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Vector Addition System Reachability Problem

Definition

A vector addition system (VAS) is a finite set A ⊆ Zd .

A set of actions.
Nd set of markings.

A run is a non-empty word ρ = m0 . . .mk of markings such that:

∀j ∈ {1, . . . , k} mj ∈ mj−1 + A

In this case, mk is said to be reachable from m0.

Theorem (Mayr 1981, Kosaraju 1982)

The reachability problem is decidable.
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Reachable Case

Example

A = { , }

m

n

n is reachable from m.

ρ = (0, 2) (1, 3) (2, 4) (3, 5) (4, 6) (3, 4) (2, 2) (1, 0)
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Unreachable Case

Example

A = { , }

m

n

· · ·

. ..

n is not reachable from m.

φ(x1, x2) := 0 ≤ x1 ∧ 0 ≤ x2 ∧ x2 ≤ x1 + 2

Jérôme Leroux (CNRS) Vector Addition System Reachability Problem January 20, 2011 4 / 104



Vector addition systems are equivalent to other models:

Vector addition systems with states

Petri nets.

Jérôme Leroux (CNRS) Vector Addition System Reachability Problem January 20, 2011 5 / 104



VASS

Definition

A vector addition system with states (VASS) is a graph G = (Q,∆)
where:
Q is a non-empty finite set of control states
∆ ⊆ Q × Zd × Q is a finite set of transitions.

Q × Nd set of configurations

A run is a non-empty word (q0,m0) . . . (qk ,mk) of configurations such
that (qj−1,mj −mj−1, qj) ∈ ∆ for every j ∈ {1, . . . , k}.
In this case (qk ,mk) is said to be reachable from (q0,m0).
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Reductions : VAS 2 VASS

Let A be a VAS.

We introduce the VASS G = ({q},∆) with ∆ = {q} × A× {q}.

Lemma

n is reachable from m in the VAS A
if and only if

(q,n) is reachable from (q,m) in the VASS G .
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Reductions : VASS 2 VAS

Assume that G = (Q,∆) is a VASS without any self loop and such that
Q = {1, . . . , k}.

We introduce the unitary vector ei :

ei = (0, . . . , 0,1, 0, . . . , 0)
↑
i

We introduce the VAS A = {(ej − ei , z) | (i , z, j) ∈ ∆}.

Lemma

(j ,n) is reachable from (i ,m) in the VASS G
if and only if

(ej ,n) is reachable from (ei ,m) in the the VAS A.

Jérôme Leroux (CNRS) Vector Addition System Reachability Problem January 20, 2011 8 / 104



The Hopcroft-Pansiot 1979 Example

(0, k , z)

(2k, 0, z)(k, 0, z)

(0, k, z) p q

(0, 0, 0)

(−1, 1, 0)

(0, 0, 1)

(2,−1, 0)

Configurations reachable from (p, (1, 0, 0))

{p} × {(x , y , z) ∈ N3 | x + y ≤ 2z}
∪{q} × {(x , y , z) ∈ N3 | x + 2y ≤ 2z+1}
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Equivalence Problem

Definition (Equivalence Problem)

INPUT : (A1,m1) and (A2,m2) two vector addition systems equipped
with initial markings.

OUTPUT : Decide the equality of the reachability sets.

Theorem (Hack 1976)

The equivalence problem is undecidable.

=⇒ No decidable logic for denoting reachability sets.
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Subconclusion

Some equivalent models:

Vector addition systems (ideal for proofs)

Vector addition systems with states (ideal for examples)

Petri nets (ideal for modeling parallel processes)

No decidable logic for denoting reachability sets.
In the sequel, we show that there is a decidable logic for geometrical
properties asymptotically verified by these sets:

Example

{p} × {(x , y , z) ∈ N3 | x + y ≤ 2z}
∪{q} × {(x , y , z) ∈ N3 | x + 2y ≤ 2z+1}

=⇒ x and y can be very large compared to z .
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Definition (Vector Spaces)

A set V ⊆ Qd is called a vector space if 0 ∈ V, V + V ⊆ V and QV ⊆ V.

Example

The vector spaces V included in Q2 are exactly:

The whole set Q2,

The line vector spaces Qv with v 6= (0, 0), or

The zero vector space {(0, 0)}.
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Lemma

For every vector space V ⊆ Qd there exists at most d vectors
v1, . . . , vr ∈ V satisfying:

V = Qv1 + · · ·+ Qvr

Definition (Rank)

The rank of a vector space V is the minimal r ∈ N denoted by rank(V)
such that there exists a sequence v1, . . . , vr of vectors in V satisfying:

V = Qv1 + · · ·+ Qvr

Example

The vector spaces V included in Q2 are exactly:

rank(V) = 2 : The whole set Q2,

rank(V) = 1 : The line vector spaces Qv with v 6= (0, 0), or

rank(V) = 0 : The zero vector space {(0, 0)}.
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Strict Monotonic Property

