\mathbf{D}_0)$$

Jérôme Leroux (CNRS)

Vector Addition System Reachability Problem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで January 20, 2011

Jérôme Leroux (CNRS)

Assume that R is denoted by a Presburger formula and R^* is almost semilinear. The non-membership in R^* can be proved with formulas in the Presburger arithmetic denoting forward inductive invariants for R.

・ 同 ト ・ 三 ト ・ 三 ト

Outline

Dense Sets

- **Discrete Sets**
- Almost Semilinear Sets
- 5 Precise Approximations
- 6 Inductive Invariants
- Well Orders
- Production Relations
- 9 Reachability Relations
- 10 One More Thing...
 - Conclusion

э

Definition

An order \sqsubseteq over a set S is said to be <u>well</u> if for every sequence $(s_n)_{n \in \mathbb{N}}$ of elements $s_n \in S$ there exists an increasing sequence $(n_k)_{k \in \mathbb{N}}$ of indexes $n_k \in \mathbb{N}$ such that $(s_{n_k})_{k \in \mathbb{N}}$ is non decreasing for \sqsubseteq .

Example

The ordered set (\mathbb{N}, \leq) is well but (\mathbb{Z}, \leq) is not well.

Example (Pigeon Hole Principle) An ordered set (S, =) is well if and only if S is finite.

Jérôme Leroux (CNRS)

Vector Addition System Reachability Problem

January 20, 2011 6

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ 三臣 - のへで

63 / 104

Dickson's Lemma

Definition

Let (S, \sqsubseteq) be an ordered set. We introduce the ordered set (S^d, \sqsubseteq^d) where \sqsubseteq^d is defined component-wise by

$$(s_1,\ldots,s_d) \sqsubseteq^d (t_1,\ldots,t_d)$$
 if $s_i \sqsubseteq t_i \quad \forall i$

Lemma (Dickson's Lemma)

The order set (S^d, \sqsubseteq^d) is well for every well ordered set (S, \sqsubseteq) .

Example

 (\mathbb{N}^d, \leq) is well.

Jérôme Leroux (CNRS)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Higmann's Lemma

Definition

Let (S, \sqsubseteq) be an ordered set.

We introduce the ordered set (S^*, \sqsubseteq^*) where \sqsubseteq^* is defined by $u \sqsubseteq^* v$ if u and v can be decomposed as follows:

$$u = s_1 \dots s_d$$

$$\square \qquad \square \qquad \square$$

$$v = w_0 \quad t_1 \quad w_1 \dots \quad t_d \quad w_d$$

where $s_j, t_j \in S$.

Lemma (Higmann's Lemma)

The ordered set (S^*, \sqsubseteq^*) is well for every well ordered set (S, \sqsubseteq) .

Outline

Dense Sets

- **Discrete Sets**
- Almost Semilinear Sets
- 5 Precise Approximations
- 6 Inductive Invariants
- Well Orders
- Production Relations
- 9 Reachability Relations
- 10 One More Thing...
 - Conclusion

э

Vector Addition System Additional Notations

Definition

Let $\rho = \mathbf{m}_0 \dots \mathbf{m}_k$ be a run of a VAS **A**. We introduce the action $\mathbf{a}_j = \mathbf{m}_j - \mathbf{m}_{j-1}$ for each $j \in \{1, \dots, k\}$.

 $\operatorname{src}(\rho) = \mathbf{m}_0$ the source. $\operatorname{tgt}(\rho) = \mathbf{m}_k$ the target. $\operatorname{lab}(\rho) = \mathbf{a}_1 \dots \mathbf{a}_k$ the label.

Let $w \in \mathbf{A}^*$ be a word of actions.

Definition

The binary relation \xrightarrow{w} over \mathbb{N}^d is defined by $\mathbf{m} \xrightarrow{w} \mathbf{n}$ if there exists a run ρ such that $\operatorname{src}(\rho) = \mathbf{m}$, $\operatorname{lab}(\rho) = w$ and $\operatorname{tgt}(\rho) = \mathbf{n}$.

Definition

We denote by $\xrightarrow{*}$ the reachability relation.

