
Software Engineering at MPRI - Tutorial on
the version control system git, and its extensions

Amélie Ledein
ledein@lsv.fr

October 9, 2020

Amélie Ledein Tutorial October 9, 2020 1 / 31



Introduction

Don’t forget ...

Rigor
→ Code, methodology, specifications and tests

Adaptability
→ Components could be re-used in a (slightly different) context.

Modularity
→ Segment project in modules with clearly defined interfaces.
→ Develop and test independently, facilitate re-use and change.

Abstraction
→ Do not specify implementation details, i.e. things that can easily

change.

OK, but how can you share your code?

Amélie Ledein Tutorial October 9, 2020 2 / 31



Introduction

Don’t forget ...

Rigor
→ Code, methodology, specifications and tests

Adaptability
→ Components could be re-used in a (slightly different) context.

Modularity
→ Segment project in modules with clearly defined interfaces.
→ Develop and test independently, facilitate re-use and change.

Abstraction
→ Do not specify implementation details, i.e. things that can easily

change.

OK, but how can you share your code?

Amélie Ledein Tutorial October 9, 2020 2 / 31



Introduction

Don’t forget ...

Rigor
→ Code, methodology, specifications and tests

Adaptability
→ Components could be re-used in a (slightly different) context.

Modularity
→ Segment project in modules with clearly defined interfaces.
→ Develop and test independently, facilitate re-use and change.

Abstraction
→ Do not specify implementation details, i.e. things that can easily

change.

OK, but how can you share your code?

Amélie Ledein Tutorial October 9, 2020 2 / 31



Introduction

Don’t forget ...

Rigor
→ Code, methodology, specifications and tests

Adaptability
→ Components could be re-used in a (slightly different) context.

Modularity
→ Segment project in modules with clearly defined interfaces.
→ Develop and test independently, facilitate re-use and change.

Abstraction
→ Do not specify implementation details, i.e. things that can easily

change.

OK, but how can you share your code?

Amélie Ledein Tutorial October 9, 2020 2 / 31



Introduction

Don’t forget ...

Rigor
→ Code, methodology, specifications and tests

Adaptability
→ Components could be re-used in a (slightly different) context.

Modularity
→ Segment project in modules with clearly defined interfaces.
→ Develop and test independently, facilitate re-use and change.

Abstraction
→ Do not specify implementation details, i.e. things that can easily

change.

OK, but how can you share your code?

Amélie Ledein Tutorial October 9, 2020 2 / 31



Introduction

Don’t forget ...

Rigor
→ Code, methodology, specifications and tests

Adaptability
→ Components could be re-used in a (slightly different) context.

Modularity
→ Segment project in modules with clearly defined interfaces.
→ Develop and test independently, facilitate re-use and change.

Abstraction
→ Do not specify implementation details, i.e. things that can easily

change.

OK, but how can you share your code?

Amélie Ledein Tutorial October 9, 2020 2 / 31



Introduction

Don’t forget ...

Rigor
→ Code, methodology, specifications and tests

Adaptability
→ Components could be re-used in a (slightly different) context.

Modularity
→ Segment project in modules with clearly defined interfaces.
→ Develop and test independently, facilitate re-use and change.

Abstraction
→ Do not specify implementation details, i.e. things that can easily

change.

OK, but how can you share your code?

USB-key

Amélie Ledein Tutorial October 9, 2020 2 / 31



Introduction

Don’t forget ...

Rigor
→ Code, methodology, specifications and tests

Adaptability
→ Components could be re-used in a (slightly different) context.

Modularity
→ Segment project in modules with clearly defined interfaces.
→ Develop and test independently, facilitate re-use and change.

Abstraction
→ Do not specify implementation details, i.e. things that can easily

change.

OK, but how can you share your code?

USB-key

Amélie Ledein Tutorial October 9, 2020 2 / 31



Introduction

Don’t forget ...

Rigor
→ Code, methodology, specifications and tests

Adaptability
→ Components could be re-used in a (slightly different) context.

Modularity
→ Segment project in modules with clearly defined interfaces.
→ Develop and test independently, facilitate re-use and change.

Abstraction
→ Do not specify implementation details, i.e. things that can easily

change.

OK, but how can you share your code?

USB-key

Email

Amélie Ledein Tutorial October 9, 2020 2 / 31



Introduction

Don’t forget ...

Rigor
→ Code, methodology, specifications and tests

Adaptability
→ Components could be re-used in a (slightly different) context.

Modularity
→ Segment project in modules with clearly defined interfaces.
→ Develop and test independently, facilitate re-use and change.

Abstraction
→ Do not specify implementation details, i.e. things that can easily

change.

