
1/18

Trees
We consider finite ordered ranked trees.

ordered : internal nodes have children 1 . . . n

ranked : number of children fixed by node’s label

Let N denote the set of positive integers.
Nodes (positions) of a tree are associated with elements of N∗:

ε

1 2 3

21 22

Definition: Tree

A (finite, ordered) tree is a non-empty, finite, prefix-closed set Pos ⊆ N∗

such that w(i + 1) ∈ Pos implies wi ∈ Pos for all w ∈ N∗, i ∈ N.



2/18

Ranked Trees

Ranked symbols

Let F0,F1, . . . be disjoint sets of symbols of arity 0, 1, . . .
We note F :=

⋃
i Fi .

Notation (example): F = {f (2), g(1), a, b}
Let X denote a set of variables (disjoint from the other symbols).

Definition: Ranked tree

A ranked tree is a mapping t : Pos → (F ∪ X ) satisfying:

Pos is a tree;

for all p ∈ Pos, if t(p) ∈ Fn, n ≥ 1 then Pos ∩ pN = {p1, . . . , pn};
for all p ∈ Pos, if t(p) ∈ X ∪ F0 then Pos ∩ pN = ∅.



3/18

Trees and Terms

Definition: Terms

The set of terms T (F ,X ) is the smallest set satisfying:

X ∪ F0 ⊆ T (F ,X );

if t1, . . . , tn ∈ T (F ,X ) and f ∈ Fn, then f (t1, . . . , tn) ∈ T (F ,X ).

We note T (F) := T (F , ∅). A term in T (F) is called ground term.
A term of T (F ,X ) is linear if every variable occurs at most once.

Example: F = {f (2), g(1), a, b}, X = {x , y}

f (g(a), b) ∈ T (F);

f (x , f (b, y)) ∈ T (F ,X ) is linear;

f (x , x) ∈ T (F ,X ) is non-linear.

We confuse terms and trees in the obvious manner.



4/18

Subterms / subtrees

Definition: Subtree

Let t, u ∈ T (F ,X ) and p a position. Then t|p : Posp → T (F ,X ) is the
ranked tree defined by

Posp := { q | pq ∈ Pos };
t|p(q) := t(pq).

Moreover, t[u]p is the tree obtained by replacing t|p by u in t.

t D t ′ (resp. t B t ′) denotes that t ′ is a (proper) subtree of t.



5/18

Substitutions and Context

Definition: Substitution

(Ground) substitution σ: mapping from X to T (F ,X ) resp. T (F)

Notation: σ := {x1 ← t1, . . . , xn ← tn}, with σ(x) := x for all
x ∈ X \ {x1, . . . , xn}
Extension to terms: for all f ∈ Fm and t ′1, . . . , t

′
m ∈ T (F ,X )

σ(f (t ′1, . . . , t
′
m)) = f (σ(t ′1), . . . , σ(t ′m))

Notation: tσ for σ(t)

Definition: Context

A context is a linear term C ∈ T (F ,X ) with variables x1, . . . , xn.
We note C [t1, . . . , tn] := C{x1 ← t1, . . . , xn ← tn}.

Cn(F) denotes the contexts with n variables and C(F) := C1(F).
Let C ∈ C(F). We note C 0 := x1 and Cn+1 = Cn[C ] for n ≥ 0.



6/18

Tree automata

Basic idea: Extension of finite automata from words to trees
Direct extension of automata theory when words seen as unary terms:

abc =̂ a(b(c($)))

Finite automaton: labels every prefix of a word with a state.
Tree automaton: labels every position/subtree of a tree with a state.

Two variants: bottom-up vs top-down labelling

Basic results (preview)

Non-deterministic bottom-up and top-down are equally powerful

Deterministic bottom-up equally powerful

Deterministic top-down less powerful



7/18

Bottom-up automata

Definition: (Bottom-up tree automata)

A (finite bottom-up) tree automaton (NFTA) is a tuple A = 〈Q,F ,G ,∆〉,
where:

Q is a finite set of states;

F a finite ranked alphabet;

G ⊆ Q are the final states;

∆ is a finite set of rules of the form

f (q1, . . . , qn)→ q

for f ∈ Fn and q, q1, . . . , qn ∈ Q.

