MPRI 2-9-1: Well-Quasi-Orders for Algorithms

Final Exam

Documents and computers are forbidden.

Friday, November 22nd 2019

This exam consists of 3 independent parts. When answering the questions, be rigourous in
form and complete in reasoning. Rigour does not mean length : you can omit trivial justifications
(but do not omit corner cases!). Most questions can be satisfactorily answered in a few lines.

I. Counters with divisibility tests. For a,b € N, we write “a | b” when a divides b, that is,
when a > 0 and b = ar for some r € N. We write a 1 b when a does not divide b. Note that 0
divides no number, not even itself.

We consider counter systems with divisibility tests. Such a system has the usual form S =
(Loc,C,A) with A C Loc x OP(C) x Loc. Here the instruction set OP(C') is given by the
following abstract grammar :

OP(C) 3 op == cH+] c-- /* increments and decrements */
| alc?] afc? /* type 1 tests, positive and negative */
| cla?] cta? /* type 2 tests, positive and negative */

where c is any counter from C' and « is any constant from N. Recall that decrementing c is only
allowed when c contains a strictly positive value, and note that zero tests are not allowed.

1. Give a formal definition of when the relation o % o’ holds, where o, ¢’ are two configurations
of S and § = (q, op, ') is a transition rule of A. (The point is to check that you have a correct
understanding of the operational semantics of the counter systems at hand. Your answer will
also establish notation for the following questions.)

2. Prove that Termination is undecidable for counter systems with divisibility tests. (Termi-
nation asks if a given system S has no infinite run from a given initial configuration oy.)

Solution:

The sequence of three instructions “c++;c | 17;c--" implements a zero test on c. Thus

counter systems with type 2 divisibility tests can simulate the Turing-powerful Minsky
machines. Hence undecidability.

3. Using WSTS theory, show that termination is decidable for counter systems where only
type 1 tests are allowed. (Do not give an algorithm. Instead, rely on the generic results seen
during the course : give a precise definition of the ordering you introduce, list the properties
you claim are satisfied, and prove these properties.)

Solution:
We invoke Prop. 1.36 from the lecture notes. For this we must exhibit a wqo on Conf ¢ and
check the required assumptions.

For a € N, we define <, by “xz <, v Ly <yAz=vy mod a’ when a > 0, and let <
coincide with <. Now (N, <,) is a wqo for any a > 0. We extend to <a= \,c4 <a=Zicm(4)
when A is a finite set of constants, and to (Conf g, <g), given by

def
O':(q,l'l,..-,l‘n) §g,0:(q',yl,...,yn)<:e>q=q'/\l’1 SAS {7 ANERRAN 7 SAS Yn

where Ag is the set of constants that occur in A. Since Ag is finite, <4, and then <g is a

wdqo.

The next step is to prove monotonicity of transitions. So assume o = (¢, z1,...,2,) <g p =
(¢, y1,---,yn) and o S o' for § = (¢, op,q’). The most interesting case is when op is some
a|c;?. Then o' = (¢, x1,...,2,) and a divides z;. Now o <g p entails y; = z; mod a,

hence a divides y; too. There is thus a step p LN o' = (¢, y1,---,yn). Obviously o’ <g p/.
The case where op is a negative type 1 test works exactly the same. In the case where
op is a decrement or increment, we reuse the reasoning for monotonicity in simple counter
systems, with the further check that equality modulo Ag is preserved.

To finish the decidability proof, it remains to check that S is finitely branching (obvious),
that <g is decidable (clear), and that one can effectively list the immediate successors of
any configuration o € Conf g (easy).

4. Give a reduction from counter systems with only type 1 divisibility tests to counter systems
with only positive type 1 divisibility tests that preserves termination and reachability. How do
you estimate the complexity of your reduction? (Precisely, this asks for a reduction S — S’
such that S terminates from some oo iff S’ does, and such that some o’ is reachable from
some o in S iff it is in S'.)

Solution:

We replace any rule § = (q,afc?¢’) in S, where a > 2, with several rules as depicted :

++ ++
D@

S atc? = S \\jcf’
@ c-- @ c—

Correctness is clear. Trivial tests 11 c? are just discarded, and 0 { c? tests are replaced by
a no-op, or by a sequence c++; c--.

Regarding complexity, we replace each type 1 negative test “a t ¢?” with 2a— 1 rules, relying
on the introduction of 2a — 2 new locations. If the constants in Ag are written in binary,
the reduction can be implement in PSPACE. If they are given in unary, the reduction is
LOGSPACE.

Page 2

II. Multiset vector addition systems with states. We write a, I;, ..., for elements of
N™ or Z™, called vectors. For a vector @, we write aq, ..., a,, for its components, that is,
a= (a1, - ,am). We compare vectors componentwise, that is, @ < b if and only if a1 < by, ...,
and a,, < by,.

A multiset vector addition system with states (MVASS) is an extension of Petri nets defined
as follows : it is a tuple (@, m,d1,02) where @ is a finite set of so-called states, m € N is the
dimension of the MVASS, &1 is a finite subset of @ x Z™ x () whose elements are called the
unary transitions, and - is a finite subset of QQ x @) x Q whose elements are called the binary
transitions.