Jérôme Leroux (CNRS)

Definition (Inspired from Hauschildt 1990)

The production relation of a marking **m** is the binary relation $\stackrel{*}{\rightarrow}_{\mathbf{m}}$ defined over the markings by:

$$r \rightarrow_{m} s$$
 if $m + r \rightarrow m + s$
 $q \rightarrow m + r \rightarrow m + s$
 $m + r \rightarrow m + s$
 $q \rightarrow m + s$
 $q \rightarrow m + s$

Example

$$\stackrel{*}{\rightarrow}_{m} \text{ is equal to } \stackrel{*}{\rightarrow} \text{ when } m = 0.$$

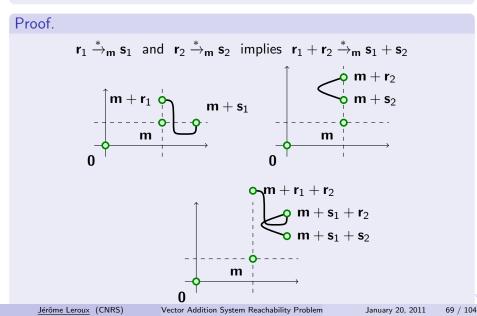
Jérôme Leroux (CNRS)

3

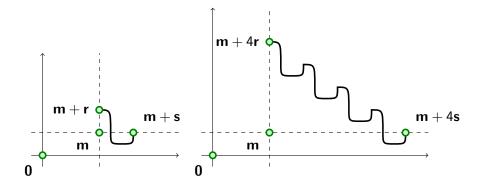
くほと くほと くほと

Lemma

Production relations are periodic.



Application : Iterate



January 20, 2011

표 문 문

< 17 ▶

Main result of this section:

Jérôme Leroux (CNRS)

Theorem

Production relations are asymptotically definable.

I.e. the following relation is definable in FO ($\mathbb{Q}, +, \leq, 0$):

$$\mathbb{Q}_{\geq 0} \xrightarrow{*}_{\mathbf{m}} = \{ (\lambda \mathbf{r}, \lambda \mathbf{s}) \mid \lambda \in \mathbb{Q}_{\geq 0} \text{ and } \mathbf{r} \xrightarrow{*}_{\mathbf{m}} \mathbf{s} \}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Relaxing Components

We introduce an element $\infty \notin \mathbb{N}$ and we let $\mathbb{N}_{\infty} = \mathbb{N} \cup \{\infty\}$.

Definition

A vector $\mathbf{x} \in \mathbb{N}_{\infty}^{d}$ is called an <u>extended marking</u>. The set $I = \{i \in \{1, \dots, d\} \mid \mathbf{x}(i) = \infty\}$ is called the set of <u>relaxed components</u>.

Let $\mathbf{m} \in \mathbb{N}^d$ and $I \subseteq \{1, \ldots, d\}$. The extended marking \mathbf{m}^I obtained from **m** by relaxing components in I is defined by:

$$\mathbf{m}^{I}(i) = \begin{cases} \infty & \text{if } i \in I \\ \mathbf{m}(i) & \text{if } i \notin I \end{cases}$$

Example

Let
$$\mathbf{m} = (1, 2, 1000)$$
 and $I = \{3\}$ then $\mathbf{m}^{I} = (1, 2, \infty)$.

Jérôme Leroux (CNRS)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Definition

We introduce the binary relations \xrightarrow{a} over the set of extended markings relaxed over the same set of components *I* by $\mathbf{x} \xrightarrow{a} \mathbf{y}$ if:

$$\forall i \notin I \quad \mathbf{y}(i) = \mathbf{x}(i) + \mathbf{a}(i)$$

An extended run is a non-empty word $\rho = \mathbf{x}_0 \dots \mathbf{x}_k$ of extended markings relaxed over the same set I such that for every $j \in \{1, \dots, d\}$ there exists $\mathbf{a}_j \in \mathbf{A}$ such that $\mathbf{x}_{j-1} \xrightarrow{\mathbf{a}_j} \mathbf{x}_j$.

Let $\rho = \mathbf{m}_0 \dots \mathbf{m}_k$ and $I \subseteq \{1, \dots, d\}$. The extended run ρ^I obtained from ρ by relaxing components in I is defined by $\rho^I = \mathbf{m}_0^I \dots \mathbf{m}_k^I$.

Example

Let
$$\rho = (0, 0, 100)(0, 1, 99) \dots (0, 100, 0)$$
 be a run.
Let $I = \{2, 3\}$.
Then $\rho^I = (0, \infty, \infty) \dots (0, \infty, \infty)$.

