
Decidability and Complexity of DPDA Language
Equivalence via 1st Order Grammars

Petr Jančar

Dept of Computer Science
Technical University Ostrava (FEI VŠB-TUO), Czech Republic

www.cs.vsb.cz/jancar

Talk at the event (workshop)
Pushdown Automata and Vector Addition Systems:

A New Look At Two Classical Problems
LSV, ENS Cachan, France

http://www.lsv.ens-cachan.fr/Events/Pavas/
20 January 2011

(This is a modified version of the slides used at the talk,

with an added summary and further remarks at the end.)

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 1 / 49

Language equivalence of deterministic pushdown automata

Example of a (formal) language L over a finite alphabet Σ, so L ⊆ Σ∗:

Σ = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +,−, ∗, (,) } ∪ {⊣ }

L ... language of arithmetic expressions

e.g., the word (sequence)

u = 5 + 28 ∗ (318 − 5 ∗ 24) + 562⊣ is in L,

v = 5 + 28 ∗ (318 − (5 ∗ 24) + 562⊣ is not in L

We can view a deterministic pushdown automaton M as a program

with fixed finite memory; program+memory...finite control unit,

with a potentially unbounded stack (LIFO, access to the top),

reading the input word from left-to-right,

accepting when reading the endmarker ⊣ and having the stack empty.

Decidability of L(M1)
?
= L(M2) was open since 1960s (stated in a paper by

Ginsburg, Greibach). Another formulation: L(pα)
?
= L(qβ) for

configurations of the same M (p ... control state, α ... stack content).
Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 2 / 49

Solution (for DPDA language equivalence)

Sénizergues G.:
L(A)=L(B)? Decidability results from complete formal systems.
Theoretical Computer Science 251(1-2): 1-166 (2001)
(a preliminary version appeared at ICALP’97; Gödel prize 2002)

Stirling C.: Decidability of DPDA equivalence.
Theoretical Computer Science 255, 1-31, 2001

Sénizergues G.: L(A)=L(B)? A simplified decidability proof.
Theoretical Computer Science 281(1-2): 555-608 (2002)

Stirling C.: Deciding DPDA equivalence is primitive recursive.
ICALP 2002, Lecture Notes in Computer Science 2380, 821-832,
Springer 2002 (longer draft paper on the author’s web page, 38 pages)
—————–

Sénizergues G.: The Bisimulation Problem for Equational Graphs of
Finite Out-Degree. SIAM J.Comput., 34(5), 1025–1106 (2005)
(a preliminary version appeared at FOCS’98)

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 3 / 49

Outline (of a novel presentation of the decidability)

Reduction to trace equivalence pα
?
∼ qβ for a given (ε-popping) dpda.

An approach for deciding trace equiv. (or bisimilarity) on deterministic
labelled transition systems where states are structured objects.

Crucial notions and ideas:
- offending words, i.e. the shortest traces w witnessing O0 6∼ O′

0

for the given initial pair (O0,O
′
0) (if nonequivalent);

- tools for recognizing “non-offending (prefixes of) traces”:
- finite basis B containing “schemas” (templates, shapes,)

(E (x1, . . . , xn), F (x1, . . . , xn)) of pairs of (equivalent) objects;
- (sub)object replacement E (O1) → E (O2), for easier
recognizing non-offending prefixes (by creating basis-instances).

Soundness: Success for (O0,O′
0) and all (worst) instances of schemas

in B implies O0 ∼ O′
0. (Stratification ∼0⊇∼1⊇ · · · ⊇∼; congruence).

Completeness: determ-1st-order grammars have sufficient bases B;
objects = terms = ordered-trees; we also allow regular infinite trees.

Dpda configurations can be easily transformed to terms=trees.

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 4 / 49

Possible additional remarks

An upper complexity bound for det-1st-order grammar
trace equivalence (and dpda language equivalence):

2 ↑↑ g(n)

where g is an elementary function
and ↑↑ denotes tetration (iterated exponentiation).
(The bound applies to the length of offending words.)
Decidability of bisimulation equivalence for the general
nondeterministic 1st order grammars
(or nondeterministic pda with restricted use of ε-steps).

Note. This presentation is based on the paper made public at
http://arxiv.org/abs/1010.4760 (version 3 from December 2010)
but with some new modifications.
Note. In the 1st version of the slides put here (LSV-page), Slide 49
contained some remarks to the above case for nondeterministic grammars,
which I also tried to handle in my arxiv-paper. Géraud Sénizergues found a
serious bug in this part. More information is on the new Slide 49.

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 5 / 49

Trace equivalence on LTSs ; deterministic LTSs

A labelled transition system (LTS) is a tuple
(S,A, {

a
−→}a∈A) where

a
−→⊆ S × S.

We assume the action set A finite, while the state set S can be infinite.

O ∈ S enables (trace) w = a1a2 . . . am ∈ A∗, denoted O
w
−→ ,

if O
a1−→ O1

a2−→ O2 · · ·
am−→ Om for some O1,O2, . . . ,Om.

Trac(O) = {w ∈ A∗ | O
w
−→} (the action sequences w enabled by O).

Trace equivalence: O1 ∼ O2 ⇔df Trac(O1) = Trac(O2) .

LTS (S,A, {
a

−→}a∈A) is deterministic (a det-LTS)
if each

a
−→ is a partial function

(if O
a

−→ O1 and O
a

−→ O2 then O1 = O2).

Example of a (finite) det-LTS, with S = {p, q, r , s, t, D}, A = {a, b, c}:

p
a

−→ p, p
b

−→ r , q
a

−→ q, q
b

−→ r

r
c

−→ r

s
a

−→ t, s
b

−→ r , t
a

−→ D, t
b

−→ t

p
?
∼ s (NO: p

aaa
−→, ¬(s

aaa
−→))

p
?
∼ q (YES, why ?)

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 6 / 49

Basis. Schemas (for objects, object-pairs, transition rules).

