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Abstract
Stochastic two-player games model systems with an environment that is both adversarial and
stochastic. In this paper, we study the expected value of bounded quantitative prefix-independent
objectives in the context of stochastic games. We show a generic reduction from the expectation
problem to linearly many instances of the almost-sure satisfaction problem for threshold Boolean
objectives. The result follows from partitioning the vertices of the game into so-called value classes
where each class consists of vertices of the same value. Our procedure further entails that the
memory required by both players to play optimally for the expectation problem is no more than
the memory required by the players to play optimally for the almost-sure satisfaction problem for a
corresponding threshold Boolean objective.

We show the applicability of the framework to compute the expected window mean-payoff
measure in stochastic games. The window mean-payoff measure strengthens the classical mean-
payoff measure by computing the mean payoff over windows of bounded length that slide along an
infinite path. We show that the decision problem to check if the expected window mean-payoff value
is at least a given threshold is in UP ∩ coUP when the window length is given in unary.

2012 ACM Subject Classification Mathematics of computing → Stochastic processes; Theory of
computation → Probabilistic computation

Keywords and phrases Stochastic games, finitary objectives, mean payoff, reactive synthesis

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2025.30

Related Version Full Version: https://arxiv.org/abs/2405.18048 [21]

1 Introduction

Reactive systems typically have an infinite execution where the controller continually reacts
to the environment. Given a specification, the reactive controller synthesis problem [19]
concerns with synthesising a policy for the controller such that the specification is satisfied by
the system for all behaviours of the environment. This problem is modelled using two-player
turn-based games on graphs, where the two players are the controller (Player 1) and the
environment (Player 2), the vertices and the edges of the game graph represent the states
and transitions of the system, and the objective of Player 1 is to satisfy the specification. An
execution of the system is then an infinite path in the game graph. The reactive controller
synthesis problem corresponds to determining if there exists a strategy of Player 1 such
that for all strategies of Player 2, the outcome satisfies the objective. If such a winning
strategy exists, then we would also like to synthesise it. The environment is considered as an
adversarial player to ensure that the specification is met even in the worst-case scenario.

Objectives are either Boolean or quantitative. Each execution either satisfies a Boolean
objective ψ or does not satisfy ψ. The set of executions that satisfy ψ form a language over
infinite words with the alphabet being the set of vertices in the graphs. On the other hand,
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30:2 Expectation in Stochastic Games with Prefix-independent Objectives

a quantitative objective φ evaluates the performance of the execution by a numerical metric,
which Player 1 aims to maximise and Player 2 aims to minimise. A quantitative objective
can be viewed as a real-valued function over infinite paths in the graph.

In the presence of uncertainty or probabilistic behaviour, the game graph becomes
stochastic. Fixing the strategies of the two players gives a distribution over infinite paths in
the game graph. For Boolean objectives ψ, the goal of Player 1 is to maximise the probability
that an outcome satisfies ψ. For quantitative objectives φ, there are two possible views:
Satisfaction. Given a threshold λ, to maximise the probability that φ-value of the outcome

is greater than λ;
Expectation. To maximise the φ-value of the outcome in expectation.
Either view may be desirable depending on the context [5–8]. The satisfaction view can be
seen as a Boolean objective: the φ-value of the outcome is either greater than λ or it is not.
The expectation view is more nuanced, and is the subject of study in this paper.

In this paper, we look at the expectation problem for quantitative prefix-independent
objectives (also referred to as tail objectives). These are objectives that do not depend on
finite prefixes of the plays, but only on the long-run behaviour of the system. In systems, we
are often willing to allow undesirable behaviour in the short-term, if the long run behaviour is
desirable. Prefix-independent objectives model such requirements and thus are of interest to
study [9]. Prefix-independent objectives also have the benefit that they satisfy the Bellman
equations [34], which simplifies their analysis. The expectation problem for such objectives
arises naturally in many scenarios. For example:

(i) An algorithmic trading system is designed to generate profit by executing trades based
on real-time market data. Following an initial phase of learning and unstable behaviour
due to parameter tuning, average profit over a bounded time window must always
exceed a threshold and decisions need to be made within short well-defined intervals
for them to be effective.

(ii) A power plant may have different strategies to produce power (such as coal, solar,
nuclear, wind) and must allocate resources among these strategies so as to maximise
the power produced in expectation.

Contributions. All of our contributions are with regard to quantitative prefix-independent
objectives φ that are bounded (i.e., the image of φ is bounded between integers −Wφ and
Wφ) and such that a bound denφ on the denominators of the optimal expected φ-values of
vertices in the game is known. The bound on the image ensures determinacy [35], that is,
the players have optimal strategies, and the bound on the denominator of optimal values of
vertices discretise the search space. These bounds often exist and are easily derivable for
common objectives of interest such as mean payoff.

Our primary contribution is a reduction of the expectation problem for such an objective
φ to linearly many instances of the almost-sure satisfaction problem for threshold Boolean
objectives {φ > λ} for thresholds λ ∈ Q. Deciding the almost-sure satisfaction of {φ > λ}
is conceptually simpler than computing the expected value of φ, as in the former, we only
need to consider if the measure of the paths that satisfy the objective {φ > λ} is equal to
one, whereas in the latter, one must take the averages of the measures of the sets of paths π
weighted with the value φ(π) of the paths. Our technique is generic in the sense that when
an algorithm for the almost-sure satisfaction problem for {φ > λ} is known, we directly
obtain the complexity and a way to solve the expectation problem for φ.

Our reduction builds on the technique introduced in [16] for Boolean prefix-independent ob-
jectives and non-trivially extends it to quantitative prefix-independent objectives φ for which
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Table 1 Complexity and bounds on memory requirement for window mean-payoff objectives

Objective Complexity Memory (Player 1)
(lower [22], upper)

Memory (Player 2)
(lower [22], upper)

FWMP(ℓ) UP ∩ coUP ℓ − 1, ℓ |V | − ℓ, |V | · ℓ

BWMP UP ∩ coUP memoryless, memoryless infinite, infinite

the bounds Wφ and denφ are known. The expected φ-values of vertices are nondeterministic-
ally guessed, and we present a characterisation (Theorem 7, similar to [16, Lemma 8] but with
important and subtle differences) to verify the guess. We also explicitly construct strategies
for both players that are optimal for the expectation of φ, in terms of almost-sure winning
strategies for {φ > λ} (proof of Lemma 9). The memory requirement for the constructed
optimal strategies is the same as that of the almost-sure winning strategies (Corollary 10).

Our framework gives an alternative approach to solve the expectation problem for well-
studied objectives such as expected mean payoff and gives new results for not-as-well-studied
objectives such as the window mean-payoff objectives introduced in [12]. As our secondary
contribution, we illustrate our technique by applying it to two variants of window mean-
payoff objectives: fixed (FWMP(ℓ)) and bounded (BWMP) window mean-payoff. Using our
reduction, we are able to show that for both of these objectives, the expectation problem
is in UP ∩ coUP (Theorem 18 and Theorem 22), a result that was not known before. The
UP∩coUP upper bound for window mean-payoff objectives matches the special case of simple
stochastic games [13,20], and thus would require a major breakthrough to be improved. The
lower bounds on the memory requirements for these objectives carry over from special case
of the non-stochastic games [12,22]. We summarise the complexity results and bounds on
the memory requirements for the window mean-payoff objectives in Table 1.