Recall that $\stackrel{*}{\rightarrow}_{\mathbf{m}}$ is asymptotically definable if and only for every vector space $V \subseteq \mathbb{Q}^d \times \mathbb{Q}^d$ the following conic set is finitely generated:

$$\mathbb{Q}_{\geq 0} \xrightarrow{*}_{\mathbf{m}, V}$$

where:

Jérôme Leroux (CNRS)

$$\stackrel{*}{\rightarrow}_{\mathbf{m},V} = \{(\mathbf{r},\mathbf{s}) \in V \mid \mathbf{r} \stackrel{*}{\rightarrow}_{\mathbf{m}} \mathbf{s}\}$$

Definition

Let $\Omega_{\mathbf{m},V}$ be the set of runs of the following form with $(\mathbf{r}, \mathbf{s}) \in V$:

 $\Omega_{\mathbf{m},V} = \bigcup_{(\mathbf{r},\mathbf{s})\in\overset{*}{\rightarrow}_{\mathbf{m},V}} \{ \operatorname{runs} \rho \mid \operatorname{src}(\rho) = \mathbf{m} + \mathbf{r} \land \operatorname{tgt}(\rho) = \mathbf{m} + \mathbf{s} \}$

Jérôme Leroux (CNRS)

Vector Addition System Reachability Problem

January 20, 2011 75 / 104

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Reachability Graphs

Definition

We introduce:

$$\mathbf{Q}_{\mathbf{m},V} = \bigcup_{\rho \in \Omega_{\mathbf{m},V}} \{ \mathbf{q} \in \mathbb{N}^d \mid \mathbf{q} \text{ occurs in } \rho \}$$

$$\mathbf{Q}_{\mathbf{m},V}(i) = \{\mathbf{q}(i) \mid \mathbf{q} \in \mathbf{Q}_{\mathbf{m},V}\}$$

$$I_{\mathbf{m},V} = \{i \in \{1,\ldots,d\} \mid \mathbf{Q}_{\mathbf{m},V}(i) \text{ is infinite}\}$$

We introduce the finite graph $G_{\mathbf{m},V} = (\mathbf{X}, \Delta)$ defined by:

- $\mathbf{X} = {\mathbf{q}^{I_{\mathbf{m},V}} \mid \mathbf{q} \in \mathbf{Q}_{\mathbf{m},V}}.$
- Δ is the set of triples $(\mathbf{x}, \mathbf{a}, \mathbf{y}) \in \mathbf{X} \times \mathbf{A} \times \mathbf{X}$ such that $\mathbf{x} \xrightarrow{a} \mathbf{y}$.

3

イロト 人間ト イヨト イヨト

Jérôme Leroux (CNRS)

We introduce an approximation of $\stackrel{*}{\rightarrow}_{\mathbf{m},V}$

Definition

We introduce the relation $R_{\mathbf{m},V}$ of couples $(\mathbf{r}, \mathbf{s}) \in (\mathbb{N}^d \times \mathbb{N}^d) \cap V$ such that (1) $\mathbf{r}(i) = 0$ and $\mathbf{s}(i) = 0$ for every $i \notin I_{\mathbf{m},V}$, and (2) there exist a cycle in $G_{\mathbf{m},V}$ on the state $\mathbf{m}^{I_{\mathbf{m},V}}$ labeled by a word $\mathbf{a}_1 \dots \mathbf{a}_k$ such that:

$$\mathsf{r} + \sum_{j=1}^k \mathsf{a}_j = \mathsf{s}_j$$

Lemma

We have:

$$\hat{\to}_{\mathbf{m},V} \subseteq R_{\mathbf{m},V}$$

Proof.

Let (\mathbf{r}, \mathbf{s}) in $\stackrel{*}{\rightarrow}_{\mathbf{m}, V}$. There exists a run $\rho = \mathbf{m}_0 \dots \mathbf{m}_k$ in $\Omega_{\mathbf{m}, V}$ such that $\mathbf{m}_0 = \mathbf{m} + \mathbf{r}$ and $\mathbf{m}_k = \mathbf{m} + \mathbf{s}$.

Since $\mathbf{m} + \mathbb{N}\mathbf{r}$ and $\mathbf{m} + \mathbb{N}\mathbf{s}$ are included in $\mathbf{Q}_{\mathbf{m},V}$ we deduce that $\mathbf{r}(i) > 0$ or $\mathbf{s}(i) > 0$ implies $i \in I_{\mathbf{m},V}$. Hence:

$$\mathbf{m}_0^{l_{\mathsf{m},V}} = \mathbf{m}^{l_{\mathsf{m},V}} \quad \mathbf{m}_k^{l_{\mathsf{m},V}} = \mathbf{m}^{l_{\mathsf{m},V}}$$