Lemma (Strict Monotonic Property)

rank(V) < rank(W) for every vector spaces V ⊂W.
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Definition

A set C ⊆ Qd is said to be conic if 0 ∈ C, C + C ⊆ C and Q≥0C ⊆ C. A
conic set C is said to be finitely generated if there exist c1, . . . , ck ∈ C
such that:

C = Q≥0c1 + · · ·+ Q≥0ck

Q≥0(1, 1) + Q≥0(1, 0)

Jérôme Leroux (CNRS) Vector Addition System Reachability Problem January 20, 2011 16 / 104



Vector Spaces And Conic Sets

Lemma

The set V = C− C is a vector space for every conic set C. This vector
space is the unique minimal one that contains C.

Definition

The vector space V = C− C is called the vector space generated by the
conic set C.
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Duality

Theorem (Duality)

Let V be a vector space. A conic set C ⊆ V is finitely generated if and
only if there exists a finite set H ⊆ V\{0} such that:

C =
⋂
h∈H

{
c ∈ V |

d∑
i=1

h(i)c(i) ≥ 0

}

h1

h2

V = Q2

C = Q≥0(1, 1) + Q≥0(1, 0)

H = {h1,h2}
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A conic set that is not finitely generated:

{(0, 0)} ∪ {(c1, c2) ∈ Q2
≥0 | 0 < c2 ≤ c1}
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Definition

A conic set C is said to be definable if there exists a formula in
FO (Q,+,≤, 0) denoting C.

φ(x1, x2) = (x1 = 0 ∧ x2 = 0) ∨ ((¬ x2 ≤ 0) ∧ x2 ≤ x1)
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Lemma

Every finitely generated conic set is definable.

Proof.

The conic set C = Q≥0c1 + · · ·+ Q≥0ck is denoted by the formula
φ(x1, . . . , xd) equals to:

∃λ1 . . . ∃λk

Ñ
k∧

j=1

0 ≤ λj

é
∧

Ñ
d∧

i=1

xi =
k∑

j=1

λjcj(i)

é
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Definition

The topological closure of X ⊆ Qd is the set X of vectors y ∈ Qd such
that for all ε ∈ Q>0 the following intersection is non empty:

X ∩ (y + (−ε, ε)d) 6= ∅

Let X = (1, 5)× (1, 5). Then X = [1, 5]× [1, 5].
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Lemma

X ∪ Y = X ∪ Y

X ⊆ X

X + Y ⊆ X + Y

Q≥0X ⊆ Q≥0X

Example

X + Y 6= X + Y with:
X = {x ∈ Q2

>0 | x(2) = 1
x(1)} and

Y = Q≥0(0,−1).

Example

Q≥0X 6= Q≥0X with:
X = {x ∈ Q2

>0 | x(2) = 1
x(1)}

Corollary

The topological closure of a conic set is a conic set.

Proof.

0 ∈ C ⊆ C
C + C ⊆ C + C ⊆ C
Q≥0C ⊆ Q≥0C ⊆ C
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Lemma

The topological closure of a set definable in FO (Q,+,≤, 0) is a finite
union of finitely generated conic sets.

Example

X = X1 ∪ X2 ∪ X3 with:
X1 = {(x , y) ∈ Q2 | 2x + 3y > 0 ∧ x − y ≥ 0}
X2 = {(x , y) ∈ Q2 | x > 0 ∧ x − y > 0}
X3 = {(x , y) ∈ Q2 | x > 0 ∧ y > 0 ∧ −x − y > 0}

Then
X = X1 ∪ X2 ∪ X3 with:
X1 = {(x , y) ∈ Q2 | 2x + 3y ≥ 0 ∧ x − y ≥ 0}
X2 = {(x , y) ∈ Q2 | x ≥ 0 ∧ x − y ≥ 0}
X3 = ∅
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Lemma

The topological closure of a definable conic set is a finitely generated conic
set.

Lemma

Let C be a definable conic set.
Since C is a conic set then C is a conic set.
Since C is definable then C =

⋃k
j=1 Cj with Cj a finitely generated conic

set.

Just observe that in this case:

C =
k∑

j=1

Cj
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Definition

A conic set C ⊆ Qd is said to be locally finitely generated if for every

vector space V ⊆ Qd the conic set C ∩ V is finitely generated.

Theorem

A conic set is definable if and only if it is locally finitely generated.

Example:

With V = Q2 we have C ∩ V = Q≥0(1, 1) + Q≥0(1, 0).

With V = Qv then C ∩ V is {(0, 0)}, Q≥0v, or −Q≥0v.