Related work. Stochastic games were introduced by Shapley [38] where these games were
studied under expectation semantics for discounted-sum objectives. In [14], it was shown that
solving stochastic parity games reduces to solving stochastic mean-payoff games. Further,
solving stochastic parity games, stochastic mean-payoff games, and simple stochastic games
(i.e., stochastic games with reachability objective) are all polynomial-time equivalent [1,
30], and thus, are all in UP ∩ coUP [13]. A sub-exponential (or even quasi-polynomial)
time deterministic algorithms for simple stochastic games on graphs with poly-logarithmic
treewidth was proposed in [18]. In [29], sufficient conditions on the objective were shown such
that optimal deterministic memoryless strategies exist for the players. In [34], value iteration
to solve the expectation problem in stochastic games with reachability, safety, total-payoff,
and mean-payoff objectives was studied.

Mean-payoff objectives were studied initially in two-player games, without stochasticity [24,
39], and with stochasticity in [28]. Finitary versions were introduced as window mean-payoff
objectives [12]. For finitary mean-payoff objectives, the satisfaction problem [7] and the
expectation problem [5] were studied in the special case of Markov decision processes (MDPs),
which correspond to stochastic games with a trivial adversary. Expected mean payoff, expected
discounted payoff, expected total payoff, etc., are widely studied for MDPs [4, 36]. Both the
expectation problem [5] and the satisfaction problem [7] for the FWMP(ℓ) objective are in
PTIME, while they are in UP ∩ coUP for the BWMP objective. Ensuring the satisfaction and
expectation semantics simultaneously was studied in MDPs for the mean-payoff objective
in [17] and for the window mean-payoff objectives in [26]. In both cases, the complexity was
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30:4 Expectation in Stochastic Games with Prefix-independent Objectives

shown to be no greater than that of only expectation optimisation.
The satisfaction problem for window mean-payoff objectives has been studied for two-

player stochastic games in [22]. While positive and almost-sure satisfaction of FWMP(ℓ) are
in PTIME, it follows from [22] that the problem is in UP ∩ coUP for quantitative satisfaction
i.e., with threshold probabilities 0 < p < 1. Furthermore, the satisfaction problem of BWMP
is in UP ∩ coUP and thus has the same complexity as that of the special case of MDPs [7].

Due to lack of space, some of the proofs and details have been omitted. A full version of
the paper can be found in [21].

2 Preliminaries

Probability distributions. A probability distribution over a finite non-empty set A is a
function Pr : A → [0, 1] such that

∑
a∈A Pr(a) = 1. We denote by D(A) the set of all

probability distributions over A. For the algorithmic and complexity results, we assume that
probabilities are given as rational numbers.

Stochastic games. We consider two-player turn-based zero-sum stochastic games (or simply,
stochastic games in the sequel). The two players are referred to as Player 1 (she/her) and
Player 2 (he/him). A stochastic game is given by G = ((V,E), (V1, V2, V♢),P, w), where:

(V,E) is a directed graph with a finite set V of vertices and a set E ⊆ V × V of
directed edges such that for all vertices v ∈ V , the set E(v) = {v′ ∈ V | (v, v′) ∈ E} of
out-neighbours of v is non-empty, i.e., E(v) ̸= ∅ (no deadlocks).
(V1, V2, V♢) is a partition of V . The vertices in V1 belong to Player 1, the vertices in V2
belong to Player 2, and the vertices in V♢ are called probabilistic vertices;
P : V♢ → D(V ) is a probability function that describes the behaviour of probabilistic
vertices in the game. It maps each probabilistic vertex v ∈ V♢ to a probability distribution
P(v) over the set E(v) of out-neighbours of v such that P(v)(v′) > 0 for all v′ ∈ E(v)
(i.e., all out-neighbours have non-zero probability);
w : E → Q is a payoff function assigning a rational payoff to every edge in the game.

Stochastic games are played in rounds. The game starts by initially placing a token
on some vertex. At the beginning of a round, if the token is on a vertex v, and v ∈ Vi

for i ∈ {1, 2}, then Player i chooses an out-neighbour v′ ∈ E(v); otherwise v ∈ V♢, and an
out-neighbour v′ ∈ E(v) is chosen with probability P(v)(v′). Player 1 receives from Player 2
the amount w(v, v′) given by the payoff function, and the token moves to v′ for the next
round. This continues ad infinitum resulting in an infinite sequence π = v0v1v2 · · · ∈ V ω

such that (vi, vi+1) ∈ E for all i ≥ 0, called a play. For i < j, we denote by π(i, j) the infix
vivi+1 · · · vj of π. Its length is |π(i, j)| = j − i, the number of edges. We denote by π(0, j)
the finite prefix v0v1 · · · vj of π, and by π(i,∞) the infinite suffix vivi+1 . . . of π. We denote
by PlaysG and PrefsG the set of all plays and the set of all finite prefixes in G respectively. We
denote by Last(ρ) the last vertex of the prefix ρ ∈ PrefsG . We denote by Prefsi

G (i ∈ {1, 2})
the set of all prefixes ρ such that Last(ρ) ∈ Vi.

A stochastic game with V♢ = ∅ is a non-stochastic two-player game, a stochastic game
with V2 = ∅ is a Markov decision process (MDP), and a stochastic game with V1 = V2 = ∅
is a Markov chain. Figure 1 shows an example of a stochastic game; Player 1 vertices are
shown as circles, Player 2 vertices as boxes, and probabilistic vertices as diamonds.

Subgames and traps. Given a stochastic game G = ((V,E), (V1, V2, V♢),P, w), a subset
V ′ ⊆ V of vertices induces a subgame if (i) every vertex v′ ∈ V ′ has an outgoing edge in V ′,
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v1 v3
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v5

v4

v7

v6

v9

v8
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v10

v13

v12
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1
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1

1

Figure 1 A stochastic game. Player 1 vertices are denoted by circles, Player 2 vertices are denoted
by boxes, and probabilistic vertices are denoted by diamonds. The payoff for each edge is shown in
red and probability distribution out of probabilistic vertices is shown in blue.

that is E(v′) ∩V ′ ̸= ∅, and (ii) every probabilistic vertex v′ ∈ V♢ ∩V ′ has all outgoing edges
in V ′, that is E(v′) ⊆ V ′. The induced subgame is ((V ′, E′), (V1 ∩V ′, V2 ∩V ′, V♢∩V ′),P′, w′),
where E′ = E ∩ (V ′ × V ′), and P′ and w′ are restrictions of P and w respectively to (V ′, E′).
If T ⊆ V is such that for all v ∈ T , if v ∈ V1 ∪ V♢ then E(v) ⊆ T and if v ∈ V2 then
E(v) ∩ T ≠ ∅, then T induces a subgame, and the subgame is a trap for Player 1 in G, since
Player 2 can ensure that if the token reaches T , then it never escapes.

Boolean objectives. A Boolean objective ψ is a Borel-measurable subset of PlaysG [35]. A
play π ∈ PlaysG satisfies an objective ψ if π ∈ ψ. In a stochastic game G with objective ψ,
the objective of Player 1 is ψ, and since G is a zero-sum game, the objective of Player 2 is the
complement set ψ = PlaysG \ ψ. An example of a Boolean objective is reachability, denoted
Reach(T ), the set of all plays that visit a vertex in the target set T ⊆ V . This is formally
defined and more examples of Boolean objectives are given in [21].