We deduce that $(\mathbf{r}, \mathbf{s}) \in R_{\mathbf{m}, V}$ from the following cycle where $\mathbf{a}_j = \mathbf{m}_j - \mathbf{m}_{j-1}$: $\mathbf{m}_0^{I_{\mathbf{m}, V}} \xrightarrow{\mathbf{a}_1} \cdots \xrightarrow{\mathbf{a}_k} \mathbf{m}_{L}^{I_{\mathbf{m}, V}}$

ヘロト 人間ト 人間ト 人間ト

In general the other inclusion is wrong but let us try proving it:

$$R_{\mathbf{m},V} \subseteq \stackrel{*}{\rightarrow}_{\mathbf{m}}$$

Let $(\mathbf{r}, \mathbf{s}) \in R_{\mathbf{m}, V}$. Then $(\mathbf{r}, \mathbf{s}) \in (\mathbb{N}^d \times \mathbb{N}^d) \cap V$ and there exist a cycle in $G_{\mathbf{m}, V}$ on the state $\mathbf{m}^{I_{\mathbf{m}, V}}$ labeled by a word $\mathbf{a}_1 \dots \mathbf{a}_k$ such that:

$$\mathsf{r} + \sum_{j=1}^k \mathsf{a}_j = \mathsf{s}$$

We deduce that:

$$(\mathbf{m} + \mathbf{r})^{I_{\mathbf{m},V}} \xrightarrow{\mathbf{a}_1 \dots \mathbf{a}_k} (\mathbf{m} + \mathbf{s})^{I_{\mathbf{m},V}}$$

However in general we do not have

$$\mathbf{m} + \mathbf{r} \xrightarrow{\mathbf{a}_1 \dots \mathbf{a}_k} \mathbf{m} + \mathbf{s}$$

since components in $I_{m,V}$ relaxed in the first case are integers in the second case.

Jérôme Leroux (CNRS)

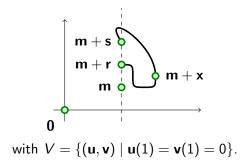
January 20, 2011 79 / 104

Definition

An intraproduction for (\mathbf{m}, V) is a tuple $(\mathbf{r}, \mathbf{x}, \mathbf{s})$ such that:

$$\mathsf{r}\stackrel{*}{
ightarrow}_{\mathbf{m}}\mathsf{x}\stackrel{*}{
ightarrow}_{\mathbf{m}}\mathsf{s}$$

and such that $(\mathbf{r}, \mathbf{s}) \in V$.



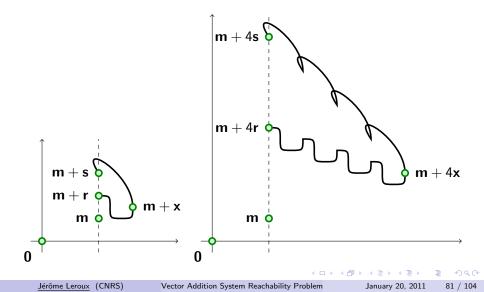
Jérôme Leroux (CNRS)

3

◆ 同 ▶ → 三 ▶

Application

 $\mathbf{m} + \mathbb{N}\mathbf{x} \subseteq \mathbf{Q}_{\mathbf{m},V}$ for every intraproduction $(\mathbf{r}, \mathbf{x}, \mathbf{s})$ for (\mathbf{m}, V) .



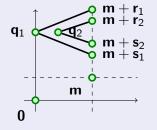
Lemma

For every $i \in I_{m,V}$ there exists an intraproduction $(\mathbf{r}, \mathbf{x}, \mathbf{s})$ for (\mathbf{m}, V) such that $\mathbf{x}(i) > 0$.

Proof.

There exist $\mathbf{q}_1 \leq \mathbf{q}_2$ in $\mathbf{Q}_{\mathbf{m},V}$ such that $\mathbf{q}_1(i) < \mathbf{q}_2(i)$. Let $(\mathbf{r}_1, \mathbf{s}_1)$ and $(\mathbf{r}_2, \mathbf{s}_2)$ in V such that:

$$\mathbf{m} + \mathbf{r}_1 \xrightarrow{u_1} \mathbf{q}_1 \xrightarrow{v_1} \mathbf{m} + \mathbf{s}_1 \qquad \mathbf{m} + \mathbf{r}_2 \xrightarrow{u_2} \mathbf{q}_2 \xrightarrow{v_2} \mathbf{m} + \mathbf{s}_2$$



Lemma (Simultaneously Large Components)

For every $n \in \mathbb{N}$ there exists $\mathbf{q}_n \in \mathbf{Q}_{\mathbf{m},V}$ such that for every $i \in \{1, \dots, d\}$:

$$\begin{cases} \mathbf{q}_n(i) = \mathbf{m}(i) & \text{if } i \notin I_{\mathbf{m},V} \\ \mathbf{q}_n(i) \ge \mathbf{m}(i) + n & \text{if } i \in I_{\mathbf{m},V} \end{cases}$$

Proof.