An MVASS is a compact representation of an infinite transition system, whose set of configura-
tions is (@ x N™)® where X% denotes the collection of all (finite) multisets over the alphabet
3. Its transition relation — is defined by the rules :

Cw{(g,d)} = Cw{(d,a+d) (¢,d,¢') € 61,@+d € N"
C W {l(q1,d1), (q2,d2)[} = C & {|(g3, a1 + d2)[} (q1,92,93) € 02.

We will say that (q,d) is the active pair in the first rule, and that the active pairs are (q1,d;)
and (go, d2) in the second rule. We also say that the rules are applied to its active pairs.
On a computer, one would implement multisets by finite lists, typically.
We order configurations by <® where (¢,d) < (¢/,d) if and only if ¢ = ¢’ and @ < @’
5. Why is <% a wqo?

Solution:

By the results of the course : = is wqo on @ because @ is finite, < is wqo on N¥ by Dickson’s
Lemma, their product is wqo by Dickson’s Lemma (finite products of wqos are wqo), and
the _® construction preserves wqos (that was shown as a consequence of Higman’s lemma
in the course).

6. Show that every MVASS is a WSTS. (You must state explicitly what you have to prove.
A completely formal argument is not needed, but your proof must be convincing, list all the
possible cases that must be examined, and give an idea why what you claim holds in each
case.)

Solution:
We already know that <® is a wqo. We must check monotonicity. This boils down to
checking that if C; — C5, then :
— if we add one pair (g, @) to Cy, then C1 W {(q,a)[} = C2W{(q,a)[}, and the latter is
larger than or equal to Cs ;
— if we replace C1 € C W {(g,@)} by C] £ C W {(¢q,@)} with (¢,@) < (¢,@), then

C] — C} for some C% such that Cy <® €Y, obtained by applying the same rule.

There are several cases to consider :

— The rule map was applied inside C, yielding C' — C’ : then C{ — C) where
ChE C'w{(q,@)}; since Cy = C" W {(g,a@)}, we have Cy <® Cj.

— Or the rule was unary and applied to (¢,@) : then Cy = C W {(¢/,@ + d)}, where
(¢,d,q') € 61 and @+ d > 0. We define C} as C W {(¢,@ + d)} : then C} — Cj,
and Cy <® CY.

— Or the rule was binary and one of its active pairs was (¢, d). In other words,
C=Co¥{(q,a1)}, C1 = CoW{(q,a1),(q,a)}, Co = Co W {(g3,d1 + @)} where
(q1,9,q3) € 02 (or (¢, q1,q3) € 62). We define C, as Cy W {(g3, a1 + d’)}.

7. Using WSTS theory, show that the termination problem for MVASS is decidable. (As for
question 3, you must list the properties of the ordering you rely on and justify them.)

Page 3

Solution:

We use Proposition 1.36 of the lecture notes. We have just shown that every MVASS is
a WSTS. Imagine-finiteness and post-effectiveness are obvious, and the ordering <® is
decidable : for example, in order to decide whether C' <® (', we look for an injective
mapping f from the indices of the first multiset C, represented as a list, to those of the
second one C’, such that the element (g;,@;) at every position 4 of the first list is less than
or equal to the element at position f(i) of the second list.

8. Recall what the coverability problem is on MVASS, and show that it is decidable. (For this,
recall precisely what is the statement of the theorem you use. Some assumptions must be
verified in order to apply this theorem. For effectiveness assumptions you have to provide an
algorithm : that algorithm must be explicit, and must be correct. You need not give a complete
formal correctness proof but must provide the intuition of why the algorithm is correct.)

Solution:

INPUT : two configurations Cy, Cy ;

QUESTION : does Cy —* C for some configuration C such that Cs, <% C'?

We have alread shown that <® is decidable. We should now verify that the MVASS has
effective pred-basis.

Let C’ be any configuration. We need to find a finite basis of the set of configurations C'
such that C' — D € 1 C’ for some D. We compute this as the union of :

— for each unary transition (q,cﬂq’) € 01, a finite basis of the set of configurations
CU{(q,@)} such that D <® CU{(¢,@+d)} is larger than or equal to C’. This finite
basis consists of all configurations obtained from C’ by replacing a pair (¢/,@’) in it
(with the same ¢') by (¢,a@) where a; < max(a} — d;) for each i, plus C" & {|(¢, @)[}
where @ is the least element of N such that @+ d > 0 (namely a; = max(—dj;,0);
to see that this is needed, look at the case where C” is empty) ;

— for each binary transition (q1, g2, q3) € d2, we compute the set of all configurations
obtained by replacing a pair (g3, d’) (with the given ¢3) by two pairs (¢1,d1) and
(g2, ds), where @y + dy = @' (there are only finitely many choices for @; and ds, since
both must be below @), plus the configuration C' & {|(¢1, 0), (qg,ﬁ){\ (again, to see
that it is needed, consider the case where C” is empty).