Quantitative objectives. A quantitative objective is a Borel-measurable function of the
form φ : PlaysG → R. In a stochastic game G with objective φ, the objective of Player 1 is φ
and the objective of Player 2 is −φ, the negative of φ. Let π = v0v1v2 · · · be a play. Some
common examples of quantitative objectives include the mean-payoff objective MP(π) =
lim infn→∞

1
n

∑n
i=0 w(vi, vi+1), and the liminf objective liminf(π) = lim infn→∞ w(vn, vn+1).

In this work, we also consider the window mean-payoff objective, which is defined in
Section 4. Corresponding to a quantitative objective φ, we define threshold objectives which
are Boolean objectives ψ of the form {π ∈ PlaysG | φ(π) ▷◁ λ} for thresholds λ ∈ R and for
▷◁ ∈ {<,≤, >,≥}. We denote this threshold objective succinctly as {φ ▷◁ λ}.

Prefix independence. An objective is said to be prefix-independent if it only depends on the
suffix of a play. Formally, a Boolean objective ψ is prefix-independent if for all plays π and
π′ with a common suffix (that is, π′ can be obtained from π by removing and adding a finite
prefix), we have that π ∈ ψ if and only if π′ ∈ ψ. Similarly, a quantitative objective φ is
prefix-independent if for all plays π and π′ with a common suffix, we have that φ(π) = φ(π′).
Mean payoff and liminf are examples of prefix-independent objectives, whereas reachability
and discounted payoff [2] are not.

CONCUR 2025



30:6 Expectation in Stochastic Games with Prefix-independent Objectives

Strategies. A (deterministic or pure) strategy1 for Player i ∈ {1, 2} in a game G is a function
σi : Prefsi

G → V that maps prefixes ending in a vertex v ∈ Vi to a successor of v. Strategies
can be realised as the output of a (possibly infinite-state) Mealy machine [33]. The memory
size of a strategy σi is the smallest number of states a Mealy machine defining σi can have.
A strategy σi is memoryless if σi(ρ) only depends on the last element of the prefix ρ, that is,
for all prefixes ρ, ρ′ ∈ Prefsi

G if Last(ρ) = Last(ρ′), then σi(ρ) = σi(ρ′).
A strategy profile σ = (σ1, σ2) is a pair of strategies σ1 and σ2 of Player 1 and Player 2

respectively. A play π = v0v1 · · · is consistent with a strategy σi of Player i (i ∈ {1, 2}) if
for all j ≥ 0 with vj ∈ Vi, we have vj+1 = σi(π(0, j)). A play π is an outcome of a profile
σ = (σ1, σ2) if it is consistent with both σ1 and σ2. For a Boolean objective ψ, we denote by
Prσ1,σ2

G,v (ψ) the probability that an outcome of the profile (σ1, σ2) in G with initial vertex v
satisfies ψ.

Satisfaction probability of Boolean objectives. Let ψ be a Boolean objective. A strategy σ1
of Player 1 is winning with probability p from a vertex v in G for objective ψ if Prσ1,σ2

G,v (ψ) ≥ p

for all strategies σ2 of Player 2. A strategy σ1 of Player 1 is positive winning (resp., almost-sure
winning) from v for Player 1 in G with objective ψ if Prσ1,σ2

G,v (ψ) > 0 (resp., Prσ1,σ2
G,v (ψ) = 1)

for all strategies σ2 of Player 2. In the above, if such a strategy σ1 exists, then the vertex
v is said to be positive winning (resp., almost-sure winning) for Player 1. If a vertex v

is positive winning (resp., almost-sure winning) for Player 1, then Player 1 is said to play
optimally from v if she follows a positive (resp., almost-sure) winning strategy from v. We
omit analogous definitions for Player 2.

Expected value of quantitative objectives. Let φ be a quantitative objective. Given a
strategy profile σ = (σ1, σ2) and an initial vertex v, let Eσ

v (φ) denote the expected φ-value of
the outcome of the strategy profile σ from v, that is, the expectation of φ over all plays with
initial vertex v under the probability measure Prσ1,σ2

G,v (φ). We only consider objectives φ
that are Borel-measurable and whose image is bounded. Thus, by determinacy of Blackwell
games [35], we have that stochastic games with objective φ are determined. That is, we
have supσ1 infσ2 Eσ

v (φ) = infσ2 supσ1 E
σ
v (φ). We call this quantity the expected φ-value of

the vertex v and denote it by Ev(φ). We say that Player 1 plays optimally from a vertex v if
she follows a strategy σ1 such that for all strategies σ2 of Player 2, the expected φ-value of
the outcome is at least Ev(φ). Similarly, Player 2 plays optimally if he follows a strategy σ2
such that for all strategies σ1 of Player 1, the expected φ-value of the outcome is at most
Ev(φ). If φ is a prefix-independent objective, then we have the following relation between
the expected φ-value of a vertex v and the expected φ-values of its out-neighbours.

▶ Proposition 1 (Bellman equations). If φ is a prefix-independent objective, then the following
equations hold for all v ∈ V .

Ev(φ) =


maxv′∈E(v) Ev′(φ) if v ∈ V1

minv′∈E(v) Ev′(φ) if v ∈ V2∑
v′∈E(v) P(v)(v′) · Ev′(φ) if v ∈ V♢

1 We only consider the satisfaction and expectation of Borel-measurable objectives, and deterministic
strategies suffice for such objectives [10]. Satisfying two goals simultaneously, e.g., Pr(Reach(T1)) >
0.5 ∧ Pr(Reach(T2)) > 0.5 requires randomisation and is not allowed by our definition.
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In this paper, we consider the expectation problem for prefix-independent objectives. Our
solution in turn uses the almost-sure satisfaction problem. The decision problems are defined
as follows.

Decision problems. Given a stochastic game G, a quantitative objective φ, a vertex v, and
a threshold λ ∈ Q, the following decision problems are relevant:

almost-sure satisfaction problem: Is vertex v almost-sure winning for Player 1 for a
threshold objective {φ > λ}?
expectation problem: Is Ev(φ) ≥ λ? That is, is the expected φ-value of v at least λ?

The reader is pointed to [2] and [25] for a more comprehensive discussion on the above-
mentioned concepts.

3 Reducing expectation to almost-sure satisfaction

In this section, we show a reduction (Theorem 7) of the expectation problem for bounded
quantitative prefix-independent objectives φ to the almost-sure satisfaction problem for the
corresponding threshold objectives {φ > λ}. The reduction involves guessing a value rv for
every vertex v in the game, and then verifying if the guessed values are equal to the expected
φ-values of the vertices. Theorem 7 generalises [16, Lemma 8] which studies the satisfaction
problem for prefix-independent Boolean objectives, as Boolean objectives can be viewed as a
special case of quantitative objectives by restricting the range to {0, 1}. We further discuss
the difference in approaches between Theorem 7 and [16, Lemma 8] in Section 5.

Given a game G and a bounded prefix-independent quantitative objective φ, our reduction
requires the existence of an integer bound denφ on the denominators of expected φ-values
of vertices in G. Since φ is bounded, there exists an integer Wφ such that |φ(π)| ≤ Wφ

for every play π in G. Thus, for every vertex v in G, one can write Ev(φ) as p
q , where p

and q are integers such that |p| ≤ Wφ · denφ and 0 < q ≤ denφ . The bounds Wφ and denφ

may depend on the objective and the structure of the graph, i.e., number of vertices, edge
payoffs, probability distributions in the game, etc. These bounds effectively discretise the set
of possible expected φ-values of the vertices, as there are at most (2 · Wφ · denφ + 1) · denφ

distinct possible values. This directly gives a bound on the granularity of the possible
expected φ-values of vertices, that is, the minimum difference between two possible values
of vertices, and we represent this quantity by εφ . Observe that given two rational numbers
with denominators at most denφ , the difference between them is at least ( 1

denφ
)2, and thus,

we let εφ be ( 1
denφ

)2.