For each $i \in I_{\mathbf{m},V}$ there exists an intraproduction $(\mathbf{r}_i, \mathbf{x}_i, \mathbf{s}_i)$ such that $\mathbf{x}_i(i) > 0$. Since $\xrightarrow{*}_{\mathbf{m},V}$ is periodic we deduce that the set of intraproductions is periodic. Hence the following tuple is an intraproduction:

$$(\mathbf{r}, \mathbf{x}, \mathbf{s}) = \sum_{i \in I_{\mathbf{m}, V}} (\mathbf{r}_i, \mathbf{x}_i, \mathbf{s}_i)$$

Observe that $\mathbf{x}(i) > 0$ for every $i \in I_{\mathbf{m},V}$. Moreover since $\mathbf{m} + \mathbb{N}\mathbf{x} \subseteq \mathbf{Q}_{\mathbf{m},V}$ we deduce that $\mathbf{x}(i) > 0$ implies that $i \in I_{\mathbf{m},V}$. Just consider $\mathbf{q}_n = \mathbf{m} + n\mathbf{x}$.

イロト 不得下 イヨト イヨト 二日

Lemma

We have:

$$R_{\mathbf{m},V} \subseteq \mathbb{Q}_{\geq 0} \xrightarrow{*}_{\mathbf{m},V}$$

Proof.

Let $(\mathbf{r}, \mathbf{s}) \in R_{\mathbf{m}, V}$. Then $(\mathbf{r}, \mathbf{s}) \in (\mathbb{N}^d \times \mathbb{N}^d) \cap V$ and there exists a cycle in $G_{\mathbf{m}, V}$ on the state $\mathbf{m}^{I_{\mathbf{m}, V}}$ labeled by a word $w = \mathbf{a}_1 \dots \mathbf{a}_k$ such that $\mathbf{r} + \sum_{j=1}^k \mathbf{a}_j = \mathbf{s}$.

We deduce that $(\mathbf{m} + \mathbf{r})^{I_{\mathbf{m},V}} \xrightarrow{w} (\mathbf{m} + \mathbf{s})^{I_{\mathbf{m},V}}$. There exists $n \in \mathbb{N}$ large enough such that $\mathbf{q}_n + \mathbf{r} \xrightarrow{w} \mathbf{q}_n + \mathbf{s}$. As $\stackrel{*}{\rightarrow}_{\mathbf{q}_n}$ is periodic we deduce $\mathbf{q}_n + h\mathbf{r} \xrightarrow{*} \mathbf{q}_n + h\mathbf{s}$ for every $h \in \mathbb{N}$.

As $\mathbf{q}_n \in \mathbf{Q}_{\mathbf{m},V}$ we have $\mathbf{m} + \mathbf{r}' \xrightarrow{*} \mathbf{q}_n \xrightarrow{*} \mathbf{m} + \mathbf{s}'$ for some $(\mathbf{r}', \mathbf{s}') \in (\mathbb{N}^d \times \mathbb{N}^d) \cap V$.

Therefore $\mathbf{m} + \mathbf{r}' + h\mathbf{r} \xrightarrow{*} \mathbf{m} + \mathbf{s}' + h\mathbf{s}$ and $(\mathbf{r}', \mathbf{s}') + h(\mathbf{r}, \mathbf{s}) \subseteq \xrightarrow{*}_{\mathbf{m}, V}$. Hence $\frac{(\mathbf{r}', \mathbf{s}')}{h} + (\mathbf{r}, \mathbf{s}) \in \mathbb{Q}_{\geq 0} \xrightarrow{*}_{\mathbf{m}, V}$ for every $h \in \mathbb{N}_{> 0}$.

We have proved:

Lemma

$$\mathbb{Q}_{\geq 0} \xrightarrow{*}_{\mathbf{m}, \mathbf{V}} = \overline{\mathbb{Q}_{\geq 0} R_{\mathbf{m}, \mathbf{V}}}$$

We deduce:

Jérôme Leroux (CNRS)

Theorem

Production relations are asymptotically definable.

Proof.