OK, but how can you share your code?

USB-key

Email

Amélie Ledein Tutorial October 9, 2020 2 / 31



Introduction

Don’t forget ...

Rigor
→ Code, methodology, specifications and tests

Adaptability
→ Components could be re-used in a (slightly different) context.

Modularity
→ Segment project in modules with clearly defined interfaces.
→ Develop and test independently, facilitate re-use and change.

Abstraction
→ Do not specify implementation details, i.e. things that can easily

change.

OK, but how can you share your code?

USB-key

Email

Dropbox, Google Drive, etc.

Amélie Ledein Tutorial October 9, 2020 2 / 31



Introduction

Don’t forget ...

Rigor
→ Code, methodology, specifications and tests

Adaptability
→ Components could be re-used in a (slightly different) context.

Modularity
→ Segment project in modules with clearly defined interfaces.
→ Develop and test independently, facilitate re-use and change.

Abstraction
→ Do not specify implementation details, i.e. things that can easily

change.

OK, but how can you share your code?

USB-key

Email

Dropbox, Google Drive, etc.

Amélie Ledein Tutorial October 9, 2020 2 / 31



The answer is ...

or any version control systems (VCS).
(systèmes de gestion de version, in French)

Amélie Ledein Tutorial October 9, 2020 3 / 31



The answer is ...

or any version control systems (VCS).
(systèmes de gestion de version, in French)

Amélie Ledein Tutorial October 9, 2020 3 / 31



Sommaire

1 Git
Git in a nutshell
Basic commands
Branching
Data structures

2 GitHub

Amélie Ledein Tutorial October 9, 2020 4 / 31



Sommaire

1 Git
Git in a nutshell
Basic commands
Branching
Data structures

2 GitHub

Amélie Ledein Tutorial October 9, 2020 5 / 31



What is a version control system?

Software system that allows you to maintain and manage all versions
of a set of files.
Why a version management system?

Revolve easily to a previous version.
Follow the evolution of the project over time.
Allow parallel work on disjointed parts of the project and manage the
competing modifications.
Facilitate the detection and correction of errors.
etc.

An example:

→ A free and open source distributed version control system (DVCS)
→ Designed to handle everything from small to very large projects
with speed and efficiency

Amélie Ledein Tutorial October 9, 2020 6 / 31



What is a version control system?

Software system that allows you to maintain and manage all versions
of a set of files.

Why a version management system?
Revolve easily to a previous version.
Follow the evolution of the project over time.
Allow parallel work on disjointed parts of the project and manage the
competing modifications.
Facilitate the detection and correction of errors.
etc.

An example:

→ A free and open source distributed version control system (DVCS)
→ Designed to handle everything from small to very large projects
with speed and efficiency

Amélie Ledein Tutorial October 9, 2020 6 / 31



What is a version control system?

Software system that allows you to maintain and manage all versions
of a set of files.
Why a version management system?

Revolve easily to a previous version.
Follow the evolution of the project over time.
Allow parallel work on disjointed parts of the project and manage the
competing modifications.
Facilitate the detection and correction of errors.
etc.

An example:

→ A free and open source distributed version control system (DVCS)
→ Designed to handle everything from small to very large projects
with speed and efficiency

Amélie Ledein Tutorial October 9, 2020 6 / 31



What is a version control system?

Software system that allows you to maintain and manage all versions
of a set of files.
Why a version management system?

Revolve easily to a previous version.
Follow the evolution of the project over time.
Allow parallel work on disjointed parts of the project and manage the
competing modifications.
Facilitate the detection and correction of errors.
etc.

An example:

→ A free and open source distributed version control system (DVCS)
→ Designed to handle everything from small to very large projects
with speed and efficiency

Amélie Ledein Tutorial October 9, 2020 6 / 31



Git in detail

Stash (remise): A place to hide modifications while you work on
something else.
Workspace (espace de travail): Local checkout.
Index (zone d’index), staging area, staged files or (current
directory) cache: Files you want to commit. Before you ”commit”
(checkin) files, you need to first add them to the index.
Local repository (dépôt local): A subdirectory named .git that
contains all of your necessary repository files - a Git repository
skeleton.
Remote/upstream repository (dépôt distant): Versions of your
project that are hosted on the Internet or network, ensuring all your
changes are available for other developers.
The default name is origin.

Amélie Ledein Tutorial October 9, 2020 7 / 31



Git in detail

Stash (remise): A place to hide modifications while you work on
something else.