3.1 Value vectors and value classes
We first define and give notations for value vectors, which are useful in describing the
reduction, and then look at some of their interesting and useful properties.

Definitions and notations. A vector r⃗ = (rv)v∈V of reals indexed by vertices in V induces a
partition of V such that all vertices with the same value in r⃗ belong to the same part in the
partition. Let k⃗r denote the number of parts in the partition, and let us denote the parts by
{R(1),R(2), . . . ,R(k⃗r)}. We call each part R(i) of the partition an r⃗-class, or simply, class if r⃗
is clear from the context. For all 1 ≤ i ≤ k⃗r, let ri denote the r⃗-value of the class R(i). Given
two vectors r⃗, s⃗, we write r⃗ ≥ s⃗ if for all v ∈ V , we have rv ≥ sv, and we write r⃗ > s⃗ if we have
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v1 v3
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Figure 2 Restrictions GR(1), GR(2), GR(3), GR(4), and GR(5) of the game shown in Figure 1 for the
vector r⃗ = (−2, −1, −1, −1, −1, 0, 0, 0, 0, 1, 1, 2, 2, 2).

that r⃗ ≥ s⃗ and there exists v ∈ V such that rv > sv. For a constant c ∈ R, we denote by r⃗ + c

the vector obtained by adding c to each component of r⃗.
For all 1 ≤ i ≤ k⃗r, a vertex v ∈ R(i) is a boundary vertex if v is a probabilistic vertex and

has an out-neighbour not in R(i), i.e., if v ∈ V♢ and E(v) ̸⊆ R(i). Let Bnd(R(i)) denote the
set of boundary vertices in the class R(i). For all 1 ≤ i ≤ k⃗r, let GR(i) denote the restriction
of G to vertices in R(i) with all vertices in Bnd(R(i)) changed to absorbing vertices with a
self-loop. The edge payoffs of these self loops are not important (we assume them to be 0) as
we restrict our attention to a subgame of GR(i) that does not contain boundary vertices.

▶ Example 2. For the game in Figure 1, let r⃗ = (−2,−1,−1,−1,−1, 0, 0, 0, 0, 1, 1, 2, 2, 2) be
a value vector for vertices v1, v2, . . . , v14 respectively. Since r⃗ has five distinct values, we have
k⃗r = 5, and the five r⃗-classes are R(1) = {v1}, R(2) = {v2, v3, v4, v5}, R(3) = {v6, v7, v8, v9},
R(4) = {v10, v11}, and R(5) = {v12, v13, v14} with values r1 = −2, r2 = −1, r3 = 0, r4 = 1,
and r5 = 2 respectively. Out of the five probabilistic vertices v2, v5, v8, v9 and v12, we see that
v2, v5, and v8 are boundary vertices while v9 and v12 are not. Thus, Bnd(R(2)) = {v2, v5},
Bnd(R(3)) = {v8}, and Bnd(R(1)) = Bnd(R(4)) = Bnd(R(5)) = ∅. We show the restrictions
GR(i) in Figure 2. ⌟

Let φ be a bounded prefix-independent quantitative objective. Analogous to the notation
of a general value vector r⃗, we describe notations for the expected φ-value vector consisting
of the expected φ-values of vertices in V . For all vertices v ∈ V , let sv denote Ev(φ), the
expected φ-value of vertex v, and let s⃗ = (sv)v∈V denote the expected φ-value vector. Let
S(i) denote the ith s⃗-class and let si denote the s⃗-value of S(i).

Given a vector r⃗, it follows from Proposition 1 that the following is a necessary (but not
sufficient) condition for r⃗ to be the expected φ-value vector s⃗.

Bellman condition: for every vertex v ∈ V , the following Bellman equations hold

rv =


maxv′∈E(v) rv′ if v ∈ V1,

minv′∈E(v) rv′ if v ∈ V2,∑
v′∈E(v) P(v)(v′) · rv′ if v ∈ V♢.

Consequences of the Bellman condition. We now see some properties of value vectors r⃗
that satisfy the Bellman condition. Since boundary vertices are probabilistic vertices, the
following is immediate.

▶ Proposition 3. Let r⃗ be a value vector satisfying the Bellman condition. Then for all
1 ≤ i ≤ k⃗r, for all v ∈ Bnd(R(i)), there exists an out-neighbour of v with r⃗-value less than
ri and there exists an out-neighbour of v with r⃗-value greater than ri. Formally, there exist
1 ≤ i1, i2 ≤ k⃗r such that ri1 < ri < ri2 and E(v) ∩ R(i1) ̸= ∅ and E(v) ∩ R(i2) ̸= ∅.
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A corollary of Proposition 3 is that the r⃗-classes with the smallest and the biggest r⃗-values
have no boundary vertices. Note that there may also exist r⃗-classes other than these that
do not contain boundary vertices (see R(4) in Example 2). Next, we see that the Bellman
condition entails that each restriction GR(i) is a stochastic game.

▶ Proposition 4. If r⃗ is a value vector that satisfies the Bellman condition, then for all
1 ≤ i ≤ k⃗r, we have that GR(i) is a stochastic game.

In Proposition 5, we make a crucial observation about long-run behaviours of plays in G,
which is that either player can ensure with probability 1 that the token eventually reaches
an r⃗-class from which it does not exit. This follows from the Borel-Cantelli lemma [23] due
to the fact that there is a positive probability to reach an r⃗-class without boundary vertices
following a finite number of edges out of boundary vertices.

▶ Proposition 5. Let r⃗ be a value vector satisfying the Bellman condition. Suppose the
strategy of Player i (i ∈ {1, 2}) is such that each time the token reaches a vertex v ∈ Vi,
(s)he moves the token to a vertex v′ in the same r⃗-class as v. Then, with probability 1, the
token eventually reaches a class R(j) for some 1 ≤ j ≤ k⃗r from which it never exits.

Finally, we define the notion of trap subgames of GR(i) which will be used in the subsequent
discussion. We denote by P 1

R(i) the Player 1 positive attractor set of Bnd(R(i)), i.e., the set
of vertices in GR(i) that are positive winning for Player 1 for the Reach(Bnd(R(i))) objective.
The complement T 1

R(i) = R(i) \ P 1
R(i) is a trap for Player 1 in GR(i), and with abuse of

notation, we use the same symbol T 1
R(i) to denote the subset of GR(i) as well as the trap

subgame. We note that if R(i) does not have boundary vertices, that is, if Bnd(R(i)) = ∅,
then it holds that P 1

R(i) = ∅ and T 1
R(i) = R(i). We can analogously define P 2

R(i) and T 2
R(i)

for Player 2. Given GR(i), these sets can be computed in polynomial time using attractor
computations [25].