With V = {(0, 0)} then C ∩ V = {(0, 0)}.
Jérôme Leroux (CNRS) Vector Addition System Reachability Problem January 20, 2011 26 / 104



Proof : The simple way

Assume that C is a definable conic set.
For every vector space V the conic set C ∩ V is definable.
From the previous lemma C ∩ V is finitely generated.
Thus C is locally finitely generated.
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Lemma

Let C be a conic set such that C is finitely generated and C ∩ V is
definable for every vector space V ⊂ C− C.Then C is definable.

Proof.

Let W = C− C. There exists a finite set H ⊆W\{0} such that:

C =
⋂
h∈H

{
c ∈W |

d∑
i=1

h(i)c(i) ≥ 0

}

We prove that X ⊆ C where X =
⋂
h∈H

{
c ∈W |

d∑
i=1

h(i)c(i) > 0

}
.

Observe that C = X ∪⋃
h∈H(C ∩ Vh) where:

Vh =

{
v ∈W |

d∑
i=1

h(i)c(i) = 0

}
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Proof : The other way

Hk : Locally finitely generated conic sets C such that rank(C−C) ≤ k are
definable.

H0 is clearly true since rank(C−C) = 0 implies C = {0}. Assume Hk true
and let C be a locally definable conic set such that rank(W) = k + 1
where W = C− C. We observe that C is finitely generated and for every
vector space V ⊂W the conic set C∩V is locally finitely generated. Since
rank(V) < rank(W) ≤ k + 1 we can apply Hk . We deduce that C ∩ V
definable. From the previous lemma we deduce that C is definable. Thus
Hk+1 is true.
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An Application

A conic set that is not definable:

C = {(c1, c2) ∈ Q2
≥0 |
√

2 c2 ≤ c1}

The conic set C is not finitely generated. Let V = Q2. Since C ∩ V = C
we deduce that C is not definable.
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Subconclusion

We have introduced the class of definable conic sets and provided an
algebraic criterion for membership of conic sets in this class.

Theorem (Algebraic Criterion)

A conic set C ⊆ Qd is definable in FO (Q,+,≤, 0) if and only if the conic
set C ∩ V is finitely generated for every vector space V ⊆ Qd .
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Definition

A lattice is a subset L ⊆ Zd such that 0 ∈ L, L + L ⊆ L and −L ⊆ L.

Lemma

For every lattice L there exists a sequence l1, . . . , lk ∈ L such that:

L = Zl1 + · · ·+ Zlk

L = Z(1, 1)
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Definition

A set P ⊆ Zd is said to be periodic if 0 ∈ P and P+P ⊆ P. A periodic set
P is said to be finitely generated if there exist p1, . . . ,pk ∈ P such that:

P = Np1 + · · ·+ Npk

P = N(1, 1) + N(2, 0)
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Lattices And Periodic Sets

Lemma

The set L = P− P is a lattice for every periodic set P. This lattice is the
unique minimal one that contains P.

Definition

The lattice L = P−P is called the lattice generated by the periodic set P.

P = N(1, 1) + N(2, 0) L = P− P
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Conic Sets And Periodic Sets

Lemma

The set C = Q≥0P is a conic set for every periodic set P. This conic set is
the unique minimal one that contains P.

Definition

The conic set C = Q≥0P is called the conic set generated by the periodic
set P.

P = N(1, 1) + N(2, 0) C = Q≥0P
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Definition

A periodic set P is said to be asymptotically definable if the conic set
C = Q≥0P is definable in FO (Q,+,≤, 0).

p(2)

p(1)

p(1) + 1 ≤ 2p(2)

p(2) ≤ p(1)

c(2)

c(1)
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Lemma

The class of asymptotically definable periodic sets is stable by intersection.

Proof.

Let P1,P2 be two periodic sets. We have:

Q≥0(P1 ∩ P2) = (Q≥0P1) ∩ (Q≥0P2)

Assume that:
Q≥0P1 is denoted by φ1(x).
Q≥0P2 is denoted by φ2(x).
Then Q≥0(P1 ∩ P2) is denoted by φ1(x) ∧ φ2(x).
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Lemma

The class of asymptotically definable periodic relations is stable by
composition.

Proof.

Let R1,R2 ⊆ Zd × Zd be two periodic relations. We have:

Q≥0(R1 ◦ R2) = (Q≥0R1) ◦ (Q≥0R2)

Assume that:
Q≥0R1 is denoted by φ1(x, y).
Q≥0R2 is denoted by φ2(y, z).
Then Q≥0(R1 ◦ R2) is denoted by ∃y φ1(x, y) ∧ φ2(y, z).
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Subconclusion

We introduced the class of asymptotically definable periodic sets.

From an asymptotically definable periodic set P, we can extract two
properties:

the “repeated motif”, i.e. the lattice L = P− P denoted by a finite
sequence of vectors in L.

the “asymptotic direction”, i.e. the conic set C = Q≥0P denoted by a
formula in FO (Q,+,≤, 0).