For (a generator G of) an LTS (SG ,A, {
a

−→}a∈A), we aim to suggest
a finite basis B = { (x1, x1), . . . } containing
pair-schemas (templates, shapes, ...) (E (x1, . . . , xn), F (x1, . . . , xn)).

Given a set S of objects:

An (object-)schema E (x1, . . . , xn) is a function E : Sn → S.

We sometimes use bracket-free notation Yx1 . . . xn for Y (x1, . . . , xn).

E represents the subset Inst(E) ⊆ S of instances E (O1, . . . ,On) .

The instances of a pair-schema (E (x1, . . . , xn), F (x1, . . . , xn))
are the pairs (E (O1, . . . ,On), F (O1, . . . ,On)).

Inst(B) is the set of instances of pair-schemas in B.

The instances of a transition-schema Yx1 . . . xn
a

−→ E (x1, . . . , xn)
are transitions YO1 . . .On

a
−→ E (O1, . . . ,On).

A pair-schema is sound (equivalent) if each of its instances is an
equivalent pair (a pair of trace-equivalent objects=states).
A basis B is sound if each pair-schema in B is sound.

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 7 / 49

Stratification of trace equivalence, equivalence-level

0
O1 O O1∼0O

O1∼1O

O1∼2O

O1∼3O

O1 6∼4O

O1 6∼5O

1

a b a b

2

b b b b

3

a b a a b a

4

a b a a b a b

· · · · · · · · · · · ·
The equivalence level: EqLv(O1,O) = 3
Offending words: OW(O1,O) = {abb(a), bba(a, b)}.

Observe: (O1 ∼2 O and) O1 ∼2 O2 ⇒ O2 ∼2 O

(EqLv(O1,O) = 3 and) O1 ∼4 O2 ⇒

EqLv(O2,O) = 3 and OW(O2,O) = OW(O1,O)

How EqLv

changes by
performing
action a ?

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 8 / 49

Stratification, equivalence level (formally)

For k ∈ N, O ∼k O′ ⇔df ∀w ∈ A∗, |w | ≤ k : O
w

−→ ⇔ O′ w
−→.

Observation. ∼0⊇∼1⊇∼2⊇ · · · ⊇∼ . O ∼ O′ ⇔ ∀k : O ∼k O′ .

Equivalence level: EqLv(O,O′) = ω ⇔df O ∼ O′.

EqLv(O,O′) = k ⇔df O ∼k O′ ∧ O 6∼k+1 O′.

OW(O,O′) is the set of offending words, i.e., of the shortest words

belonging to precisely one of the sets Trac(O), Trac(O′).

Observation. If O 6∼ O′ then EqLv(O,O′) = |w |−1 for any offending w .

Observation. In det-LTS,

by (performing) u ∈ A∗, the eq-level can drop by at most |u|;
it drops precisely by |u| for offending prefixes:

if (O,O′)
u

−→ (O1,O
′
1) then

EqLv(O,O′)−|u| ≤ EqLv(O1,O
′
1) ;

= iff u ∈ Pref(OW(O,O′)) (for u 6= ε).
Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 9 / 49

Observations for (sub)object replacement; congruence

Object replacement:

EqLv(O1,O2) ≥ k (i.e. O1 ∼k O2)
EqLv(O1,O) ≥ k (i.e. O1 ∼k O)

EqLv(O1,O2) ≥ k+1
EqLv(O1,O) = k

⇓ ⇓

EqLv(O2,O) ≥ k
EqLv(O2,O) = k , and
OW(O2,O) = OW(O1,O)

Subobject replacement in the case of
congruence , i.e. O1 ∼k O2 ⇒ E (O1) ∼k E (O2) (for all k ∈ N):

EqLv(O1,O2) ≥ k

EqLv(E (O1) ,O) ≥ k

EqLv(O1,O2) ≥ k+1

EqLv(E (O1) ,O) = k

⇓ ⇓

EqLv(E (O2) ,O) ≥ k
EqLv(E (O2) ,O) = k and

OW(E (O2) ,O) = OW(E (O1) ,O)

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 10 / 49

An idea for an “abstract algorithm”; an invariant

Given an LTS-generator G and a basis B, for each (initial) pair (O0,O
′
0)

(of elements of SG), we will define inductively a predicate

|=(O0,O
′

0)
⊆ A∗ × ((SG × SG) ∪ {NOP,FAIL}) (|= if (O0,O

′
0) clear).

u |= (O,O′) ... (e.g., ε |= (O0,O
′
0) is the axiom); read as

“u ∈ A∗ can be labelled (by the “algorithm”) with the pair (O,O′)”.

u |= NOP “u can be labelled with NOP”;

it is intended to imply that u is Not an Offending Prefix if B is sound.
(thus ε |= NOP is intended to imply O0 ∼ O′

0 if B is sound).

ε |= FAIL this is intended to imply O0 6∼ O′
0 .

(Intended) Invariant

eq-level drops by at most |u|; it drops by |u| for offending prefixes, i.e.:

if u |= (O,O′) then EqLv(O0,O
′
0)−|u| ≤ EqLv(O,O′) ;

moreover, if u ∈ Pref(OW(O0,O′
0)) then ... = ...

and OW(O,O′) = u\OW(O0,O
′
0) (the left quotient operation u\L)

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 11 / 49

Derivation system defining |=(O0,O′

0)
, given an LTS and B

Axiom ε |= (O0,O
′
0) (the system is parametrized by an initial pair)

1 (Basic transition) (this is the first derivation (or deduction) rule)

u |= (O,O′) O ∼1 O′ (O,O′)
a

−→ (O1,O
′
1) ⇒ ua |= (O1,O

′
1)

2 ((Sub)object replacement)

u |= (E (O1),O) |v | < |u| v |= (O1,O2) ⇒ u |= (E (O2),O)

3 (Symmetry) u |= (O,O′) ⇒ u |= (O′,O)

4 (Basis) u 6= ε u |= (O,O′) (O,O′) ∈ Inst(B) ⇒ u |= NOP

(“u is not an offending prefix if B is sound”)

5 (Bottom-up progression)

u |= (O,O′) O ∼1 O′ ∀a,O
a

−→: ua |= NOP ⇒ u |= NOP

6 (Rejection) u |= (O,O′) , O 6∼1 O′ ⇒ ε |= FAIL (“O0 6∼ O′
0 ”)

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 12 / 49

An infinite state LTS with structured objects as states

Example. We have a finite generator G of an LTS (SG ,A, {
a

−→}a∈A),
here a set of (root) rewrite rules (transition schemas):

Ax1
a

−→ AAx1

Ax1
b

−→ x1

Bx1
a

−→ BBx1

Bx1
b

−→ x1

A = {a, b}
SG = {A, B}∗ · {⊥}

Transitions α
x

−→ β are
instances of transition schemas.