▶ Example 6. We compute these sets for the restrictions shown in Figure 2. For i ∈ {1, 4, 5},
since Bnd(R(i)) is empty, we have that T 1

R(i) = R(i) and P 1
R(i) = ∅. For R(2), we have that

P 1
R(2) = R(2), and T 1

R(2) = ∅. For R(3), we have that T 1
R(3) = {v6}, P 1

R(3) = {v7, v8, v9}. ⌟

3.2 Characterisation of the value vector
We describe in Theorem 7 a necessary and sufficient set of conditions for a given vector r⃗ to
be equal to the expected φ-value vector s⃗. In addition to Bellman, Theorem 7 makes use of
two more conditions, which we define before stating the theorem.

lower-bound condition: for all 1 ≤ i ≤ k⃗r, Player 1 wins {φ > ri − εφ} almost surely in
the trap subgame T 1

R(i) from all vertices in T 1
R(i).

upper-bound condition: for all 1 ≤ i ≤ k⃗r, Player 2 wins {φ < ri + εφ} almost surely in
the trap subgame T 2

R(i) from all vertices in T 2
R(i).

▶ Theorem 7. The only vector r⃗, whose every component has denominator at most denφ ,
that satisfies Bellman, lower-bound, and upper-bound is the expected φ-value vector s⃗.

Proof. We show in Lemma 8 that s⃗ satisfies the three conditions. We show in Lemma 9 that
if r⃗ is a vector that satisfies the three conditions, then r⃗ is less than εφ distance away from s⃗,
that is, s⃗ − εφ < r⃗ < s⃗ + εφ . In particular, if each component of r⃗ can be written as p

q , where
p, q are both integers and q is at most denφ , then it follows that r⃗ is equal to s⃗. ◀

In the rest of the section, we prove Lemmas 8 and 9 used in the proof of Theorem 7.
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▶ Lemma 8. The expected φ-value vector s⃗ satisfies the three conditions in Theorem 7.

Proof. The fact that s⃗ satisfies Bellman follows directly from Proposition 1. We show that
lower-bound holds for s⃗. The proof for upper-bound is analogous.

Suppose for the sake of contradiction that lower-bound does not hold, that is, there
exists 1 ≤ i ≤ k⃗s and a vertex v in T 1

S(i) such that Player 2 has a positive winning strategy
from v for the {φ ≤ si − εφ} objective in T 1

S(i). Since {φ ≤ si − εφ} is a prefix-independent
objective, from [9, Theorem 1] we have that there exists another vertex v′ in T 1

S(i) such that
Player 2 has an almost-sure winning strategy from v′ for the same objective {φ ≤ si − εφ}
in T 1

S(i). If Player 2 follows this strategy from v′ in the original game G, then one of the
following two cases holds

Player 1 always moves the token to a vertex in S(i). Since v′ is in the trap T 1
S(i) for

Player 1 in GS(i), Player 2 can force the token to remain in T 1
S(i) forever, and follow the

almost-sure winning strategy to ensure that with probability 1, the outcome satisfies the
objective {φ ≤ si − εφ}.
Player 1 eventually moves the token to a vertex out of S(i). Since s⃗ satisfies Bellman,
the token moves to an s⃗-class with a smaller value than si.

In both cases, the expected φ-value of the outcome is less than si. This is a contradiction
since v′ ∈ S(i), and the expected φ-value of every vertex in S(i) is equal to si. ◀

▶ Lemma 9. If a vector r⃗ satisfies the three conditions in Theorem 7, then s⃗−εφ < r⃗ < s⃗+εφ .
In particular, we have the following:

If r⃗ satisfies the Bellman and lower-bound conditions, then s⃗ > r⃗ − εφ .
If r⃗ satisfies the Bellman and upper-bound conditions, then s⃗ < r⃗ + εφ .

Proof sketch. We prove the first case. The proof for the second case follows by symmetry,
that is, we essentially replace Player 1 by Player 2, and {φ > ri − εφ} by {φ < ri + εφ}. We
describe an optimal strategy σ∗

1 of Player 1 and give a sketch of its optimality.
Since r⃗ satisfies the lower-bound condition, we have that for all 1 ≤ i ≤ k⃗r, Player 1

has an an almost-sure winning strategy σT
R(i) in the trap subgame T 1

R(i) to win the objective
{φ > ri − εφ} in T 1

R(i) almost surely from all vertices in T 1
R(i). From the definition of P 1

R(i),
Player 1 has a positive winning strategy σP

R(i) in the restricted game GR(i) from vertices
in P 1

R(i) for the Reach(Bnd(R(i))) objective. By following σP
R(i), the token either reaches

Bnd(R(i)) with positive probability, or ends up in T 1
R(i) from where Player 2 can ensure

that the token never leaves T 1
R(i). Using these strategies of Player 1 in GR(i), we construct a

strategy σ∗
1 of Player 1 that is optimal for expected φ-value in the original game G: As long

as the token is in the class R(i) in G, the strategy σ∗
1 mimics σT

R(i) if the token is in T 1
R(i)

and σ∗
1 mimics σP

R(i) if the token is in P 1
R(i).

Note that whenever the token is on a vertex v ∈ V1 in R(i), the strategy σ∗
1 always moves

the token to a vertex v′ in same r⃗-class R(i) as v (i.e. a token only exits an r⃗-class from a
Player 2 vertex or from a boundary vertex), and thus, Proposition 5 holds. Whenever the
token exits a class R(i) to reach a different class R(i′), then as long as the token remains in
R(i′), the strategy σ∗

1 follows σT
R(i′) if the token is in T 1

R(i′), and σ∗
1 follows σP

R(i′) if the token
is in P 1

R(i′).
Since Proposition 5 holds, we have that for all strategies of Player 2, with probability 1,

the token eventually reaches an r⃗-class R(j) from which it never exits. Moreover, the strategy
σ∗

1 ensures that with probability 1, the token eventually reaches T 1
R(j) in R(j) from which

it never leaves. Because if not, then the token would visit vertices in P 1
R(j) infinitely often,
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having a fixed positive probability of reaching Bnd(R(j)) in every step because of σP
R(j).

Thus, with probability 1, the token would eventually reach Bnd(R(i)) from where it could
escape to a different r⃗-class, which contradicts the fact that the token stays in R(j) forever.

Since φ is prefix-independent, the φ-value of a play only depends on the trap T 1
R(j) it

ends up in. If the game begins from a vertex v ∈ R(i), then for 1 ≤ j ≤ k⃗r, let pj denote the
probability that the token ends up in the trap subgame T 1

R(j) from which it never exits. Since
r⃗ satisfies Bellman, we have that

∑
j pjrj = ri. Since r⃗ satisfies lower-bound, Player 1

has an almost-sure winning strategy for {φ > rj − εφ} in T 1
R(j). Thus, for all strategies

σ2 of Player 2, the expected value of an outcome of (σ∗
1 , σ2) from v ∈ R(i) is greater than∑

j pj(rj − εφ), which is ri − εφ . This holds for all vertices v in G, giving us the desired
result s⃗ > r⃗ − εφ . ◀

We also note that the optimal strategy σ∗
1 always either follows an almost-sure winning

strategy σT
R(i) for the threshold objective {φ > ri − εφ} or a positive winning strategy for

a Reach objective. Since there exist memoryless positive winning strategies for the Reach
objective [20], we have the following bound on the memory requirement of σ∗

1 .

▶ Corollary 10. The memory requirement of σ∗
1 is at most the maximum over all 1 ≤ i ≤ k⃗r

of the memory requirement of an almost-sure winning strategy σT
R(i) for the threshold objective

{φ > ri − εφ}. Moreover, if σT
R(i) is a deterministic strategy, then so is σ∗

1 .