Stability properties:

asymptotically definable periodic sets are stable by intersection.

asymptotically definable periodic relations are stable by composition.
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Presburger Sets

Definition

A set X ⊆ Zd is said to be Presburger if it can be denoted by a formula in
FO (Z,+,≤, 0, 1).

Theorem (Ginsburg and Spanier - 1966)

A set X ⊆ Zd is Presburger if and only if it is semilinear, i.e. a finite union
of sets b+P where b ∈ Zd and P ⊆ Zd is a finitely generated periodic set.
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Almost Semilinear Sets

Definition

A set X ⊆ Zd is said to be almost semilinear if for every Presburger set
S ⊆ Zd , the set X ∩ S is a finite union of sets b + P where b ∈ Zd and
P ⊆ Zd is an asymptotically definable periodic set.

Example

x(1) ∈ 2N − 1 ∧ x(2) = 1
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Almost Semilinear Sets

Definition
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Subconclusion

We introduced the class of almost semilinear sets.

In the sequel we show that this class:

Contains VAS reachability relations.

Is sufficient to deduce inductive invariants in the Presburger
arithmetic.
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Let P ⊆ Zd be an asymptotically definable periodic set.

Definition

The linearization of P is:

lin(P) = (P− P) ∩Q≥0P

Lemma

lin(P) is a finitely generated periodic set.

Proof.

L = P− P is a lattice.

Q≥0P is a finitely generated conic set.
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Preciseness

The linearization lin(P) provides an over-approximation of P.
Let P1,P2 ⊆ Zd be two asymptotically definable periodic sets and
b1,b2 ∈ Zd be two vectors such that:

(b1 + P1) ∩ (b2 + P2) = ∅

In general:
(b1 + lin(P1)) ∩ (b2 + lin(P2)) 6= ∅
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Dimension

Definition

The dimension dim(X) of a non-empty set X ⊆ Zd is the minimal integer
r ∈ {0, . . . , d} such that:

X ⊆
k⋃

j=1

bj + Vj

where bj ∈ Zd and Vj is a vector space satisfying rank(Vj) ≤ r .

dim(∅) = −1 by convention.

Example

dim(N) = 1
dim({(0, 1), (1, 0)}) = 0
dim({(x , y) ∈ N2 | x ≤ y}) = 2
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Theorem

Let P1,P2 ⊆ Zd be two asymptotically definable periodic sets and
b1,b2 ∈ Zd such that:

(b1 + P1) ∩ (b2 + P2) = ∅

In this case, the set

X = (b1 + lin(P1)) ∩ (b2 + lin(P2))

satisfies:
dim(X) < max{dim(b1 + P1), dim(b2 + P2)}
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Example
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Subconclusion

We introduced a way to over-approximate asymptotically definable
periodic sets into finitely generated ones. The approximation is proved
precise in some sense.
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Context

Let R ⊆ Zd × Zd be a relation definable in FO (Z,+,≤, 0, 1).
Decide the membership in the reflexive and transitive closure R∗.

Example

Let A be a VAS.
We introduce:

R = {(m,n) ∈ Nd × Nd | n−m ∈ A}

Then R∗ is the reachability relation.

In general undecidable since the one step reachability relation R of a
Minsky machine is definable in FO (Z,+,≤, 0, 1).
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Inductive Invariants

Let R ⊆ Zd × Zd .

Definition

The forward image postR(X) of a set X ⊆ Zd by R is defined by:

postR(X) =
⋃
x∈X
{y ∈ Zd | (x, y) ∈ R}

If postR(X) ⊆ X then X is called a forward inductive invariant for R.

Definition

The backward image preR(Y) of a set Y ⊆ Zd by R is defined by:

preR(Y) =
⋃
y∈Y
{x ∈ Zd | (x, y) ∈ R}

If preR(Y) ⊆ Y then Y is called a backward inductive invariant for R.
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Definition (Separators)

A separator for a binary relation R ⊆ Zd × Zd is a pair (X,Y) of subsets

of Zd such that postR∗(X) ∩ preR∗(Y) = ∅. The set D = Zd\(X ∪ Y) is
called the domain. A separator is said to be closed if its domain is empty.

If (X,Y) is a closed separator for R then X is a forward invariant and Y is
a backward invariant.

Example

Separators (X,Y) are included in closed separators, for instance:

(postR∗(X) , Zd\ postR∗(X))

(Zd\ preR∗(Y) , preR∗(Y))
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Main result of this section:

Theorem

Let R ⊆ Zd × Zd be a binary relation such that its reflexive and transitive
closure R∗ is an almost semilinear relation. Presburger separators are
included in closed Presburger separators.

Corollary

Let R ⊆ Zd × Zd be a binary relation such that its reflexive and transitive
closure R∗ is an almost semilinear relation. For every (x, y) 6∈ R∗ there
exists a Presburger forward invariant I such that x ∈ I and y 6∈ I.