E.g., by substitution (Ax1
a

−→ AAx1)[α/x1] we get
Aα

a
−→ AAα (for every α ∈ {A, B}∗ · {⊥}).

We can ask, e.g., A⊥
?
∼ B⊥.

In the vertical notation,
we view strings as (thin) trees.
(Hint. “Guess” the basis
B = {(x1, x1), (Ax1, Bx1)}.)

A

⊥

?
∼

B

⊥

Note. We could extend SG with infinite strings, say from {A, B}ω;
regular infinite strings can be finitely presented ... α β ω.

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 13 / 49

Soundness of |= in the case of det-LTS and congruence

We now assume det-LTSs, and congruence in Subobject replacement.

Claim. O0 ∼ O′
0, u |= (O,O′) ⇒ O ∼ O′, Trac(O) = u\Trac(O0) .

O0 6∼ O′
0 iff ε |= FAIL. (By induction: axiom and rules 1.,2.,3. (and 6.).)

Soundness Lemma.

If ε |=(O,O′) NOP for all (O,O′) ∈ {(O0,O
′
0)} ∪ Inst(B)

then B is sound and O0 ∼ O′
0.

Proof. First show (inductively) the following (invariant):
if u |= (O,O′) then EqLv(O0,O

′
0)−|u| ≤ EqLv(O,O′) ;

morever, if u ∈ Pref(OW(O0,O′
0)) then ... = ...

and OW(O,O′) = u\OW(O0,O
′
0).

Then proceed by contradiction:
Suppose the assumption holds but there is some
(O,O′) ∈ {(O0,O

′
0)} ∪ Inst(B) with the least finite eq-level .

Take the longest (offending) prefix u of some w ∈ OW(O,O′) such that

u |=(O,O′) NOP. What derivation rule has derived this?? None could!
Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 14 / 49

Extensions (of subobject replacement), keeping soundness

((Sub)object replacement)
u |= (E (O1),O), |v | < |u|, v |= (O1,O2) =⇒ u |= (E (O2),O)
—————————–

(“Dummy” subobject replacement) (later ... unreachable subtrees)
If u |= (E (O1),O) and E has a specified property implying
E (O1) ∼ E (O2) for any O2 then u |= (E (O2),O).

(Limit subobject replacement) (crucial for us)
If u |= (E (O1),O), |v | < |u|, v |= (O1, F (O1))

(hence u |= (E (F (O1)),O),
u |= (E (F (F (O1))),O), . . .)

then u |= (E (Fω(O1)),O) ... if well-defined and “congruent”.
——————————

(Basis application) (we do not use; just shows there are other options)
If u 6= ε, u |= (E (O1),O), and (O1,O2) is a basis-instance,
then u |= (E (O2),O).

Other (general) options keeping soundness ... ??

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 15 / 49

1st order grammars (a generalization of Greibach-NF CFG)

A 1st order grammar is a tuple G = (N ,A,R), where
N is a finite set of ranked nonterminals (arity : N → N)
(view nonterminals as “functions composing objects from subobjects”),
A is a finite set of actions (terminals), and
R is a finite set of (root) rewriting rules of the type

Xx1x2 . . . xm
a

−→ E (x1, x2, . . . , xm)

where X ∈ N , m = arity(X), a ∈ A, E a finite term over N .

E.g., Xx1x2
b

−→ x2, Yx1x2x3
c

−→ Xx2x2, Z
c

−→ Y⊥⊥⊥, ...
Yx1x2x3

a
−→ Y1Y2x1x2x3x3Y3x1x2x3 [Y1(Y2(x1, x2, x3), x3, Y3(x1, x2, x3))].

A finite term over N is either

⊥ ... the empty term, or

xi ... a variable from an assumed set V = {x1, x2, . . . }, or

YG1G2 . . .Gm where Y ∈ N , m = arity(Y), and Gi are finite terms.

An infinite term over N is of the form YG1G2 . . .Gm where Y ∈ N ,
m = arity(Y), and Gi are finite or infinite terms, at least one being infinite.

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 16 / 49

1st-order grammar G = (N ,A,R) as a generator of LTSG

A (root) rewriting rule Xx1x2 . . . xm
a

−→ E (x1, x2, . . . , xm) is a transition
schema; its instances are transitions XG1G2 . . .Gm

a
−→ E (G1, G2, . . . ,Gm).

The terms can be naturally represented by (ordered) trees. E.g., the rule

Xx1x2x3
b

−→ Y1(Y2(x1, x2, x3), x3, Y3(x1, x2, x3)) can be presented as

x1 x2 x3

X b
−→

x1 x2 x3 x1 x2 x3

Y2 Y3x3

Y1

So the terms=trees are the states of the LTSG . We are mainly interested
in comparing ground terms (denoted T , U, V , W), with no occurences of
variables xi ∈ V, but we include all finite terms and regular infinite terms.