3.3 Bounding the denominators in the value vector
In this section, we discuss the problem of obtaining an upper bound denφ for the denominators
of the expected φ-values of vertices si for a bounded prefix-independent objective φ in a
game G. In [16], the technique of value class is used to compute the values of vertices for
Boolean prefix-independent objectives. It is stated without proof that the probability of
satisfaction of a parity or a Streett objective [2] from each vertex can be written as p

q where
q ≤ (P̂)4·|E| and P̂ is the maximum denominator over all edge probabilities in the game. As
such, we were not able to directly generalise this bound for the expectation of quantitative
prefix-independent objectives. Instead, we make the following observations:

Let S(i) be an s⃗-class without boundary vertices. If the token is in S(i) at some point in
the play, then since s⃗ satisfies the Bellman condition, neither player has an incentive
to move the token out of S(i). Since there are no boundary vertices in S(i), the token
does not exit S(i) from a probabilistic vertex either, and remains in S(i) forever. Thus,
the value si of S(i) depends only on the internal structure of S(i). We denote by denφ

an upper bound on the denominators of values of s⃗-classes without boundary vertices.
It is a simpler problem to find denφ than to find denφ , as each class without boundary
vertices can be treated as a subgame in which each vertex has the same expected φ-value,
or equivalently, the subgame consists of exactly one s⃗-class.
On the other hand, suppose S(i) is an s⃗-class containing at least one boundary vertex,
and let v be a boundary vertex in S(i). Then, since s⃗ satisfies the Bellman condition,
we have sv =

∑
v′∈E(v) P(v)(v′) · sv′ , which is also the value si of S(i). Thus, si can be

written in terms of the values of classes reachable from v in one step and the probabilities
with which those classes are reached. In fact, we construct in the proof of Theorem 11 a
system of linear equations to show that the value of each s⃗-class with boundary vertices
can be expressed solely in terms of transition probabilities of the outgoing edges from
boundary vertices and values of s⃗-classes without boundary vertices.

The method to calculate denφ depends on the specific objective; we illustrate as an example
in Section 4 a way to obtain denφ for a particular kind of objective called the window
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mean-payoff objective. Once we know denφ for an objective φ, we can use Theorem 11 to
obtain denφ in terms of denφ .

▶ Theorem 11. The denominator of the value of each s⃗-class in G is at most denφ =
2|V | · P̂|V |3 · (denφ)|V |.

We note that this theorem implies that the number of bits required to write denφ is polynomial
in the number of vertices in the game and in the number of bits required to write denφ . We
devote the rest of this section to the proof of Theorem 11. For ease of notation, we denote
the number of s⃗-classes in the game by k instead of k⃗s for the rest of this section. If every
s⃗-class has no boundary vertices, then we have denφ equal to denφ and we are done. So we
assume there exists at least one class that contains boundary vertices. Let m ≥ 1 denote
the number of s⃗-classes with boundary vertices, and therefore, there are k − m s⃗-classes
without boundary vertices. Since there always exists at least one s⃗-class without boundary
vertices (Proposition 3), we have that m < k. Let B = {1, 2, . . . ,m} and C = {m+ 1, . . . , k}.
We index the s⃗-classes such that each class with boundary vertices has its index in B and
each class without boundary vertices has its index in C. Furthermore, in the sets B and
C, the classes are indexed in increasing order of their values. That is, for i, j both in B

or both in C, we have i < j if and only if si < sj . We show bounds on the denominators
of s⃗-values of classes with boundary vertices, i.e., s1, . . . , sm in terms of s⃗-values of classes
without boundary vertices, i.e., sm+1, . . . , sk.

For all i ∈ B = {1, 2, . . . ,m}, pick an arbitrary boundary vertex from Bnd(S(i)) and call
this the representative vertex ui of Bnd(S(i)). For all i ∈ B and j ∈ {1, 2, . . . , k}, let pi,j

denote the probability of reaching the class S(j) from ui in one step. Since s⃗ satisfies the
Bellman condition, we have that

∑
1≤j≤k pi,j · sj = si. It is helpful to split this sum based

on whether j ∈ B or j ∈ C, i.e., whether 1 ≤ j ≤ m or m+ 1 ≤ j ≤ k. We rewrite the sums
as

∑
j∈B pi,jsj +

∑
j∈C pi,jsj = si for all i ∈ B, and we represent this system of equations

below using matrices.
p1,1 p1,2 · · · p1,m

p2,1 p2,2 · · · p2,m

...
...

. . .
...

pm,1 pm,2 · · · pm,m




s1
s2
...
sm

 +


p1,m+1 p1,m+2 · · · p1,k

p2,m+1 p2,m+2 · · · p2,k

...
...

. . .
...

pm,m+1 pm,m+2 · · · pm,k



sm+1
sm+2

...
sk

 =


s1
s2
...
sm


This system of equations is of the form QBsB + QCsC = sB. Rearranging terms gives us
(I −QB)sB = QCsC where I is the m×m identity matrix. It follows from Proposition 12
that the equation (I −QB)sB = QCsC has a unique solution.

▶ Proposition 12. The matrix (I −QB) is invertible.

Let α denote the least common multiple (lcm) of the denominators of pi,j for 1 ≤ i ≤ m

and 1 ≤ j ≤ k. We have 0 < α ≤ P̂mk, where P̂ is the maximum denominator over all
edge probabilities in G. We multiply both sides of the equation (I −QB)sB = QcsC by α
to get α(I − QB)sB = αQCsC and note that all the elements of α(I − QB) and αQC are
integers. Let D be the determinant of the matrix α(I − QB), and for 1 ≤ i ≤ m, let Ni

be the determinant of the matrix obtained by replacing the ith column of α(I −QB) with
the column vector αQCsC . Since α(I − QB) is invertible, by Cramer’s rule [32], we have
that si = Ni/D. Proposition 13 shows that |D| is an integer and is at most (2α)m and
Proposition 14 shows that Ni has denominator at most (denφ)k−m.

▶ Proposition 13. The absolute value of the determinant of α(I − QB), i.e., |D|, is an
integer and is at most (2α)m, which is at most 2|V | · P̂|V |3 .
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▶ Proposition 14. The denominator of Ni is at most (denφ)k−m, which is at most (denφ)|V |.

Since the denominator of si is at most |D| times the denominator of Ni, we obtain the
bound stated in Theorem 11. ◀

4 Expectation of window mean-payoff objectives

In this section, we apply the results from the previous section for two types of window
mean-payoff objectives introduced in [12]:

(i) fixed window mean-payoff (FWMP(ℓ)) in which a window length ℓ ≥ 1 is given, and
(ii) bounded window mean-payoff (BWMP) in which for every play, we need a bound on

window lengths.
We define these objectives below.

For a play π in a stochastic game G, the mean payoff of an infix π(i, i+n) is the average of
the payoffs of the edges in the infix and is defined as MP(π(i, i+n)) =

∑i+n−1
k=i

1
nw(vk, vk+1).

Given a window length ℓ ≥ 1 and a threshold λ ∈ R, a play π = v0v1 · · · in G satisfies the
fixed window mean-payoff objective FWMPG(ℓ, λ) if from every position after some point, it
is possible to start an infix of length at most ℓ with mean payoff at least λ.

