Trees

We consider finite ordered ranked trees.

@ ordered : internal nodes have children 1...n

@ ranked : number of children fixed by node’s label

Let NV denote the set of positive integers.
Nodes (positions) of a tree are associated with elements of N*:

VAN
1 2 3
/\
12

2 2

Definition: Tree

A (finite, ordered) tree is a non-empty, finite, prefix-closed set Pos C N*
such that w(i + 1) € Pos implies wi € Pos for all w € N*, j € N.

Ranked Trees

Ranked symbols

Let Fo, F1,... be disjoint sets of symbols of arity 0,1, ...
We note F = J; Fi.

o Notation (example): F = {f(2),g(1), a, b}

Let X' denote a set of variables (disjoint from the other symbols).

Definition: Ranked tree
A ranked tree is a mapping t : Pos — (F U X) satisfying:

@ Pos is a tree;

e for all p € Pos, if t(p) € Fp, n > 1 then Pos N pN = {pl,...

e for all p € Pos, if t(p) € X U Fy then Pos N pN = ().

,pn};

Trees and Terms

Definition: Terms
The set of terms T(F, X) is the smallest set satisfying:
o XUJF C T(F,X);
o ifty,....ty € T(F,X) and f € F,, then f(tu,...,t,) € T(F,X).

We note T(F) := T(F,0). A term in T(F) is called ground term.
A term of T(F,X) is linear if every variable occurs at most once.

Example: F = {f(2),g(1),a, b}, X = {x,y}
o f(g(a),b) € T(F);
o f(x,f(b,y)) € T(F,X) is linear;
o f(x,x) € T(F,X) is non-linear.

We confuse terms and trees in the obvious manner.

Subterms / subtrees

Definition: Subtree
Let t,u € T(F,X) and p a position. Then t|, : Pos, — T(F,X) is the
ranked tree defined by

e Pos, :={q|pqg e Pos},

o t[(q) := t(pq).

Moreover, t[u], is the tree obtained by replacing t|, by u in t.

t > t' (resp. t > t') denotes that t' is a (proper) subtree of t.

Substitutions and Context

Definition: Substitution
@ (Ground) substitution o: mapping from X to T(F, X) resp. T(F)
e Notation: 0 := {x1 < t1,..., X, < ty}, with o(x) := x for all
x € X\ {x1,...,%n}
o Extension to terms: for all f € F and ty, ..., t,, € T(F,X)
a(f(ty, ..., tn)) = f(o(ty),...,o(th))

e Notation: to for o(t)

Definition: Context
A context is a linear term C € T(F, X) with variables xi, ..., x,.
We note Clt1, ..., ty] := C{x1 < t1,..., X5 < tn}.

C"(F) denotes the contexts with n variables and C(F) := C}(F).
Let C € C(F). We note C°:= x; and C™1 = C"[C] for n > 0.

Tree automata

Basic idea: Extension of finite automata from words to trees
Direct extension of automata theory when words seen as unary terms:

abc = a(b(c(9)))

Finite automaton: labels every prefix of a word with a state.
Tree automaton: labels every position/subtree of a tree with a state.

Two variants: bottom-up vs top-down labelling

Basic results (preview)
@ Non-deterministic bottom-up and top-down are equally powerful
@ Deterministic bottom-up equally powerful

@ Deterministic top-down less powerful

Bottom-up automata

Definition: (Bottom-up tree automata)

A (finite bottom-up) tree automaton (NFTA) is a tuple A = (Q, F, G, A),
where:

@ @ is a finite set of states;
o F a finite ranked alphabet;
o G C Q@ are the final states;
@ A is a finite set of rules of the form
f(qi,...,qn) — q
for f € F,and q,q91,...,9, € Q.

Example: Q :={qo, q1,qr}, F ={f(2),&(1),a}, G :={qr}, and rules
a—qo g(q)—aq1 g(q1) = a1 f(q1,91) — gr

Move relation and computation tree

Move relation

Let t, t' € T(F, Q). We write t — 4 t" if the following are satisfied:
e t = C[f(q1,...,qn)] for some context C;
e t' = C|[q] for some rule f(q1,...,qn) — q of A.

Idea: successively reduce t to a single state, starting from the leaves.
As usual, we write —>:‘4 for the transitive and reflexive closure of — 4.

Computation
Let t : Pos — F a ground tree. A run or computation of A on t is a labelling
t' : Pos — @ compatible with A, i.e.:
e for all p € Pos, if t(p) = f € Fp, t/(p) = q, and t/(pj) = g; for all
pj € Pos N pN, then f(q1,...,qn) > g€ A

Regular tree languages

A tree t is accepted by A iff t =% q for some q € G.
L(A) denotes the set of trees accepted by A.
L is regular/recognizable iff L := L(.A) for some NFTA A.

Two NFTAs A; and A; are equivalent iff L(A1) = L(A2).

NFTA with c-moves

Definition:
An e-NFTA is an NFTA A = (Q, F, G, A), where A can additionally contain
rules of the form g — ¢’, with q,q4’ € Q.