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 17 / 49

Finite presentations of regular infinite trees (our objects)

A regular tree has only finitely many pairwise nonisomorphic subtrees.
A finite directed (multi)graph naturally represents an (infinite) tree by its
unfolding. Each node is labelled with X ∈ N , or ⊥, or xi ∈ V; its outgoing
edges e1, e2, . . . , earity(X) are ordered. One node is specified as the root.
(Nullary nonterminals, ⊥, and variables xi are leaves, with no outgoing
edges.)

root

X

X
· · ·

Y

Z

1

3

4

2
X

X

Y

Z

1

3

4

2

X

Y

Z

1

3

4

2

X

Y

Z

1

3

4

2

X

Y

Z

1

3

4

2

1
2

3
4

Note. Each regular tree can be finitely presented. The number of regular
trees presented within a bounded presentation size is bounded.

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 18 / 49

A head-tails presentation E (T1, T2, . . . , Tn) of a tree

E

T1 T2 T3 T4

root of E (x1, x2, x3, x4)

X

x3

Z

x1 x1 x41
3

4

1

2 3 4

2

root of E (T1,T2,T3,T4)

X

x3

Z

x1 x1 x41
3

4

1

2 3 4

2

T1 T2 T3 T4

Here E (x1, x2, x3, x4) = X (x3, X (. . .), x3, Z (X (. . .), x1, x1, x4))
Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 19 / 49

Congruence property ; limit subtree replacement

We observe congruence property: T1 ∼k T2 ⇒ E (T1) ∼k E (T2).

Also for limit subtree replacement: T1 ∼k F (T1) ⇒ E (T1) ∼k E (F (T1))
⇒ E (T1) ∼k E (F (F (T1))) ⇒ · · · ⇒ E (T1) ∼k E (lim-rep(T1, F (T1)))
where lim-rep(T1, F (T1)) = F (F (F (. . .))).

Example: lim-rep(Tn, H(T1, . . . ,Tn−1, Tn)) = H ′(T1, . . . ,Tn−1)

(formally lim-rep(Tn, F (Tn)) where F (x1) = H(T1, . . . ,Tn−1, x1))

H

x1. . .xn−1

H

x1. . .xn−1

H

x1. . .xn−1 ·

H ′

x1. . .xn−1

Starting with H(x1, . . . , xn), repeatedly replace
xn with H(x1, . . . , xn) ...
H ′(x1, . . . , xn−1) is the limit;
it has a simple finite presentation.

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 20 / 49

Deterministic 1st order grammars

A 1st-order grammar G = (N ,A,R) is deterministic if
for each pair X ∈ N , a ∈ A there is
at most one rule of the type Xx1x2 . . . xm

a
−→ E (x1, x2, . . . , xm).

Then LTSG is deterministic.

The next slide shows a (variant of our general)
derivation system for deterministic 1st-order grammars
(i.e., an inductive definition of the predicates |=(T0,T

′

0)
).

We thus assume a given det-1st-order grammar G and a finite basis B.

A basis B is now a finite set of pairs

(E (x1, . . . , xn), F (x1, . . . , xn))

where E , F are regular terms=trees
(in which variables from {x1, . . . , xn} can occur).

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 21 / 49

Derivation system (given G,B) with axiom ε |= (T0, T
′
0)

(Basic transition) (the first derivation (or deduction) rule)
u |= (T , T ′), T ∼1 T ′, (T , T ′)

a
−→ (T1, T

′
1) ⇒ ua |= (T1, T

′
1)

(Subtree replacement)
u |= (E (T1), T), |v | < |u|, v |= (T1, T2) ⇒ u |= (E (T2), T)

(Limit subtree replacement) u |= (E (T1), T) |v | < |u|

v |= (T1, F (T1)) ⇒ u |= (E (lim-rep(T1, F (T1))), T)

(Unreachable subtree replacement) If u |= (E (T1), T) and there is

no w such that E (x1)
w

−→ x1 then u |= (E (T2), T) for any T2.

(Symmetry) If u |= (T , T ′) then u |= (T ′, T).

(Basis) If u 6= ε , u |= (E (T1, . . . ,Tn), F (T1, . . . ,Tn)) , and

(E (x1, . . . , xn), F (x1, . . . , xn)) is in B then u |= NOP .

(Bottom-up progression) If u |= (T , T ′), T ∼1 T ′, and ua |= NOP

for all a, T
a

−→, then u |= NOP.
(Rejection) If u |= (T , T ′) and T 6∼1 T ′ then ε |= FAIL.

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 22 / 49

Finite proofs of T0 ∼ T ′
0 (for det-1st-order grammars)

Soundness has been already proven:

If ε |=(T ,T ′) NOP for all (T , T ′) ∈ {(T0, T
′
0)} ∪ Inst(B)

then B is sound and T0 ∼ T ′
0.

But note: Though B is finite, Inst(B) is (generally) infinite!

For each (E (x1, . . . , xn), F (x1, . . . , xn)) in B we consider

the worst instance: each xi is treated as an object for which xi ∼ xi but
xi 6∼1 H if H 6= xi . (In particular, x1 6∼1 x2.)

If we insist on ground terms in the basis, we can assume a fixed countable
set of special leaves L = {L1, L2, L3, . . . } (L ∩N = ∅) and the rules

L1
ℓ1−→ ⊥, L2

ℓ2−→ ⊥, L3
ℓ3−→ ⊥, . . . where ℓi 6= ℓj for i 6= j , and ℓi 6∈ A.

(E (L1, . . . , Ln), F (L1, . . . , Ln)) is defined as the worst instance of (E , F).

Soundness for det-1st-order grammars:

If ε |=(T ,T ′) NOP for all (T , T ′) ∈ {(T0, T
′
0)} ∪ WorstInst(B)

then B is sound and T0 ∼ T ′
0.

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 23 / 49

Soundness of the worst instances; exposing equations

We say that u ∈ A∗ exposes an equation for the pair (of heads)

E (x1, . . . , xn) | F (x1, . . . , xn)

if E (x1, . . . , xn)
u

−→ xi , F (x1, . . . , xn)
u

−→ H(x1, . . . , xn), or vice versa,
where H(x1, . . . , xn) 6= xi (but might be H = xj for i 6= j).

Formally we write xi
.
= H(x1, . . . , xn) .