Example: Q := {q0, q1, qf }, F = {f (2), g(1), a}, G := {qf }, and rules

a→ q0 g(q0)→ q1 g(q1)→ q1 f (q1, q1)→ qf



8/18

Move relation and computation tree

Move relation

Let t, t ′ ∈ T (F ,Q). We write t →A t ′ if the following are satisfied:

t = C [f (q1, . . . , qn)] for some context C ;

t ′ = C [q] for some rule f (q1, . . . , qn)→ q of A.

Idea: successively reduce t to a single state, starting from the leaves.
As usual, we write →∗A for the transitive and reflexive closure of →A.

Computation

Let t : Pos → F a ground tree. A run or computation of A on t is a labelling
t ′ : Pos → Q compatible with ∆, i.e.:

for all p ∈ Pos, if t(p) = f ∈ Fn, t ′(p) = q, and t ′(pj) = qj for all
pj ∈ Pos ∩ pN, then f (q1, . . . , qn)→ q ∈ ∆



9/18

Regular tree languages

A tree t is accepted by A iff t →∗A q for some q ∈ G .

L(A) denotes the set of trees accepted by A.

L is regular/recognizable iff L := L(A) for some NFTA A.

Two NFTAs A1 and A2 are equivalent iff L(A1) = L(A2).



10/18

NFTA with ε-moves

Definition:

An ε-NFTA is an NFTA A = 〈Q,F ,G ,∆〉, where ∆ can additionally contain
rules of the form q → q′, with q, q′ ∈ Q.

Semantics: Allow to re-label a position from q to q′.

Equivalence of ε-NFTA

For every ε-NFTA A there exists an equivalent NFTA A′.

Proof (sketch): Construct the rules of A′ by a saturation procedure.



11/18

Deterministic, complete, and reduced
NFTA

An NFTA is deterministic if no two rules have the same left-hand side.
An NFTA is complete if for every f ∈ Fn and q1, . . . , qn ∈ Q, there exists
at least one rule f (q1, . . . , qn)→ q ∈ ∆.

As usual, a DFTA has at most one run per tree.
A DCFTA as exactly one run per tree.

A state q of A is accessible if there exists a tree t s.t. t →∗A q.
A is said to be reduced if all its states are accessible.



12/18

Top-down tree automata

Definition

A top-down tree automaton (T-NFTA) is a tuple A = 〈Q,F , I ,∆〉, where
Q,F are as in NFTA, I ⊆ Q is a set of initial states, and ∆ contains rules
of the form

q(f )→ (q1, . . . , qn)

for f ∈ Fn and q, q1, . . . , qn ∈ Q.

Move relation: t →A t ′ iff

t = C [q(f (t1, . . . , tn))] for some context C , f ∈ Fn, and
t1, . . . , tn ∈ T (F);

t ′ = C [f (q1(t1), . . . , qn(tn))] for some rule q(f )→ (q1, . . . , qn).

t is accepted by A if q(t)→∗A t for some q ∈ I .



13/18

From top-down to bottom-up

Theorem (T-NFTA = NFTA)

L is recognizable by an NFTA iff it is recognizable by a T-NFTA.

Claim: L is accepted by NFTA A = 〈Q,F ,G ,∆〉 iff it is accepted by
T-NFTA A′ = 〈Q,F ,G ,∆′〉, with

∆′ := { q(f )→ (q1, . . . , qn) | f (q1, . . . , qn)→ q ∈ ∆ }

Proof: Let t ∈ T (F). We show t →∗A q iff q(t)→∗A′ t.