Semantics: Allow to re-label a position from g to ¢'.

Equivalence of e-NFTA
For every e-NFTA A there exists an equivalent NFTA A’.

Proof (sketch): Construct the rules of A’ by a saturation procedure.

Deterministic, complete, and reduced
NFTA

An NFTA is deterministic if no two rules have the same left-hand side.
An NFTA is complete if for every f € F, and g1,...,qn € Q, there exists
at least one rule f(qg1,...,q,) — g € A.

As usual, a DFTA has at most one run per tree.
A DCFTA as exactly one run per tree.

A state q of A is accessible if there exists a tree t s.t. t —7% q.
A is said to be reduced if all its states are accessible.

Top-down tree automata

Definition
A top-down tree automaton (T-NFTA) is a tuple A = (Q, F, I, A), where
Q,F are as in NFTA, | C Q is a set of initial states, and A contains rules
of the form

q(f) = (q1,-- -, qn)

for f € F,and q,q91,...,qn € Q.
Move relation: t — 4 t’ iff

o t = Clq(f(t1,...,tn))] for some context C, f € F,, and
ti,...,th € T(F);

o t' = C[f(qi(t1),- ., qn(tn))] for some rule g(f) — (q1,---,qn)-
t is accepted by A if g(t) —7% t for some g € .

From top-down to bottom-up

Theorem (T-NFTA = NFTA)
L is recognizable by an NFTA iff it is recognizable by a T-NFTA.

Claim: L is accepted by NFTA A = (Q,F, G, A) iff it is accepted by
T-NFTA A' = (Q, F, G, A'), with

A ={q(f) = (q1.---,qn) | f(q1,--..qn) > g€ A}
Proof: Let t € T(F). We show t =% q iff g(t) =%, t.
@ Base: t = a (for some a € Fy)

t=a—%q a—aqg q(a) —»ar e qla) =7y a

@ Induction: t = f(t1,...,t,), hypothesis holds for t1,...,t,
f(tr,....th) 25 g Aq1, .- qn: F(q1,. -5 Gn) =a gAYVt = g
Aq1,...,90: q(f) =ar (g1, ..., qn) AVi: qi(ti) =p b
q(f(te, ... tn)) =a F(qu(t), ..., qn(tn)) =0 F(t1,... tn)

From NFTA to DFTA

Theorem (NFTA=DFTA)
If L is recognizable by an NFTA, then it is recognizable by a DFTA.

Claim (subset construct.): Let A = (Q,F, G,A) an NFTA recognizing L.
The following DCFTA A’ = (29, F, G', A') also recognizes L:

°©G'={SCQISNG#0}

o forevery f € Fpand S1,...,5, C Q, let f(S1,...,5,) = S e,
where S={qge Q|3q1 € S51,...,9,. € Sn: f(q1,-..,qn) > g€ A}

Proof: For t € T(F), show t =%, { g |t =% g}, by structural induction.

DFTA with accessible states

In practice, the construction of A’ can be restricted to accessible states:
Start with transitions a — S, then saturate.

Deterministic top-down are less powerful
E.g., L={f(a,b),f(b,a)} can be recognized by DFTA but not by T-DFTA.

Closure properties

Theorem (Boolean closure)

Recognizable tree languages are closed under Boolean operations.

Negation (invert accepting states)

Let (@, F, G,A) be a DCFTA recognizing L.
Then (Q,F, Q\ G, A) recognizes T(F)\ L.

Union (juxtapose)

Let (Q;, F, G;, A;) be NFTA recognizing L;, for i =1, 2.
Then (Q1 W Q2, F, G1 U Go, A1 U Ap) recognizes Ly U Lo.

Cross-product construction

Direct intersection
Let A; = (Q;, F, G;, AA;) be NFTA recognizing L;, for i = 1,2.
Then A= (Q1 X @2, F, Gy x Gy, A) recognizes Ly N Ly, where

f(gr,....qn) > g€ A1 f(q},....q,) = ¢ €y
f{q1,qy),---,{an, @h)) — (q,q') € A

Remarks:

o If A;, Ay are D(C)FTA, then so is A.

o If Ay, Ay are complete, replace Gi x Gy with (G1 X Q) U (Q1 X Go)
to recognize L1 U Lo.

Tree languages and context-free languages

Front

Let t be a ground tree. Then fr(t) € F§ denotes the word obtained from
reading the leaves from left to right (in increasing lexicographical order of
their positions).

Example: t = f(a, g(b, a), c), fr(t) = abac

Leaf languages
o Let L be a recognizable tree language. Then fr(L) is context-free.
@ Let L be a context-free language that does not contain the empty word.
Then there exists an NFTA A with L = fr(L(.A)).
Proof (idea):
@ Given a T-NFTA recognizing L, construct a CFG from it.

e L is generated by a CFG using productions of the form A — BC | a
only. Replace A— BC by A — A and A, — BC, construct a
T-NFTA from the result.