Observation. For such u,
EqLv(E (T1, . . . ,Tn), F (T1, . . . ,Tn)) − |u| ≤ EqLv(Ti , H(T1, . . . ,Tn)).
Hence E (T1, . . . ,Tn) ∼ F (T1, . . . ,Tn) implies Ti ∼ H(T1, . . . ,Tn).

Claim. (Soundness of verifying just the “special-leaves basis instances”.)

EqLv(E (L1, .., Ln), F (L1, .., Ln)) ≤ EqLv(E (T1, ..,Tn), F (T1, ..,Tn))

(if L1, . . . , Ln do not occur in E , F).
Proof easily follows from the following:

Note. If
E

T ′
1 . . .T ′

n ∼k

F

T ′
1 . . .T ′

n and
E

T1 . . .Tn 6∼k

F

T1 . . .Tn

then an offending prefix (on the rhs) exposes an equation for E , F .
Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 24 / 49

Dpda problem reduces to det-1st-order grammar problem

Proposition.

Dpda language equivalence can be effectively reduced to det-1st-order
grammar trace equivalence.

(M, pα, qβ) transformed to (G, T0, T
′
0) where L(pα) = L(qβ) iff T0 ∼ T ′

0.

This is accomplished by

reducing dpda language equivalence to dpda trace equivalence,

transforming dpda to ε-popping form,

representing dpda configurations as trees
(naturally, adding a control state to each stack symbol),

“precomputing the ε-moves” (trimming the configuration-tree).

The next slides sketch the ideas in more detail.
(Note. This part can be skipped, when one prefers to look at the
completeness of |= for 1st-order grammars.)

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 25 / 49

ε-popping dpda and their trace equivalence problem

stable unstable

q1A

q2A

q3A

q1B

q2B

q3B

q1A
a

−→ q1BB

q1A
b

−→ ..
q2A

ε
−→ q3

q3A
a

−→ ..

q3A
b

−→ q1

q1B
a

−→ q2AA

q1B
b

−→ q3BA

q2B
ε

−→ q1

q3B . . .

M = (Q,A, Γ,R)
Q = {q1, q2, q3}, A = {a, b}, Γ = {A, B}
(Root rewrite) rules R ...

q1B

A

⊥

q2A

A

A

⊥

a
q3A

A

⊥

ε

Trace equivalence problem (for ε-pop-dpda):

Given M, pα, qβ , is pα ∼ qβ ?

(∀w ∈ A∗: pα
w

−→ iff qβ
w

−→)
Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 26 / 49

A (routine) reduction from dpda-language to dpda-trace

Instance Question Remark

2 dpda M1, M2 LFS(M1)
?
= LFS(M2) classical setting

2 dpda M1, M2 L⊥(M1)
?
= L⊥(M2) (1)

dpda M, conf. pα, qβ L(pα)
?
= L(qβ) (2)

ε-popping-dpda M, pα, qβ L(pα)
?
= L(qβ) (3)

ε-popping-dpda M, pα, qβ pα
?
∼ qβ (4)

Remarks:

1 If L1, L2 ⊆ Σ∗ and $ 6∈ Σ then L1 = L2 ⇔ L1 · {$} = L2 · {$}.
So further L(pα) = {w ∈ A∗ | pα⊥

w
−→ q⊥ for some q }.

2 The disjoint union of two dpda’s is a dpda.
3 ... pA

ε
−→ qBα where qB

a
−→ q′β replace with pA

a
−→ q′βα ...

... if pA enables infinite ε-sequence, remove it ...
4 Add an ‘error’ state qerr , rules qerrA

a
−→ qerrA (∀A ∈ Γ, a ∈ A),

complete every ‘missing’ rule pA
a

−→ .. by pA
a

−→ qerrA.
(We get: L(pα) = L(qβ) iff ∀w ∈ A∗ : pα

w
−→⇔ qβ

w
−→.)

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 27 / 49

(D)pda configuration as trees

Assume

Q = {q1, q2, q3}, a rule q2A
ε

−→ q3 , and q1B, q1A, q3A are stable.

q1B

A

⊥ q1⊥ q2⊥ q3⊥ q1⊥ q2⊥ q3⊥ q1⊥ q2⊥ q3⊥

q1A q2A q3A

q1B

1
2

3

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 28 / 49

“Precomputing ε-(popping) moves” – trimming the tree

Q = {q1, q2, q3}, a rule q2A
ε

−→ q3 , and q1B, q1A, q3A are stable.

q1B

A

⊥ q1⊥ q2⊥ q3⊥ q1⊥ q2⊥ q3⊥

q1A q3⊥ q3A

q1B

1
2

3

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 29 / 49

Unifying the leaves

Q = {q1, q2, q3}, a rule q2A
ε

−→ q3 , and q1B, q1A, q3A are stable.

q1B

A

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

q1A ⊥ q3A

q1B

1
2

3

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 30 / 49

Adjusting (root rewriting) rules

A rule q1B
b

−→ q3BA, i.e., (recall the rule q2A
ε

−→ q3)

q1B

x

b
−→

q3B

A

x

x1 x2 x3

q1B b
−→

x1 x2 x3 x1 x2 x3

q1A q3Ax3

q3B

q1B x1x2x3
b

−→ q3B
(

q1A x1x2x3 , x3 , q3A x1x2x3

)

= E (x1, x2, x3)

Another example: q3A
b

−→ q1 q3A x1x2x3
b

−→ x1 = F (x1, x2, x3)

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 31 / 49

Completeness of predicates |=(T0,T ′

0)
, and decidability

Soundness Lemma. (det-LTSs, congruence)

If ε |=(O,O′) NOP for all (O,O′) ∈ {(O0,O
′
0)} ∪ Inst(B)

then B is sound and O0 ∼ O′
0.

Completeness Lemma.

For each det-1st-order grammar G there is a finite sound basis B of
pairs of regular trees such that for each pair T0 ∼ T ′

0 of (equivalent)
regular trees we have ε |=(T0,T

′

0)
NOP .