Proof.

Observe that ({x}, {y}) is a Presburger separator.
There exists a closed Presburger separator (I, J) such that:
{x} ⊆ I and {y} ⊆ J.
Since I ∩ J = ∅ we get y 6∈ I.
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Assume that R∗ is almost semilinear.

Lemma

postR∗(X) and preR∗(Y) are almost semilinear sets for every Presburger
sets X,Y ⊆ Zd .

Proof.

Let S ⊆ Zd be a Presburger set. We have:

postR∗(X) ∩ S = {y ∈ Zd | ∃(x, y) ∈ R∗ ∩ (X× S)}
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Induction

X0 D0 Y0

(X0,Y0) Presburger Separator

X YD

(X,Y) Presburger Separator

with dim(D0) > dim(D)
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X0 Y0

(X0,Y0) Presburger Separator
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postR∗(X0)\X0

This is a finite union
⋃

i (bi + Pi ).
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S := X0 ∪ (
⋃

i (bi + lin(Pi )))

S is an over-approximation of postR∗(X0).

S ∩ Y0 is not necessary empty.

Jérôme Leroux (CNRS) Vector Addition System Reachability Problem January 20, 2011 59 / 104



X0 Y

Y := Y0 ∪ (Nd\S)

(X0,Y) is a Presburger separator such that Y0 ⊆ Y
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YX0

(X0,Y) Presburger Separator
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preR∗(Y)\Y

This is a finite union
⋃

j(cj + Qj).
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T := Y ∪ (
⋃

j(cj + lin(Qj)))

T is an over-approximation of preR∗(Y).

T ∩ X0 is not necessary empty.
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YX

X := X0 ∪ (Nd\T)

(X,Y) is a Presburger separator such that X0 ⊆ X
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Induction

The domain D of (X,Y) satisfies D = D0 ∩ (
⋃

i ,j Di ,j) where:

Di ,j = (bi + lin(Pi )) ∩ (cj + lin(Qj))

As (bi + Pi ) ∩ (cj + Qj) = ∅ we get:

dim(Di ,j) < max{dim(bi + Pi ), dim(cj + Qj)}

As bi + Pi and cj + Qj are both included in D0, we get:

dim(bi + Pi ) ≤ dim(D0) dim(cj + Qj) ≤ dim(D0)

Thus:
dim(D) < dim(D0)

Jérôme Leroux (CNRS) Vector Addition System Reachability Problem January 20, 2011 60 / 104



Subconclusion

Assume that R is denoted by a Presburger formula and R∗ is almost
semilinear. The non-membership in R∗ can be proved with formulas in the
Presburger arithmetic denoting forward inductive invariants for R.
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Well Orders

Definition

An order v over a set S is said to be well if for every sequence (sn)n∈N of
elements sn ∈ S there exists an increasing sequence (nk)k∈N of indexes
nk ∈ N such that (snk )k∈N is non decreasing for v.

Example

The ordered set (N,≤) is well but (Z,≤) is not well.

Example (Pigeon Hole Principle)

An ordered set (S ,=) is well if and only if S is finite.
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Dickson’s Lemma

Definition

Let (S ,v) be an ordered set.
We introduce the ordered set (Sd ,vd) where vd is defined
component-wise by

(s1, . . . , sd) vd (t1, . . . , td) if si v ti ∀i

Lemma (Dickson’s Lemma)

The order set (Sd ,vd) is well for every well ordered set (S ,v).

Example

(Nd ,≤) is well.
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Higmann’s Lemma

Definition

Let (S ,v) be an ordered set.
We introduce the ordered set (S∗,v∗) where v∗ is defined by u v∗ v if u
and v can be decomposed as follows:

u = s1 . . . sd

w w

v = w0 t1 w1 . . . td wd

where sj , tj ∈ S .

Lemma (Higmann’s Lemma)

The ordered set (S∗,v∗) is well for every well ordered set (S ,v).
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Vector Addition System Additional Notations

Definition

Let ρ = m0 . . .mk be a run of a VAS A. We introduce the action
aj = mj −mj−1 for each j ∈ {1, . . . , k}.

src(ρ) = m0 the source.
tgt(ρ) = mk the target.
lab(ρ) = a1 . . . ak the label.

Let w ∈ A∗ be a word of actions.

Definition

The binary relation
w−→ over Nd is defined by m

w−→ n if there exists a run ρ
such that src(ρ) = m, lab(ρ) = w and tgt(ρ) = n.

Definition

We denote by
∗−→ the reachability relation.
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Definition (Inspired from Hauschildt 1990)

The production relation of a marking m is the binary relation
∗−→m defined

over the markings by:

r
∗−→m s if m + r

∗−→ m + s

m

m + r
m + s

0

Example
∗−→m is equal to

∗−→ when m = 0.
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Lemma

Production relations are periodic.