Since $R_{\mathbf{m},V}$ is Presburger as the Parikh image of a regular language, we deduce that $\overline{\mathbb{Q}_{\geq 0}R_{\mathbf{m},V}}$ is finitely generated. Hence $\overline{\mathbb{Q}_{\geq 0}} \stackrel{*}{\rightarrow}_{\mathbf{m},V}$ is finitely generated for every vector space $V \subseteq \mathbb{Q}^d \times \mathbb{Q}^d$. We have proved that $\mathbb{Q}_{\geq 0} \stackrel{*}{\rightarrow}_{\mathbf{m}}$ is definable.

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨー

Jérôme Leroux (CNRS)

We have proved that for every marking $\mathbf{m} \in \mathbb{N}^d$ the following relation is definable in FO $(\mathbb{Q}, +, \leq, 0)$:

$$\mathbb{Q}_{\geq 0} \stackrel{*}{\rightarrow}_{\mathbf{m}} \;\; = \; \{ (\lambda \mathbf{r}, \lambda \mathbf{s}) \mid \lambda \in \mathbb{Q}_{\geq 0} \; \mathbf{r} \stackrel{*}{\rightarrow}_{\mathbf{m}} \mathbf{s} \}$$

▲ 同 ▶ → 三 ▶

3

Outline

Dense Sets

- **Discrete Sets**
- Almost Semilinear Sets
- 5 Precise Approximations
- 6 Inductive Invariants
- Well Orders
- Production Relations
- 9 Reachability Relations
- 10 One More Thing...
 - Conclusion

э

Main result of this section:

Theorem

The reachability relation $\xrightarrow{*}$ is almost semilinear.

Jérôme Leroux (CNRS)

Vector Addition System Reachability Problem

January 20, 2011

イロト 不得 トイヨト イヨト

Let
$$\rho = \mathbf{m}_0 \dots \mathbf{m}_k$$
 be a run.
 $\mathbf{r}_0 \xrightarrow{*}_{\mathbf{m}_0} \mathbf{r}_1 \xrightarrow{*}_{\mathbf{m}_1} \dots \xrightarrow{*}_{\mathbf{m}_k} \mathbf{r}_{k+1}$

Jérôme Leroux (CNRS)

◆□> ◆圖> ◆臣> ◆臣>

Definition (Inspired from Hauschildt)

Jérôme Leroux (CNRS)

The production relation of a <u>run</u> $\rho = \mathbf{m}_0 \dots \mathbf{m}_k$ is the binary relation $\stackrel{*}{\rightarrow}_{\rho}$ defined by:

$$\stackrel{*}{\rightarrow}_{\rho} = \stackrel{*}{\rightarrow}_{\mathbf{m}_0} \circ \cdots \circ \stackrel{*}{\rightarrow}_{\mathbf{m}_k}$$

The production relations $\stackrel{*}{\rightarrow}_{\rho}$ are periodic and asymptotically definable.

3

・ 同 ト ・ ヨ ト ・ ヨ ト …

Lemma

$$(\operatorname{src}(\rho), \operatorname{tgt}(\rho)) + \xrightarrow{*}_{\rho} \subseteq \xrightarrow{*}$$

Proof.

$$\begin{array}{c} \underset{m_{0} \xrightarrow{a_{1}}}{\overset{a_{1}}{\rightarrow}} m_{1} \xrightarrow{a_{2}} \cdots \xrightarrow{a_{k}} m_{k} \\ \mathbf{r}_{0} \xrightarrow{*}_{\mathbf{m}_{0}} \mathbf{r}_{1} \xrightarrow{*}_{\mathbf{m}_{1}} \cdots \xrightarrow{*}_{\mathbf{m}_{k}} \mathbf{r}_{k+1} \end{array}$$

There exist
$$w_0, \ldots, w_k \in \mathbf{A}^*$$
 such that:
 $\mathbf{m}_0 + \mathbf{r}_0 \xrightarrow{w_0} \mathbf{m}_0 + \mathbf{r}_1 \qquad \mathbf{m}_k + \mathbf{r}_k \xrightarrow{w_k} \mathbf{m}_k + \mathbf{r}_{k+1}$

$$\begin{array}{c} \text{Hence} \\ \mathbf{m}_0 + \mathbf{r}_0 \xrightarrow{w_0 \ \mathbf{a}_1 \ w_1 \ \dots \ w_k \ \mathbf{a}_k \ w_{k+1}} \mathbf{m}_k + \mathbf{r}_{k+1} \end{array}$$

Jérôme Leroux (CNRS)

Vector Addition System Reachability Problem

January 20, 2011 91 / 104

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Definition

Jérôme Leroux (CNRS)

We introduce the order \leq over the set of runs by $\rho \leq \rho'$ if:

$$(\operatorname{src}(\rho'),\operatorname{tgt}(\rho')) + \stackrel{*}{\to}_{\rho'} \subseteq (\operatorname{src}(\rho),\operatorname{tgt}(\rho)) + \stackrel{*}{\to}_{\rho}$$

Vector Addition System Reachability Problem

92 / 104

Theorem

The order \prec is well.