Using Soundness Lemma (with the worst basis-instances), Completeness
Lemma, and simple observations on (algorithmic) manipulations with
finite presentations of regular trees, it is straightforward to derive:

Theorem. Trace equivalence for deterministic 1st order grammars
(and thus also language equivalence for dpda) is decidable.
Moreover, for each grammar G there is a (computable) finite basis B for
which “the predicate |= is sound and complete”.

So now we are going to prove Completeness Lemma ...
Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 32 / 49

Refresh: Derivation system (G,B) with axiom ε |= (T0, T
′
0)

(Basic transition)
u |= (T , T ′), T ∼1 T ′, (T , T ′)

a
−→ (T1, T

′
1) ⇒ ua |= (T1, T

′
1)

(Subtree replacement)
u |= (E (T1), T), |v | < |u|, v |= (T1, T2) ⇒ u |= (E (T2), T)

(Limit subtree replacement) u |= (E (T1), T), |v | < |u|,
v |= (T1, F (T1)) ⇒ u |= (E (lim-rep(T1, F (T1))), T)

(Unreachable subtree replacement) If u |= (E (T1), T) and there is no
w such that E (x1)

w
−→ x1 then u |= (E (T2), T) for any T2.

(Symmetry) If u |= (T , T ′) then u |= (T ′, T).

(Basis) If u 6= ε, u |= (E (T1, . . . ,Tn), F (T1, . . . ,Tn)), and
(E (x1, . . . , xn), F (x1, . . . , xn)) is in B then u |= NOP.

(Bottom-up progression) If u |= (T , T ′), T ∼1 T ′, and ua |= NOP

for all a, T
a

−→, then u |= NOP.

(Rejection) If u |= (T , T ′) and T 6∼1 T ′ then ε |= FAIL.

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 33 / 49

Completeness Lemma shown by contradiction

Given a det-1st-order grammar G = (N ,A,R), (imagine we have)
put in basis B all sound pair-schemas (E (x1, . . . , xn), F (x1, . . . , xn)) where
the presentation size of (regular trees) E , F is
bounded by a large constant SIZE (somehow determined by G).

Now assume a pair W0, W
′
0 of (possibly very large) regular trees such that

W0 ∼ W ′
0 and ε 6|=(W0,W

′

0)
NOP

We write |= instead of |=(W0,W
′

0)
; recall that u |= (T , T ′) implies T ∼ T ′.

There is necessarily some a1 ∈ A such that (W0, W
′
0)

a1−→ (W1, W
′
1) and

a1 6|= NOP, some a2 ∈ A such that (W1, W
′
1)

a2−→ (W2, W
′
2) and

a1a2 6|= NOP; etc. ... This gives an infinite word µ = a1a2a3

(W0, W
′
0)

a1−→ (W1, W
′
1)

a2−→ (W2, W
′
2)

a3−→ · · ·

Since we cannot derive u |= NOP for any prefix u of µ, there is
no repeat, i.e. no two prefixes u1 6= u2 with u1 |= (T , T ′), u2 |= (T , T ′)
(otherwise we would get u2 |= NOP).

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 34 / 49

(“Hint.”) Equations for possible limit-subtree-replacement

If u is a prefix of µ, u 6= ε, and

u |=
E

T1 . . .Tn

F

T1 . . .Tn (implying E (T1, . . . ,Tn) ∼ F (T1, . . . ,Tn))

where E , F (i.e., E (x1, . . . , xn), F (x1, . . . , xn)) have presentation size
bounded by SIZE

then (E , F) is not in B (otherwise u |= NOP) and thus
E (L1, . . . , Ln) 6∼ F (L1, . . . , Ln). Hence there is a shortest v ∈ A∗ exposing
an equation for E , F (recall Note on slide 24);

w.l.o.g. assume uv |= (Tn,
H

T1 . . .Tn).

Thus for every prefix uw of µ where |w | > |v |:

if uw |= (E ′(Tn), F
′)

then this Tn can be replaced with H(T1, . . . ,Tn), and thus with the
appropriate H ′(T1, . . . ,Tn−1) by limit-subtree-replacement;

hence uw |= (E ′(H ′(T1, . . . ,Tn−1)), F
′).

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 35 / 49

Words exposing subtrees (“going down”)

For T
v

−→, we say that
T goes down by (in) v , in other words v exposes a root-successor of T ,

if T = XU1 . . .Um and Xx1 . . . xm
v ′

−→ xi

for some prefix v ′ of v and some i ∈ {1, 2, . . . ,m}.

(Given grammar G = (N ,A,R),) we can attach
to each X ∈ N and each j , 1 ≤ j ≤ m = arity(X)

a shortest word w(X , j) such that

X

x1 . . . xm
w(X ,j)
−→ xj

if there is one. Otherwise we let w(X , j) = ε.

Let M ∈ N be (the least) such that

M > max{ length(w(X , j)) | X ∈ N , 1 ≤ j ≤ arity(X) }

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 36 / 49

Grammar-determined (number or function) bounds

The (least) number M obviously exists and is determined by G,
independently of the fixed (W0, W

′
0) and µ.

Grammar G obviously also determines the (component-wise least) function
B-Inc : N → N (“Bounding Increase”) satisfying the following:
if Xx1 . . . xm

v
−→ F (x1, . . . , xm) (where X ∈ N , v ∈ A∗)

then the depth of the finite tree F (the maximal length of branches)
is bounded by B-Inc(|v |).

Note. It is now irrelevant that we can compute (bounds on) M and B-Inc.
When we say a G-determined number (function), we mean that such a
number (function) exists and is only dependent on G (not on W0, W

′
0, µ).

We later use some other numbers M1, M2, M3, M4 which are obviously
G-determined.
When we say that a number (discussed in some context) is G-bounded,
we mean that there is a G-determined upper bound for the number.

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 37 / 49

(For d ∈ N), each T has d-prefix form with d-prefix PT
d

The (d+1)-th node of each branch (if the branch is not shorter)
is replaced by a (fresh) variable-leaf ... the head PT

d is a d-prefix.