Proof.

r1
∗−→m s1 and r2

∗−→m s2 implies r1 + r2
∗−→m s1 + s2

m

m + r1 m + s1

0

m

m + r2

m + s2

0

m

m + r1 + r2

m + s1 + r2

m + s1 + s2

0
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Application : Iterate

m

m + r
m + s

0

m

m + 4r

m + 4s

0
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Main result of this section:

Theorem

Production relations are asymptotically definable.

I.e. the following relation is definable in FO (Q,+,≤, 0):

Q≥0
∗−→m = {(λr, λs) | λ ∈ Q≥0 and r

∗−→m s}
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Relaxing Components

We introduce an element ∞ 6∈ N and we let N∞ = N ∪ {∞}.

Definition

A vector x ∈ Nd
∞ is called an extended marking. The set

I = {i ∈ {1, . . . , d} | x(i) =∞} is called the set of relaxed components.

Let m ∈ Nd and I ⊆ {1, . . . , d}. The extended marking mI obtained from
m by relaxing components in I is defined by:

mI (i) =

{
∞ if i ∈ I

m(i) if i 6∈ I

Example

Let m = (1, 2, 1000) and I = {3} then mI = (1, 2,∞).
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Definition

We introduce the binary relations
a−→ over the set of extended markings

relaxed over the same set of components I by x
a−→ y if:

∀i 6∈ I y(i) = x(i) + a(i)

An extended run is a non-empty word ρ = x0 . . . xk of extended markings
relaxed over the same set I such that for every j ∈ {1, . . . , d} there exists

aj ∈ A such that xj−1
aj−→ xj .

Let ρ = m0 . . .mk and I ⊆ {1, . . . , d}. The extended run ρI obtained
from ρ by relaxing components in I is defined by ρI = mI

0 . . .m
I
k .

Example

Let ρ = (0, 0, 100)(0, 1, 99) . . . (0, 100, 0) be a run.
Let I = {2, 3}.
Then ρI = (0,∞,∞) . . . (0,∞,∞).
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Recall that
∗−→m is asymptotically definable if and only for every vector

space V ⊆ Qd ×Qd the following conic set is finitely generated:

Q≥0
∗−→m,V

where:
∗−→m,V = {(r, s) ∈ V | r ∗−→m s}
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Definition

Let Ωm,V be the set of runs of the following form with (r, s) ∈ V :

m

m + r
m + s

0

Ωm,V =
⋃

(r,s)∈
∗−→m,V

{runs ρ | src(ρ) = m + r ∧ tgt(ρ) = m + s }
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Reachability Graphs

Definition

We introduce:

Qm,V =
⋃

ρ∈Ωm,V

{q ∈ Nd | q occurs in ρ}

Qm,V (i) = {q(i) | q ∈ Qm,V }

Im,V = {i ∈ {1, . . . , d} | Qm,V (i) is infinite}

We introduce the finite graph Gm,V = (X,∆) defined by:

X = {qIm,V | q ∈ Qm,V }.
∆ is the set of triples (x, a, y) ∈ X× A× X such that x

a−→ y.
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An Approximation

We introduce an approximation of
∗−→m,V

Definition

We introduce the relation Rm,V of couples (r, s) ∈ (Nd × Nd) ∩ V such
that (1) r(i) = 0 and s(i) = 0 for every i 6∈ Im,V , and (2) there exist a
cycle in Gm,V on the state mIm,V labeled by a word a1 . . . ak such that:

r +
k∑

j=1

aj = s
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Lemma

We have:
∗−→m,V ⊆ Rm,V

Proof.

Let (r, s) in
∗−→m,V . There exists a run ρ = m0 . . .mk in Ωm,V such that

m0 = m + r and mk = m + s.

Since m + Nr and m + Ns are included in Qm,V we deduce that r(i) > 0
or s(i) > 0 implies i ∈ Im,V . Hence:

m
Im,V

0 = mIm,V m
Im,V

k = mIm,V

We deduce that (r, s) ∈ Rm,V from the following cycle where
aj = mj −mj−1:

m
Im,V

0
a1−→ · · · ak−→ m

Im,V

k
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In general the other inclusion is wrong but let us try proving it:

Rm,V ⊆ ∗−→m

Let (r, s) ∈ Rm,V . Then (r, s) ∈ (Nd × Nd) ∩ V and there exist a cycle in
Gm,V on the state mIm,V labeled by a word a1 . . . ak such that:

r +
k∑

j=1

aj = s

We deduce that:
(m + r)Im,V

a1...ak−−−−→ (m + s)Im,V

However in general we do not have

m + r
a1...ak−−−−→ m + s

since components in Im,V relaxed in the first case are integers in the
second case.