FWMPG(ℓ, λ) = {π ∈ PlaysG | ∃k ≥ 0 · ∀i ≥ k · ∃j ∈ {1, . . . , ℓ} : MP(π(i, i+ j)) ≥ λ}

We omit the subscript G when it is clear from the context. We extend the definition of
windows as defined in [12] for arbitrary thresholds. Given a threshold λ, a play π = v0v1 · · ·,
and 0 ≤ i < j, we say that the λ-window π(i, j) is open if the mean payoff of π(i, k) is less
than λ for all i < k ≤ j. Otherwise, the λ-window is closed. A play π satisfies FWMP(ℓ, λ) if
and only if from some point on, every λ-window in π closes within at most ℓ steps. Note that
FWMP(ℓ, λ) ⊆ FWMP(ℓ′, λ) for ℓ ≤ ℓ′ as a smaller window length is a stronger constraint.

We also consider another window mean-payoff objective called the bounded window mean-
payoff objective BWMPG(λ). A play satisfies the objective BWMP(λ) if there exists a window
length ℓ ≥ 1 such that the play satisfies FWMP(ℓ, λ).

BWMPG(λ) = {π ∈ PlaysG | ∃ℓ ≥ 1 : π ∈ FWMPG(ℓ, λ)}

Note that both FWMP(ℓ, λ) and BWMP(λ) are Boolean prefix-independent objectives.

Expected window mean-payoff values. Corresponding to the Boolean objectives FWMP(ℓ, λ)
and BWMP(λ), we define quantitative versions of these objectives. Given a play π in a
stochastic game G and a window length ℓ, the φFWMP(ℓ)-value of π is sup{λ ∈ R | π ∈
FWMPG(ℓ, λ)}, the supremum threshold λ such that the play satisfies FWMPG(ℓ, λ). Us-
ing notations from Section 2, we denote the expected φFWMP(ℓ)-value of a vertex v by
Ev(φFWMP(ℓ)). We define Ev(φBWMP), the expected φBWMP-value of a vertex v analogously.
If W is an integer such that the payoff w(e) of each edge e in G satisfies |w(e)| ≤ W, then for
all plays π in G, we have that φFWMP(ℓ)(π) and φBWMP(π) lie between −W and W. Thus,
φFWMP(ℓ) and φBWMP are bounded objectives.

Decision problems. Given a stochastic game G, a vertex v, and a threshold λ ∈ Q, we have
the following expectation problems for the window mean-payoff objectives:

expected φFWMP(ℓ)-value problem: Given a window length ℓ ≥ 1, is Ev(φFWMP(ℓ)) ≥ λ?
expected φBWMP-value problem: Is Ev(φBWMP) ≥ λ?

As considered in previous works [5,7,12], the window length ℓ is usually small (ℓ ≤ |V |), and
hence we assume that ℓ is given in unary (while the edge-payoffs are given in binary).
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4.1 Expected fixed window mean-payoff value
We give tight complexity bounds for the expected φFWMP(ℓ)-value problem. We use the
characterisation from Theorem 7 to present our main result that this problem is in UP ∩
coUP (Theorem 18). We show in [21] that simple stochastic games [20], which are in
UP ∩ coUP [13], reduce to the expected φFWMP(ℓ)-value problem, giving a tight lower bound.

In order to use the characterisation, we show the existence of the bound denFWMP(ℓ) for
the φFWMP(ℓ) objective. We show in Lemma 15 that the expected φFWMP(ℓ)-value si of a
class S(i) without boundary vertices takes a special form, that is, si is the mean-payoff of a
sequence of at most ℓ edges in S(i). We use the fact that the φFWMP(ℓ)-value of every play π
is the largest λ such that, eventually, every λ-window in π closes in at most ℓ steps, and that
λ is the mean payoff of a sequence of at most ℓ edges in π. To complete the argument, we
show that if both players play optimally, then, with probability 1, the φFWMP(ℓ)-value of the
outcome π is equal to si and thus, si is also of this form.

▶ Lemma 15. The expected φFWMP(ℓ)-value si of vertices in a class S(i) without boundary
vertices is equal to the mean payoff of some sequence of ℓ or fewer edges in S(i). That is, si

is of the form 1
j (w(e1) + · · · + w(ej)) for some j ≤ ℓ and edges e1, e2, . . . , ej.

This observation gives us the bound denFWMP(ℓ) on the denominators of the values of
s⃗-classes without boundary vertices. To see this, let ŵ = max{q | ∃p, q ∈ Z, ∃e ∈ E : w(e) =
p
q with p, q co-prime} be the maximum denominator over all edge-payoffs in G. Since j ≤ ℓ,
and each w(e1), w(e2), . . . , w(ej) is a rational number with denominator at most ŵ, the
denominator of the sum w(e1) + · · · +w(ej) is at most ŵ · (ŵ− 1) · (ŵ− 2) · · · (ŵ− (ℓ− 1)) if
ŵ ≥ ℓ, and at most ŵ! if ŵ ≤ ℓ. In both cases, this is at most ŵℓ.

▶ Corollary 16. The expected φFWMP(ℓ)-value of vertices in s⃗-classes without boundary vertices
can be written as p

q where p and q are integers and q ≤ ŵℓ · ℓ.

From Theorem 11, we get that the denominator of si for each class S(i) in G is at most
2|V | · P̂|V |3 · (denFWMP(ℓ))|V |, which is at most 2|V | · P̂|V |3 · (ŵℓ · ℓ)|V |.

▶ Lemma 17. The expected φFWMP(ℓ)-value of each vertex in G can be written as a fraction
p
q , where p, q are integers, and q ≤ 2|V | · P̂|V |3 · (ŵℓ · ℓ)|V |, and −W · q ≤ p ≤ W · q.

We now state the main result of this section for the expected φFWMP(ℓ)-value problem.

▶ Theorem 18. The expected φFWMP(ℓ)-value problem is in UP ∩ coUP when ℓ is given
in unary. Memory of size ℓ suffices for Player 1, while memory of size |V | · ℓ suffices for
Player 2.

Proof. To show membership of the expected φFWMP(ℓ)-value problem in UP ∩ coUP, we first
guess the expected φFWMP(ℓ)-value vector s⃗, that is, the expected φFWMP(ℓ)-value sv of every
vertex v in the game. From Lemma 17, it follows that the number of bits required to write
sv for every vertex v is polynomial in the size of the input. Thus, the vector s⃗ can be guessed
in polynomial time.

Then, to verify the guess, it is sufficient to verify the Bellman, lower-bound, and
upper-bound conditions for φFWMP(ℓ). It is easy to see that the Bellman condition can
be checked in polynomial time. Checking the lower-bound and upper-bound conditions,
i.e., checking the almost-sure satisfaction of the threshold Boolean objective FWMP(ℓ, λ) for
appropriate thresholds λ in trap subgames in each s⃗-class can be done in polynomial time [22].
Thus, the decision problem of Ev(φFWMP(ℓ)) ≥ λ is in NP, and moreover, since there is exactly
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one value vector that satisfies the conditions in Theorem 7, the decision problem is, in fact,
in UP. Analogously, the complement decision problem of Ev(φFWMP(ℓ)) < λ is also in UP.
Hence, the expected φFWMP(ℓ)-value problem is in UP ∩ coUP.