PT
d

T1 T2
. . . Tn

d levels

n ≤ bd variable-leaves
(b ... branching degree)

Observation. If
PT

d

T1 · · ·Tn

u
−→ T ′

where |u| ≤ d

then PT
d (x1, . . . , xn)

u
−→ E (x1, . . . , xn) and T ′ =

E

T1 · · ·Tn .

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 38 / 49

Balancing (possibility) with the (rhs) balancing pivot B

C B

T T ′

v

X
T1 . . .Tm

PB
M

T ′
1 . . .T ′

n

E
T1 . . .Tm

F
T ′

1 . . .T ′
n

v

Suppose the trees on the left are in the form on the right, for a prefix uv

of µ we have u |= (C , B), and (C , B)
v

−→ (T , T ′), so uv |= (T , T ′),

C does not go down by v , |v | = M.

Replace each Tj by
(

B =
PB

M

T ′
1 . . .T ′

n

w(X ,j)
−→

)

Fj

T ′
1 . . .T ′

n

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 39 / 49

The result of balancing (determined by B , X , v)

X
T1 . . .Tm

PB
M

T ′
1 . . .T ′

n

E
T1 . . .Tm

F
T ′

1 . . .T ′
n

v

X
T1 . . .Tm

PB
M

T ′
1 . . .T ′

n
=B

E

F1 . . .Fm

T ′
1 . . .T ′

n

F

T ′
1 . . .T ′

n

v

The depth of finite trees E , F1, . . . ,Fm, F is bounded by some M1.

Note that the balancing result uv |= (E ′(T ′
1, . . . ,T

′
n), F (T ′

1, . . . ,T
′
n)),

(where E ′ = E (F1, . . . ,Fm)) is determined by B, X , v .
Corollary. We cannot get the same pivot for infinitely many prefixes of µ
(for no more than some M2 prefixes); otherwise we would get a repeat.

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 40 / 49

Balancing strategy along our fixed infinite µ

Starting from ε |= (W0, W
′
0), we must have the first possibility to balance,

with some pivot B1, otherwise Wi , W
′
i would go down in each segment of

µ of length M, and they thus would range over finitely many trees, due to
regularity; then we would get a repeat.

Having pivot Bi (rhs, w.l.o.g.), in u |= (XT1 . . .Tm, Bi), we (re)start from
the balancing result uv |= (E ′(T ′

1, . . . ,T
′
n), F (T ′

1, . . . ,T
′
n)), where

E ′ = E (F1, . . . ,Fm), (thus redefining Wj for j ≥ |uv |).

In the next segment of µ of length M either the lhs-tree does not go down,
we then do balancing with a further rhs-pivot Bi+1, or the lhs-tree does go
down, then we “look” a bit further ...

There is obviously a G-determined M3 such that in the segment of length
M3 of µ, which starts from the balancing result with Bi , we either get
Bi+1 on the same side as Bi , or (some Fj(T

′
1 . . .T ′

n) on the lhs is exposed,
and thus) the trees on both sides are reachable from Bi , by a word of
length ≤ M3 – after this moment we take Bi+1 as the first possible pivot
on either side (there must be one by regularity).

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 41 / 49

Infinite pivot path; a “stair-base” subtree V1 of pivot B1

We thus get an infinite “pivot-path” B1
u1−→ B2

u2−→ B3
u3−→ · · · where

u1u2u3 . . . arises from a suffix of µ by replacing segments of length ≤ M3.

Observation. In each “short” segment: either a pivot or going down :

There is G-determined M4 such that in any pivot-path segment

U0
b1−→ U1

b2−→ · · ·
bM4−→ UM4 there is a pivot (Ui = Bj for some i , j)

or U0 goes down in this segment.

Define V1 as the subtree of B1, so B1 = F (V1), which is exposed by
u1u2u3 . . . (F (x1)

w
−→ x1 for a prefix w of u1u2u3 . . .) but none of the

proper subtrees of V1 is exposed by u1u2u3
If there was no such V1, the pivot path would be exposing infinitely often
isomorphic subtrees of B1 and by the above Observation we would
necessarily get infinitely often the same pivot (a contradiction).

So we have B1 −→ · · · · · · · · · · · · · · · · · · −→ V1 → Bk −→ · · · where

the root of V1 = Y (· · ·) (i.e., the tree Yx1 . . . xm) enables the whole
infinite suffix of the pivot-path after exposing V1.

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 42 / 49

G-determined least n with a G-determined function g

Recall B1 −→ · · · · · · · · · −→ V1 → Bk −→ Bk+1 −→ Bk+2 −→ · · ·
where V1 = Y (· · ·) does not go down (in the whole infinite suffix).

Let
PV1

M

T1 . . .Tn be the M-prefix form of V1; note: n is G-bounded.

The balancing results with Bk+j are
Ek+j

T1 . . .Tn

Fk+j

T1 . . .Tn where

Ek+j , Fk+j are finite heads; (the length of their branches, and thus also)
their presentation size is bounded by a grammar-determined function f (j)
(recall Observation and function B-Inc).
So without assuming anything specific on W0, W

′
0, µ, we know that there

exists (some, and thus also) the least (grammar-determined) n

for which there is a grammar-determined function g : N → N guaranteeing:
there are some (unspecified) trees T1, . . . ,Tn and infinitely many
(nonempty, increasing) prefixes w0, w1, w2, . . . of µ such that
wj |= (Ej(T1, . . . ,Tn), Fj(T1, . . . ,Tn)) where Ej , Fj are (generally) regular
trees with the presentation size bounded by g(j).