Base: t = a (for some a ∈ F0)

t = a→∗A q ⇐⇒ a→∆ q ⇐⇒ q(a)→∆′ ε⇐⇒ q(a)→∗A′ a

Induction: t = f (t1, . . . , tn), hypothesis holds for t1, . . . , tn

f (t1, . . . , tn)→∗A q ⇐⇒ ∃q1, . . . qn : f (q1, . . . , qn)→∆ q∧∀i : ti →∗A qi

⇐⇒ ∃q1, . . . , qn : q(f )→∆′ (q1, . . . , qn) ∧ ∀i : qi (ti )→∗A′ ti

⇐⇒ q(f (t1, . . . , tn))→A′ f (q1(t1), . . . , qn(tn))→∗A′ f (t1, . . . , tn)



14/18

From NFTA to DFTA
Theorem (NFTA=DFTA)

If L is recognizable by an NFTA, then it is recognizable by a DFTA.

Claim (subset construct.): Let A = 〈Q,F ,G ,∆〉 an NFTA recognizing L.
The following DCFTA A′ = 〈2Q ,F ,G ′,∆′〉 also recognizes L:

G ′ = {S ⊆ Q | S ∩ G 6= ∅ }
for every f ∈ Fn and S1, . . . ,Sn ⊆ Q, let f (S1, . . . ,Sn)→ S ∈ ∆′,
where S = { q ∈ Q | ∃q1 ∈ S1, . . . , qn ∈ Sn : f (q1, . . . , qn)→ q ∈ ∆ }

Proof: For t ∈ T (F), show t →∗A′ { q | t →∗A q }, by structural induction.

DFTA with accessible states

In practice, the construction of A′ can be restricted to accessible states:
Start with transitions a→ S , then saturate.

Deterministic top-down are less powerful

E.g., L = {f (a, b), f (b, a)} can be recognized by DFTA but not by T-DFTA.



15/18

Closure properties

Theorem (Boolean closure)

Recognizable tree languages are closed under Boolean operations.

Negation (invert accepting states)

Let 〈Q,F ,G ,∆〉 be a DCFTA recognizing L.
Then 〈Q,F ,Q \ G ,∆〉 recognizes T (F) \ L.

Union (juxtapose)

Let 〈Qi ,F ,Gi ,∆i 〉 be NFTA recognizing Li , for i = 1, 2.
Then 〈Q1 ] Q2,F ,G1 ∪ G2,∆1 ∪∆2〉 recognizes L1 ∪ L2.



16/18

Cross-product construction

Direct intersection

Let Ai = 〈Qi ,F ,Gi ,∆i 〉 be NFTA recognizing Li , for i = 1, 2.
Then A = 〈Q1 × Q2,F ,G1 × G2,∆〉 recognizes L1 ∩ L2, where

f (q1, . . . , qn)→ q ∈ ∆1 f (q′1, . . . , q
′
n)→ q′ ∈ ∆2

f (〈q1, q′1〉, . . . , 〈qn, q′n〉)→ 〈q, q′〉 ∈ ∆

Remarks:

If A1,A2 are D(C)FTA, then so is A.

If A1,A2 are complete, replace G1 × G2 with (G1 × Q2) ∪ (Q1 × G2)
to recognize L1 ∪ L2.



17/18

Tree languages and context-free languages
Front

Let t be a ground tree. Then fr(t) ∈ F∗0 denotes the word obtained from
reading the leaves from left to right (in increasing lexicographical order of
their positions).

Example: t = f (a, g(b, a), c), fr(t) = abac

Leaf languages

Let L be a recognizable tree language. Then fr(L) is context-free.

Let L be a context-free language that does not contain the empty word.
Then there exists an NFTA A with L = fr(L(A)).

Proof (idea):

Given a T-NFTA recognizing L, construct a CFG from it.

L is generated by a CFG using productions of the form A→ BC | a
only. Replace A→ BC by A→ A2 and A2 → BC , construct a
T-NFTA from the result.