Proof.

We associate to every run $\rho = \mathbf{m}_0 \dots \mathbf{m}_k$ the following word $\alpha(\rho)$:

$$\alpha(\rho) = (\mathbf{a}_1, \mathbf{m}_1) \dots (\mathbf{a}_k, \mathbf{m}_k)$$
 where $\mathbf{a}_j = \mathbf{m}_j - \mathbf{m}_{j-1}$

We introduce the well order \Box over $S = \mathbf{A} \times \mathbb{N}^d$ defined by $(\mathbf{a}, \mathbf{m}) \sqsubseteq (\mathbf{b}, \mathbf{n})$ if $\mathbf{a} = \mathbf{b}$ and $\mathbf{m} \leq \mathbf{n}$. Let ρ' be another run. Assume $\alpha(\rho) \sqsubseteq^* \alpha(\rho')$: We have $\alpha(\rho') = w_0(\mathbf{a}_1, \mathbf{m}_1 + \mathbf{r}_1)w_1 \dots (\mathbf{a}_k, \mathbf{m}_k + \mathbf{r}_k)w_k$. Assume src(ρ) \leq src(ρ'): We have src(ρ') = $\mathbf{m}_0 + \mathbf{r}_0$. Assume $tgt(\rho) \le tgt(\rho')$: We have $tgt(\rho') = \mathbf{m}_k + \mathbf{r}_{k+1}$. We deduce that $\mathbf{r}_0 \xrightarrow{*}_{\mathbf{m}_1} \mathbf{r}_1 \cdots \xrightarrow{*}_{\mathbf{m}_k} \mathbf{r}_{k+1}$. $\alpha(\rho) \sqsubseteq^* \alpha(\rho'), \operatorname{src}(\rho) \leq \operatorname{src}(\rho') \text{ and } \operatorname{tgt}(\rho) \leq \operatorname{tgt}(\rho') \text{ implies } \rho \preceq \rho'.$ Jérôme Leroux (CNRS)

Jérôme Leroux (CNRS)

Let Ω be the set of runs. We have:

$$\stackrel{*}{
ightarrow} = \bigcup_{
ho\in \min_{\preceq}\Omega} (\operatorname{src}(
ho), \operatorname{tgt}(
ho)) + \stackrel{*}{
ightarrow}_{
ho}$$

Vector Addition System Reachability Problem January 20, 2011 94 / 104

Image: A math a math

→ Ξ →

æ

Theorem

 $\stackrel{*}{\rightarrow}$ is an almost semilinear relation.

Proof.

Let us consider $b \in \mathbb{N}^d \times \mathbb{N}^d$ and a finitely generated periodic relation $P \subseteq \mathbb{Z}^d \times \mathbb{Z}^d$. We introduce the set $\Omega_{b,P}$ of runs ρ such that $(\operatorname{src}(\rho), \operatorname{tgt}(\rho)) \in b + P$. We introduce an order \leq_P over $\Omega_{b,P}$ defined by $\rho \leq_P \rho'$ if $\rho \leq \rho'$ and $(\operatorname{src}(\rho'), \operatorname{tgt}(\rho')) \in (\operatorname{src}(\rho), \operatorname{tgt}(\rho)) + P$. Observe that \leq_P is well over $\Omega_{b,P}$. Moreover we have:

$$(\stackrel{*}{\rightarrow}) \cap (b+P) \hspace{.1in} = \hspace{.1in} \bigcup_{
ho \in \min_{\preceq_P} \Omega_{b,P}} (\operatorname{src}(
ho), \operatorname{tgt}(
ho)) \hspace{.1in} + \hspace{.1in} ((\stackrel{*}{\rightarrow_{
ho}}) \cap P)$$

Thus $\stackrel{*}{\rightarrow}$ is an almost semilinear relation.

Theorem

Let **A** be a VAS and let **n** be a marking that is not reachable from a marking **m**. There exists a Presburger formula ϕ denoting a forward inductive invariant **I** such that $\mathbf{m} \in \mathbf{I}$ and $\mathbf{n} \notin \mathbf{I}$.