Then Proposition 1.38 of the lecture notes tells us that MVASS coverability is decidable.

III. Lengths of r-bad sequences. We consider a generalisation of good and bad sequences.
For r € N, we say that a sequence ag, ay, ... over a qo (4, <) is r-good if it contains an increasing
subsequence of length r + 1, i.e. if there exist r 4+ 1 indices 79 < --- < iy s.t. aj, < --- < a;,. A
sequence is r-bad if it is not r-good. Thus “1-good” and “1-bad” correspond to the usual notions
of “good” and “bad” for sequences over a qo.

Assume A is a normed wqo. We define Ly, 4(n) as the maximal length of a (g,n)-controlled
r-bad sequence over A, generalizing the notation Ly 4(n) seen in class.

9. Explain briefly why L, 4(n) is a well-defined natural number.

Solution:

The tree of controlled r-bad sequences is finitely branching (by virtue of control) and all
its branches are finite (since r-bad sequences are finite in a wqo). Hence it is a finite tree
and has a well-defined maximal length for its branches.

10. Consider a (g, n)-controlled r-bad sequence s = ag, ay, ..., a; of maximal length. Show that
it is r’-good for any r’ < r.

Solution:

Page 4

Assume r > 0 and let p be the maximal value s.t. s is p-good ; thus p < r — 1. If we define
s’ by extending s with r — p — 1 copies of ay we obtain a sequence that is (g, n)-controlled
and r-bad. (Indeed, if s’ is 7-good and contains an increasing subsequence of length 7, by
removing the last » — p — 1 elements of the subsequence we see that s was (p + 1)-good.)
Now, if r —p —1 > 0, s’ is longer than s, contradicting the maximality of s. We conclude
that p=7r — 1.

Recall that, for k € N, Ty is the nwqo whose elements are the letters {bg, b1, ..,bx_1}, of zero
norm, with trivial ordering Idr,. We want to reduce Ly, 4 to Lg axr,-

11. Show that Ly, a(n) < Ly axr, (n).

Solution:

Pick an r-bad sequence s = ag, a1, ...,ay over A of maximal length. Say that an index ¢ in
0,...,01s p-good (in s) if it can start an increasing subsequence of length p+ 1, i.e. if there
exist indices i = ip < - < ip s.t. a5y < -+ < a;,. The goodness (i) of an index i is the
largest p s.t. i is p-good in s.

Since s is r-bad, all the indices are at most (r — 1)-good, hence (i) < r for all 7. Note also
that i < j and a; < a; imply (i) > v(j) since any good subsequence starting at index j
can be made longer by starting with a; at index .

We now define a sequence s’ over A x I',. :

s’ = <a07b'y(0)>) <a17b'y(1)>7 0000 <af7b (Z)) :

' is g(n)-controlled since s is, and since [(a, b;)|axr, = max(|a|a, |bi|r,) = max(|a|4,0) =
la|4. (Once more we see that the norm of letters and the norm of pairs was well chosen.)

Furthermore s’ is bad since, as noted (i) # v(j) when ¢ < j. Thus s is a witness showing
Lgra(n) < Lgaxr, (n).

12. Show that Ly, 4(n) > Lg axr,(n).

Solution:
Take s = (ag, bo), - - -, {(ag, by) a (g,n)-controlled bad sequence of maximal length over AT,
and project over A to obtain the sequence s’ = ag, ..., ay.

We claim that s’ is (g, n)-controlled and r-bad. The condition on the control is immediate
since s is controlled and |a;|4 = |{a;, bi)| axr,. Regarding badness, assume s’ to be r-good :
then there exist r + 1 indices 0 < ip < -+ < i, < £s.t. a;y < --- < a;,. By the pigeonhole
principle, there exists some b € I', that appears at least twice among {b;,,...,b;, }, i.e.
there exist two indices i; < 4 in {io,...,4,} s.t. bj; = b;,. Thus (a;;, b;;) <axr, (as,,bi,),
contradicting the badness of s.

13. Write more simply L(n) for Ly a(n), and n’ for " (n).
Does Lg2 a(n) < L(n) + L(n’) hold for all A, g,n?
And does Lg2 a(n) > L(n) + L(n')?

Solution:

The second inequality holds : if s = ag, .. ., ag is bad and (g, n)-controlled, if 8" = by, ..., b,
is bad and (g,n’) controlled for n’ = L(g**'(n)), then s - s’ is (g, n)-controlled and 2-bad.
The first equality does not always hold. E.g., if we take g = Succ and A = {a, b} with trivial
ordering Id4, and with norm given by |a| = 0 and |b| = 2, the sequence a, a, b, b is 2-bad and
(g,0)-controlled, hence Ly 4(0) > 4. However L(0) = 1 since a, b is not (g, 0)-controlled,
and L(1) = 2. For n = 0 this gives L(n)+L(g*™(n)) = L(0)+L(1) = 1+2 =3 < Ly 4(n).

Page 5