Jérôme Leroux (CNRS) Vector Addition System Reachability Problem January 20, 2011 79 / 104



Definition

An intraproduction for (m,V ) is a tuple (r, x, s) such that:

r
∗−→m x

∗−→m s

and such that (r, s) ∈ V .

m

m + r
m + x

m + s

0

with V = {(u, v) | u(1) = v(1) = 0}.
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Application

m + Nx ⊆ Qm,V for every intraproduction (r, x, s) for (m,V ).

m

m + r
m + x

m + s

0

m

m + 4r

m + 4x

m + 4s

0
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Lemma

For every i ∈ Im,V there exists an intraproduction (r, x, s) for (m,V ) such
that x(i) > 0.

Proof.

There exist q1 ≤ q2 in Qm,V such that q1(i) < q2(i).
Let (r1, s1) and (r2, s2) in V such that:

m + r1
u1−→ q1

v1−→ m + s1 m + r2
u2−→ q2

v2−→ m + s2

m

m + r1
m + r2

m + s2
m + s1

q1 q2

0

m + (r1 + r2)
u2v1−−→ m + (r1 + s1 + q2 − q1)

u1v2−−→ m + (s1 + s2)
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Lemma (Simultaneously Large Components)

For every n ∈ N there exists qn ∈ Qm,V such that for every i ∈ {1, . . . , d}:{
qn(i) = m(i) if i 6∈ Im,V

qn(i) ≥ m(i) + n if i ∈ Im,V

Proof.

For each i ∈ Im,V there exists an intraproduction (ri , xi , si ) such that

xi (i) > 0. Since
∗−→m,V is periodic we deduce that the set of

intraproductions is periodic. Hence the following tuple is an
intraproduction:

(r, x, s) =
∑

i∈Im,V

(ri , xi , si )

Observe that x(i) > 0 for every i ∈ Im,V . Moreover since m + Nx ⊆ Qm,V

we deduce that x(i) > 0 implies that i ∈ Im,V .
Just consider qn = m + nx.
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Lemma

We have:
Rm,V ⊆ Q≥0

∗−→m,V

Proof.

Let (r, s) ∈ Rm,V . Then (r, s) ∈ (Nd × Nd) ∩ V and there exists a cycle in
Gm,V on the state mIm,V labeled by a word w = a1 . . . ak such that
r +

∑k
j=1 aj = s.

We deduce that (m + r)Im,V
w−→ (m + s)Im,V . There exists n ∈ N large

enough such that qn + r
w−→ qn + s. As

∗−→qn is periodic we deduce

qn + hr
∗−→ qn + hs for every h ∈ N.

As qn ∈ Qm,V we have m + r′
∗−→ qn

∗−→ m + s′ for some
(r′, s′) ∈ (Nd × Nd) ∩ V .

Therefore m + r′ + hr
∗−→ m + s′ + hs and (r′, s′) + h(r, s) ⊆ ∗−→m,V .

Hence (r′,s′)
h + (r, s) ∈ Q≥0

∗−→m,V for every h ∈ N>0.
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We have proved:

Lemma

Q≥0
∗−→m,V = Q≥0Rm,V

We deduce:

Theorem

Production relations are asymptotically definable.

Proof.

Since Rm,V is Presburger as the Parikh image of a regular language, we

deduce that Q≥0Rm,V is finitely generated. Hence Q≥0
∗−→m,V is finitely

generated for every vector space V ⊆ Qd ×Qd . We have proved that
Q≥0

∗−→m is definable.
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Subconclusion

We have proved that for every marking m ∈ Nd the following relation is
definable in FO (Q,+,≤, 0):

Q≥0
∗−→m = {(λr, λs) | λ ∈ Q≥0 r

∗−→m s}
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Main result of this section:

Theorem

The reachability relation
∗−→ is almost semilinear.
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Let ρ = m0 . . .mk be a run.

r0
∗−→m0 r1

∗−→m1 · · ·
∗−→mk

rk+1
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Definition (Inspired from Hauschildt)

The production relation of a run ρ = m0 . . .mk is the binary relation
∗−→ρ

defined by:
∗−→ρ =

∗−→m0 ◦ · · · ◦
∗−→mk

The production relations
∗−→ρ are periodic and asymptotically definable.
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Lemma

(src(ρ), tgt(ρ)) +
∗−→ρ ⊆ ∗−→

Proof.

Let
m0

a1−→ m1
a2−→ · · · ak−→ mk

r0
∗−→m0 r1

∗−→m1 · · ·
∗−→mk

rk+1

There exist w0, . . . ,wk ∈ A∗ such that:
m0 + r0

w0−→ m0 + r1 mk + rk
wk−→ mk + rk+1

Hence

m0 + r0
w0 a1 w1 ... wk ak wk+1−−−−−−−−−−−−−−−→ mk + rk+1
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Definition

We introduce the order � over the set of runs by ρ � ρ′ if:

(src(ρ′), tgt(ρ′)) +
∗−→ρ′ ⊆ (src(ρ), tgt(ρ)) +

∗−→ρ
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Theorem

The order � is well.