Corollary

The reachability problem is decidable.

・ 同 ト ・ ヨ ト ・ ヨ ト …

96 / 104

3

Algorithm With an Easy Implementation

Reachability (
$$\mathbf{m}$$
, \mathbf{A} , \mathbf{n})
 $k \leftarrow 0$
repeat forever
for each word $\sigma \in \mathbf{A}^k$
if $\mathbf{m} \stackrel{\sigma}{\rightarrow} \mathbf{n}$
return "reachable"
for each Presburger formula $\phi(\mathbf{x})$ of length k
if $\mathbf{m} \models \phi$, and $\mathbf{n} \models \neg \phi$ and
 $\phi(\mathbf{x}) \land \mathbf{y} - \mathbf{x} \in \mathbf{A} \land \neg \phi(\mathbf{y})$ unsat
return "unreachable"
 $k \leftarrow k + 1$

Jérôme Leroux (CNRS)

3

Image: A math a math

Outline

Dense Sets

- **Discrete Sets**
- Almost Semilinear Sets
- 5 Precise Approximations
- 6 Inductive Invariants
- Well Orders
- Production Relations
- 9 Reachability Relations
- 10 One More Thing...
 - Conclusion

э

Let us recall the following example:

Example

Let **A** be a VAS. We introduce:

$$R = \{ (\mathbf{m}, \mathbf{n}) \in \mathbb{N}^d \times \mathbb{N}^d \mid \mathbf{n} - \mathbf{m} \in \mathbf{A} \}$$

Then R^* is the reachability relation.

Thus if R is the one step reachability relation of a VAS, then R^* is an almost semilinear relation.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Monotonicity

Definition (Monotonic)

A relation $R \subseteq \mathbb{N}^d \times \mathbb{N}^d$ is said to be <u>monotonic</u> if $(\mathbf{m} + \mathbf{v}, \mathbf{n} + \mathbf{v}) \in R$ for every $(\mathbf{m}, \mathbf{n}) \in R$ and for every $\mathbf{v} \in \mathbb{N}^d$.

Example

Let **A** be a VAS. We introduce:

$$R = \{ (\mathbf{m}, \mathbf{n}) \in \mathbb{N}^d \times \mathbb{N}^d \mid \mathbf{n} - \mathbf{m} \in \mathbf{A} \}$$

R is a monotonic Presburger relation.

Jérôme Leroux (CNRS)

Vector Addition System Reachability Problem

✓ □→ < ≥ > < ≥ >
 January 20, 2011

э.

Lemma

For every monotonic Presburger relation $R \subseteq \mathbb{N}^d \times \mathbb{N}^d$ there exist a VASS G and two control states p, q such that $(q, (\mathbf{y}_1, \mathbf{y}_2))$ is reachable from $(p, (\mathbf{x}_1, \mathbf{x}_2))$ if and only if:

$$(\mathsf{x}_1+\mathsf{x}_2,\mathsf{y}_1+\mathsf{y}_2)\in R^*$$

Proof.

Based on the decomposition of a monotonic Presburger relation into a finite union of monotonic linear relations.

Theorem

The reflexive and transitive closure of a monotonic Presburger relation is a monotonic almost semilinear relation.

Open question : Does the class of monotonic almost semilinear relations is stable by reflexive and transitive closure ?

Application : reachability problem for VAS with zero tests.

э.

Outline

2 Dense Sets

- 3 Discrete Sets
- 4 Almost Semilinear Sets
- 5 Precise Approximations
- 6 Inductive Invariants
- Well Orders
- 8 Production Relations
- 9 Reachability Relations
- 10 One More Thing...
 - D Conclusion

- 4 ⊒ →

э

Conclusion

- We presented geometrical properties satisfied by VAS reachability sets.
- We proved that the Presburger arithmetic is sufficient for denoting certificates of non-reachability.

Open problems:

- Size of formulas denoting $\mathbb{Q}_{\geq 0} \xrightarrow{*}_{\mathbf{m}}$.
- Find new algorithms for deciding the reachability problem (efficient in practice).
- Extension to the VAS + zero tests. Idea : prove that R^* is almost semilinear for every monotonic almost semilinear relation R.
- Extension to the Branching VAS. Idea : replace the Higmann's lemma by the Kruskal's lemma.
- Close the complexity gap between lower bound and upper bound.
- At least, provide a clear upper bound (in the fast growing hierarchy).

Jérôme Leroux (CNRS)

January 20, 2011 1

^{104 / 104}