Workspace (espace de travail): Local checkout.
Index (zone d’index), staging area, staged files or (current
directory) cache: Files you want to commit. Before you ”commit”
(checkin) files, you need to first add them to the index.
Local repository (dépôt local): A subdirectory named .git that
contains all of your necessary repository files - a Git repository
skeleton.
Remote/upstream repository (dépôt distant): Versions of your
project that are hosted on the Internet or network, ensuring all your
changes are available for other developers.
The default name is origin.

Amélie Ledein Tutorial October 9, 2020 7 / 31



Git in detail

Stash (remise): A place to hide modifications while you work on
something else.
Workspace (espace de travail): Local checkout.

Index (zone d’index), staging area, staged files or (current
directory) cache: Files you want to commit. Before you ”commit”
(checkin) files, you need to first add them to the index.
Local repository (dépôt local): A subdirectory named .git that
contains all of your necessary repository files - a Git repository
skeleton.
Remote/upstream repository (dépôt distant): Versions of your
project that are hosted on the Internet or network, ensuring all your
changes are available for other developers.
The default name is origin.

Amélie Ledein Tutorial October 9, 2020 7 / 31



Git in detail

Stash (remise): A place to hide modifications while you work on
something else.
Workspace (espace de travail): Local checkout.
Index (zone d’index), staging area, staged files or (current
directory) cache: Files you want to commit. Before you ”commit”
(checkin) files, you need to first add them to the index.

Local repository (dépôt local): A subdirectory named .git that
contains all of your necessary repository files - a Git repository
skeleton.
Remote/upstream repository (dépôt distant): Versions of your
project that are hosted on the Internet or network, ensuring all your
changes are available for other developers.
The default name is origin.

Amélie Ledein Tutorial October 9, 2020 7 / 31



Git in detail

Stash (remise): A place to hide modifications while you work on
something else.
Workspace (espace de travail): Local checkout.
Index (zone d’index), staging area, staged files or (current
directory) cache: Files you want to commit. Before you ”commit”
(checkin) files, you need to first add them to the index.
Local repository (dépôt local): A subdirectory named .git that
contains all of your necessary repository files - a Git repository
skeleton.

Remote/upstream repository (dépôt distant): Versions of your
project that are hosted on the Internet or network, ensuring all your
changes are available for other developers.
The default name is origin.

Amélie Ledein Tutorial October 9, 2020 7 / 31



Git in detail

Stash (remise): A place to hide modifications while you work on
something else.
Workspace (espace de travail): Local checkout.
Index (zone d’index), staging area, staged files or (current
directory) cache: Files you want to commit. Before you ”commit”
(checkin) files, you need to first add them to the index.
Local repository (dépôt local): A subdirectory named .git that
contains all of your necessary repository files - a Git repository
skeleton.
Remote/upstream repository (dépôt distant): Versions of your
project that are hosted on the Internet or network, ensuring all your
changes are available for other developers.
The default name is origin.

Amélie Ledein Tutorial October 9, 2020 7 / 31



Sommaire

1 Git
Git in a nutshell
Basic commands
Branching
Data structures

2 GitHub

Amélie Ledein Tutorial October 9, 2020 8 / 31



Amélie Ledein Tutorial October 9, 2020 9 / 31



Synchronization with the remote repository

$ git clone <url>

Retrieve an entire repository from hosted location via URL.

$ git fetch <alias>

Fetch down all the branches from that Git remote.

$ git merge <alias/<branch>

Merge a remote branch into your current branch to bring it up to
date.

$ git pull

Fetch and merge any commits from the tracking remote branch.

Amélie Ledein Tutorial October 9, 2020 10 / 31



Commit

Amélie Ledein Tutorial October 9, 2020 11 / 31



Make modifications

$ git add <file(s)>

Add a file (or several) as it looks now to your next commit (stage).

$ git rm <file(s)>

Delete the file (or several) from the project and stage the removal for
commit.

$ git mv <old-name-file> <new-name-file>

Rename the file and stage the renaming.

$ git mv <existing-path> <new-path>

Change an existing file path and stage the move.

$ git reset <file(s)>

Unstage a file (or several) while retaining the changes in working
directory.

$ git commit [-m "<descriptive message>]"

Commit your staged content as a new commit snapshot.

$ git push <alias> <branch>

Transmit local branch commits to the remote repository branch.
Amélie Ledein Tutorial October 9, 2020 12 / 31



Exercise 1

1. Clone the repository from
https://github.com/amelieled/SE_GIT_MPRI.git

2. Add at least 5 new items in the grocery list.

3. Fix the 5 errors.

4. Add a new section.

Amélie Ledein Tutorial October 9, 2020 13 / 31

https://github.com/amelieled/SE_GIT_MPRI.git


Informative commands

Setup:
Configuring user information used across all local repositories.