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 43 / 49

Using the “Hint” (an equation) to get a contradiction

Let us have the least n with a function g as discussed. We can assume
that (we have chosen) SIZE > g(0) and thus, necessarily, n > 0.
(E0(x1, . . . , xn), F0(x1, . . . , xn)) cannot be a sound pair-schema, and there
is thus a shortest word v exposing an equation for (E0, F0), say

xn
·
= H(x1, . . . , xn). As previously, we define

H ′(x1, . . . , xn−1) = H(x1, . . . , xn−1, H(x1, . . . , xn−1, H(. . .))).
Since the number of possible E0, F0 (whose size is bounded by g(0)) is
G-bounded, the length of v and thus also
the presentation size of (H and) H ′ is G-bounded. By noting
w0 |= (E0(T1, . . . ,Tn), F0(T1, . . . ,Tn))

w0v |= (Tn, H(T1, . . . ,Tn))
wk |= (E ′

k(T1, . . . ,Tn−1), F
′
k(T1, . . . ,Tn−1))

wk+1 |= (E ′
k+1(T1, . . . ,Tn−1), F

′
k+1(T1, . . . ,Tn−1))

. . . (for some G-bounded k ∈ N)
where E ′

k+j(x1, . . . , xn−1) = Ek+j(x1, . . . , xn−1, H
′(x1, . . . , xn−1)),

and F ′
k+j(x1, . . . , xn−1) = Fk+j(x1, . . . , xn−1, H

′(x1, . . . , xn−1))
we derive a contradiction with the minimality of n.

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 44 / 49

Informal summary and some further remarks (1)

Outline on slide 4 has been realized, using several notions, ideas and
claims which can be easily explained and observed.
We have used the brute-force breadth-first search for a shortest trace
witnessing nonequivalence of the given pair of objects, i.e. an offending
word, the notion of a finite basis of schemas (templates, shapes) of
equivalent pairs, and the subobject replacement option helping to
recognize non-offending (prefixes of) traces by creating basis instances.
Soundness of the process is guaranteed if we have the congruence property
of the stratified trace equivalence and deterministic LTSs, guaranteeing
that the eq-level of two objects can drop at most by 1 by performing one
(common) action.
Completeness for det-1st-order grammars is based on a few ideas. Firstly
we note that a nonequivalent schema with at least one equivalent instance
must yield an “equation” (a “linear dependency” among
component-objects); such equations can be used for subtree (limit)
replacement for sufficiently long prefixes (traces). Secondly,
an idea reminding the “stair-sequences” of pda computations, is used:

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 45 / 49

Informal summary and some further remarks (2)

A situation when the tree on some side does not go down in a bounded
segment of a trace allows a balancing step, arriving at a pair with bounded
(differing) “heads” and the same “tails”. Using this balancing with a slight
care allows us to extract a “stair-base” along a potentially infinite trace.
Using the mentioned ideas, the existence of a sufficient basis for each
det-1st-order grammar is derived in a straightforward manner.

Remark (PJ): Géraud Sénizergues remarked that all the ideas are present
in his original paper, and my presentation is isomorphic with his.
This is well possible; I do not claim having come with any new
fundamental idea. I can just say that it would be very difficult for me
to present and prove such an isomorphism.

For bounding the computational complexity, in fact the length of offending
words (by 2 ↑↑ g(n)) for non-equivalent trees in 1st-order grammars, we
would need to look more closely at the “stair sequences” of balancing
results along a potential offending word.
A rough idea can be got from the following observation.

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 46 / 49

Informal summary and some further remarks (3)

Claim. If u1 |= (E (T), F (T)), w1 |= (E (G (T)), F (G (T))),
u2 |= (E (V), F (V)), w2 |= (E (G (V)), F (G (V))),
where |u1| < |w1|, |u2| < |w2|, and w1 is a proper prefix of w2

then w2 is not a prefix of an offending word.
Proof. Suppose w2 is an offending prefix. Then (E (x1), F (x1)) is not an
equivalent schema and there is a shortest v exposing an equation
x1

·
= H(x1).

Exercise. Show a contradiction by noting that the eq-levels of the pairs
(E (G (T)), F (G (T))), (E (G (V)), F (G (V))) must be both equal to
(E (G (H ′)), F (G (H ′)), where H ′ arises from H(x1) by limit-replacement of
x1 with H(x1).
—————–
Important is to note that we deduced that w2 is not an offending prefix
without knowing the length of v exposing the equation. The idea can be
generalized (we had 1 tail and needed 4 pairs, for 2 tails we need 8 pairs,
for 3 tails 16 pairs, ...), and “stair-sequences” of balancing results, with
bounded stairs, yield the overall bound ...

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 47 / 49

Informal summary and some further remarks (4)

Remark (PJ): Colin Stirling was the first to use the above idea to derive a
primitive recursive complexity bound. I have had a closer look at the
method, deriving the upper bound 2 ↑↑ g(n) on the length of offending
words (in the framework of det-1st-order grammars). Doing this, I derived
an auxiliary proposition (Proposition 26 in my arxiv-version-3 paper); this
seems to be a variant (or an instance) of the Subwords Lemma in
Sénizergues’ ICALP’03 paper. (I will refer to this in later version(s).)

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 48 / 49

Informal summary and some further remarks (5)

I claimed in the arxiv-paper (and at the end of the talk) that the
decidability of bisimulation equivalence for (nondeterministic) 1st-order
grammars can be shown in principle in the same way as for the
det-1st-order grammars, after solving some technical problems.
In the discussion Géraud Sénizergues doubted that my approach works for
bisimilarity, so I was writing here previously: ... either I have a serious
problem in my proof (which should be demonstrated), or our approaches
are not very closely isomorphic ...
Géraud later really demonstrated a serious problem, see
http://arxiv.org/abs/1101.5046. The crucial point is something which was
trivial in the soundness proof of the determ-case: any offending word
decreased the real eq-level of respective pairs of objects, and this property
was not influenced by the subtree replacement (from larger eq-levels).
This is true in the nondeterministic case for relative eq-levels wrt a fixed
Defender’s strategy, but one must be careful when mixing them with the
real (absolute) eq-levels. I was not enough careful, which is my shame ...

Petr Jančar (TU Ostrava) DPDA - decidability LSV, Cachan, 20 Jan 2011 49 / 49