Proof.

We associate to every run ρ = m0 . . .mk the following word α(ρ):

α(ρ) = (a1,m1) . . . (ak ,mk) where aj = mj −mj−1

We introduce the well order v over S = A× Nd defined by
(a,m) v (b,n) if a = b and m ≤ n. Let ρ′ be another run.

Assume α(ρ) v∗ α(ρ′):
We have α(ρ′) = w0(a1,m1 + r1)w1 . . . (ak,mk + rk)wk .

Assume src(ρ) ≤ src(ρ′): We have src(ρ′) = m0 + r0.

Assume tgt(ρ) ≤ tgt(ρ′): We have tgt(ρ′) = mk + rk+1.

We deduce that r0
∗−→m1 r1 · · ·

∗−→mk
rk+1.

α(ρ) v∗ α(ρ′), src(ρ) ≤ src(ρ′) and tgt(ρ) ≤ tgt(ρ′) implies ρ � ρ′.
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An Application

Let Ω be the set of runs. We have:

∗−→ =
⋃

ρ∈min� Ω

(src(ρ), tgt(ρ)) +
∗−→ρ
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Theorem
∗−→ is an almost semilinear relation.

Proof.

Let us consider b ∈ Nd × Nd and a finitely generated periodic relation
P ⊆ Zd × Zd . We introduce the set Ωb,P of runs ρ such that
(src(ρ), tgt(ρ)) ∈ b + P. We introduce an order �P over Ωb,P defined by
ρ �P ρ

′ if ρ � ρ′ and (src(ρ′), tgt(ρ′)) ∈ (src(ρ), tgt(ρ)) + P. Observe that
�P is well over Ωb,P . Moreover we have:

(
∗−→) ∩ (b + P) =

⋃
ρ∈min�P

Ωb,P

(src(ρ), tgt(ρ)) + ((
∗−→ρ) ∩ P)

Thus
∗−→ is an almost semilinear relation.
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Corollary

Theorem

Let A be a VAS and let n be a marking that is not reachable from a
marking m. There exists a Presburger formula φ denoting a forward
inductive invariant I such that m ∈ I and n 6∈ I.

Corollary

The reachability problem is decidable.
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Algorithm With an Easy Implementation

1 Reachability ( m , A , n )
2 k ← 0
3 repeat forever

4 for each word σ ∈ Ak

5 if m
σ−→ n

6 return ‘‘reachable ’’
7 for each Presburger formula φ(x) of length k
8 if m |= φ, and n |= ¬φ and
9 φ(x) ∧ y − x ∈ A ∧ ¬φ(y) unsat

10 return ‘‘unreachable’’
11 k ← k + 1
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One More Thing...

Let us recall the following example:

Example

Let A be a VAS.
We introduce:

R = {(m,n) ∈ Nd × Nd | n−m ∈ A}

Then R∗ is the reachability relation.

Thus if R is the one step reachability relation of a VAS, then R∗ is an
almost semilinear relation.
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Monotonicity

Definition (Monotonic)

A relation R ⊆ Nd × Nd is said to be monotonic if (m + v,n + v) ∈ R for
every (m,n) ∈ R and for every v ∈ Nd .

Example

Let A be a VAS.
We introduce:

R = {(m,n) ∈ Nd × Nd | n−m ∈ A}

R is a monotonic Presburger relation.

Jérôme Leroux (CNRS) Vector Addition System Reachability Problem January 20, 2011 100 / 104



Lemma

For every monotonic Presburger relation R ⊆ Nd × Nd there exist a VASS
G and two control states p, q such that (q, (y1, y2)) is reachable from
(p, (x1, x2)) if and only if:

(x1 + x2, y1 + y2) ∈ R∗

Proof.

Based on the decomposition of a monotonic Presburger relation into a
finite union of monotonic linear relations.
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Open Problem

Theorem

The reflexive and transitive closure of a monotonic Presburger relation is a
monotonic almost semilinear relation.

Open question : Does the class of monotonic almost semilinear relations is
stable by reflexive and transitive closure ?

Application : reachability problem for VAS with zero tests.
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Conclusion

We presented geometrical properties satisfied by VAS reachability sets.

We proved that the Presburger arithmetic is sufficient for denoting
certificates of non-reachability.

Open problems:

Size of formulas denoting Q≥0
∗−→m.

Find new algorithms for deciding the reachability problem (efficient in
practice).

Extension to the VAS + zero tests. Idea : prove that R∗ is almost
semilinear for every monotonic almost semilinear relation R.

Extension to the Branching VAS. Idea : replace the Higmann’s lemma
by the Kruskal’s lemma.

Close the complexity gap between lower bound and upper bound.

At least, provide a clear upper bound (in the fast growing hierarchy).
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