From the description of the optimal strategy in Lemma 9, it follows from Corollary 10 that
the memory requirement for the expected φFWMP(ℓ) objective is no greater than the memory
requirement for the almost-sure satisfaction of the corresponding threshold objectives, which
are ℓ and |V | · ℓ for Player 1 and Player 2 respectively [22]. ◀

4.2 Expected bounded window mean-payoff value
We would like to apply the characterisation in Theorem 7 to φBWMP to show that the expected
φBWMP-value problem is in UP∩coUP, and thus, we show the existence of the bound denBWMP
for the φBWMP objective. We show in Lemma 19 that the expected φBWMP-value si of a class
S(i) without boundary vertices is the mean payoff of a simple cycle in S(i).

▶ Lemma 19. The expected φBWMP-value si of vertices in a class S(i) without boundary
vertices is equal to the mean-payoff value of a simple cycle in S(i). That is, si is of the form
1
j (w(e1) + · · · + w(ej)) for some j ≤ |V | and edges e1, e2, . . . , ej of a simple cycle.

While Lemma 19 is analogous to Lemma 15 for φFWMP(ℓ), the proof of Lemma 19 is more
involved since the φBWMP objective requires one to consider windows of arbitrary lengths.
In the proof, we make use of the fact that memoryless strategies suffice for Player 1 to play
optimally for the almost-sure satisfaction of the BWMP objective [22]. In the resulting MDP
(which has the same set of vertices as the game GS(i)), we carefully analyse the resulting
plays when Player 2 plays optimally. The following corollary of Lemma 19 states the bound
denBWMP for the φBWMP objective.

▶ Corollary 20. The expected φBWMP-value of vertices in s⃗-classes without boundary vertices
can be written as p

q where p and q are integers and q ≤ ŵ|V | · |V |.

From Theorem 11, we get that the denominator of si of each class S(i) in G is at most
2|V | · P̂|V |3 · (denBWMP)|V |, which is at most 2|V | · P̂|V |3 · (ŵ|V | · |V |)|V |.

▶ Lemma 21. The expected φBWMP-value of each vertex in G can be written as p
q , where p, q

are integers, and q ≤ 2|V | · P̂|V |3 · (ŵ|V | · |V |)|V |, and −W · q ≤ p ≤ W · q.

We now state the main result of this section for the expected φBWMP-value problem.

▶ Theorem 22. The expected φBWMP-value problem is in UP ∩ coUP. Memoryless strategies
suffice for Player 1. Player 2 requires infinite memory in general.

Proof sketch. This proof follows a similar structure as the proof of Theorem 18. As before,
the Bellman condition can be checked in polynomial time. Checking the lower-bound and
upper-bound conditions involves checking almost-sure satisfaction of the Boolean objective
BWMP for appropriate thresholds, which reduces to checking the satisfaction of BWMP in
non-stochastic games [22], which in turn reduces to total supremum payoff [12], which is
in UP ∩ coUP [27]. Both of these reductions are polynomial-time reduction, and hence, the
expected φBWMP-value problem is in UP ∩ coUP.

Memoryless strategies suffice for Player 1 for almost-sure satisfaction of BWMP(λ) [22].
Player 2 requires infinite memory in general for the BWMP(λ) objective even in non-stochastic
games [12], which are a special case of stochastic games. Deterministic strategies suffice
for both players. Hence, we get the memory requirements of an optimal strategy for the
expected φBWMP-value problem using Corollary 10. ◀
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5 Discussion

We discuss some concluding remarks about the relation of our work to previous work [16],
which deals with the satisfaction of Boolean prefix-independent objectives. We also dis-
cuss practical implementations for window mean-payoff objectives and applicability of our
technique to other prefix-independent objectives.

Comparison with [16]. In [16], it suffices to check the almost-sure satisfaction of the same
Boolean objective ψ in all value classes. In contrast, for quantitative objectives, the threshold
Boolean objective for which we check the almost-sure satisfaction depends on the guessed
value of the value class (“Can Player 1 satisfy {φ > ri − εφ} with probability 1?”). Another
key difference is that for Boolean objectives, the value classes without boundary vertices
are precisely the extremal value classes, that is classes with values 0 and 1. In the case of
quantitative objectives, there may be multiple intermediate value classes without boundary
vertices, making reasoning about the correctness of the reduction more difficult.

We note that if we apply our approach to Boolean prefix-independent objectives (such as
Büchi, coBüchi, parity) by viewing them as quantitative objectives mapping each play to 0
or 1, then we recover the algorithm given in [16].

Applicability to other prefix-independent objectives. Recall that in order to be able to
apply our characterisation to a prefix-independent objective φ, we require bounds Wφ on
the image of φ and denφ on the denominators of the optimal expected φ-values of vertices
in the game. These bounds can easily be derived individually for the following quantitative
prefix-independent objectives, and thus, our technique applies to these objectives.

Mean-payoff objective. The mean-payoff value of any play is bounded between the minimum
and maximum edge payoffs in the game, directly giving bounds on the image of the
mean-payoff objective. Since deterministic memoryless optimal strategies exist for both
players [24], the expected mean-payoff value is a solution of a stationary distribution in
the Markov chain obtained by fixing memoryless strategies of both players. This gives
denominator bounds for the expected mean-payoff values of vertices in the game.

Limsup and liminf objectives. Since the liminf objective is equivalent to FWMP(ℓ) objective
with window length ℓ = 1 [21], and the limsup objective is the dual of the liminf objective,
our analysis with window mean-payoff objectives generalises limsup and liminf objectives.

Positive frequency payoff objective [29]. Here, each vertex has a payoff, and this objective
returns the maximum payoff among all vertices that are visited with positive frequency
in an infinite play. This objective is prefix-independent, as the frequency of a vertex
is independent of finite prefixes. The image of the objective is bounded between the
minimum and maximum vertex payoffs. We observe that the value of vertices in a value
class without boundary vertices is equal to the payoff of a vertex in the class, (giving a
denominator bound for these vertices), and Theorem 11 uses this to give a denominator
bound for vertices in value classes with boundary vertices.

Practical implementation. We discuss approaches to solve the expected φ-value problem
for the window mean-payoff objectives in practice.

A trivial algorithm that works for both φFWMP(ℓ) and φBWMP objectives is to iterate over
all possible value vectors. For each value vector, we check if the conditions in Theorem 7 are
satisfied, which can be done in polynomial time. Since there are exponentially many possible
value vectors, this algorithm has an exponential running time in the worst-case.
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Another technique is value iteration [15], which has been seen to be an anytime algorithm
for the standard mean-payoff objective [34]. An anytime algorithm gives better precision
the longer it is run, and can be interrupted any time. Given a game G with |V | vertices,
the expected φFWMP(ℓ)-value problem on G reduces to the expected liminf-value problem on
a game G′ with |V |ℓ vertices, (that is, on an exponentially larger game graph). The liminf
objective is a well-studied objective in the context of value iteration [11,15]. We describe the
reduction in [21], which also gives the expected φFWMP(ℓ)-values of vertices in G.

Since the size of the graph G′ is much bigger than that of G, we would like to work with
G′ on-the-fly rather than explicitly constructing the entire graph. In [34], the authors show
bounded value iteration for objectives such as reachability and mean-payoff. They also discuss
that the algorithm can be extended to be asynchronous and use partial exploration. As future
work, we would like to look at the practicality of on-demand asynchronous value iteration
for the liminf objective, or even the window mean-payoff objectives φFWMP(ℓ) and φBWMP
directly. An interesting aspect of it would be to investigate heuristics and optimisations such
as sound value iteration [37], optimistic value iteration [31], and topological value iteration [3]
to speed up the practical running time.
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