$ git config --global user.name "[firstname lastname]"

Set a name that is identifiable for credit when review version history.
$ git config --global user.email "[valid-email]"

Set a email address that will be associated with each history marker.
Note : export EDITOR=emacs (or vim, etc.)

To configure correctly your editor with Git.

To collect information:

$ git status

Show modified files in working directory, staged for your next commit.
$ git diff

Diff of what is changed but not staged.
$ git diff --staged

Diff of what is staged but not yet committed.

Amélie Ledein Tutorial October 9, 2020 14 / 31



Sommaire

1 Git
Git in a nutshell
Basic commands
Branching
Data structures

2 GitHub

Amélie Ledein Tutorial October 9, 2020 15 / 31



Branch

$ git branch

List your branches.
A star (*) will appear next to the currently active branch.

$ git branch <branch-name>

Create a new branch at the current commit.

$ git branch -d <branch-name>

Delete the specified branch.

$ git checkout <branch-name>

Switch to another branch and check it out into your working directory.

$ git merge <branch-name>

Merge the specified branch’s history into the current one.

$ git log

Show all commits in the current branch’s history.

Amélie Ledein Tutorial October 9, 2020 16 / 31



Gitk - Graphical interface

Or if you prefer: git log --graph.

Amélie Ledein Tutorial October 9, 2020 17 / 31



Examining logs, diffs and object information

$ git log branchB..branchA

Show the commits on branchA that are not on branchB.

$ git log --follow <file>

Show the commits that changed file, even across renames.

$ git diff branchB...branchA

Show the diff of what is in branchA that is not in branchB.

$ git log --stat -M

Show all commit logs with indication of any paths that moved.

$ git show <SHA>

Show any object in Git in human-readable format.

→ Easier on Github (See later)

Amélie Ledein Tutorial October 9, 2020 18 / 31



Sommaire

1 Git
Git in a nutshell
Basic commands
Branching
Data structures

2 GitHub

Amélie Ledein Tutorial October 9, 2020 19 / 31



SHA1 is a hashing algorithm taking an input up to 264 bits, and returns a
unique sequence of 40 hexadecimal characters.

By hashing the contents of a file, Git obtains a series of unique digits
symbolizing the file. Then, Git backs up only the files which are different
hash (Git does not care about the names of the files, it only considers the
content.).

Amélie Ledein Tutorial October 9, 2020 20 / 31



Git objects

There are four Git objects:

The Blob (Binary Large Object): It more commonly represents a file.

The Tree: It more commonly represents a directory or folder of your
application.
Its content is the list of SHA1s of Blobs or other Trees that it can
contain. What gives a tree structure of files.

The Commit: This is the complete state of your project at a given
moment, i.e. a snapshot.
Its content is the SHA1 of the source Tree, and various information
such as the name of the commit, the name of the author, the date,
etc.

The Tag: This is an object used to qualify a particular commit by
giving it a comment.

Amélie Ledein Tutorial October 9, 2020 21 / 31



An example

Each element has a unique SHA1.
Amélie Ledein Tutorial October 9, 2020 22 / 31



How Git stores its information?

Only thanks to the directory .git at the root of your project.

config: file relating to the configuration of the Git environment, such
as information about the developer (name, email, etc.);

description: contains information about your project;

objects/: it is in this directory that all Git objects are stored
(commits, tags, trees, blobs);

refs/*: contains information on local branches of the repository;

logs/*: contains log messages;

index: file containing information about the status of the next
commit.

HEAD: pointer to current branch;

hooks/: folder containing ”hooks” or ”triggers”, i.e. actions/scripts
that can be executed in pre or post condition.

Amélie Ledein Tutorial October 9, 2020 23 / 31



Some questions

How find a particular object?
Thanks to SHA1, in particular: .git/objects/
Example: How find the blob ”4A558...”?
See on /.git/objects/4A/558...

This structure is too heavy?
The answer is no thanks to the ”Zlib” compression system that Git
uses to compress the data and maintain the correct weight.

Demonstration:
$ sudo apt install qpdf
$ zlib-flate -uncompress < FILE

Amélie Ledein Tutorial October 9, 2020 24 / 31



Some questions

How find a particular object?

Thanks to SHA1, in particular: .git/objects/
Example: How find the blob ”4A558...”?
See on /.git/objects/4A/558...

This structure is too heavy?
The answer is no thanks to the ”Zlib” compression system that Git
uses to compress the data and maintain the correct weight.

Demonstration:
$ sudo apt install qpdf
$ zlib-flate -uncompress < FILE

Amélie Ledein Tutorial October 9, 2020 24 / 31



Some questions

How find a particular object?
Thanks to SHA1, in particular: .git/objects/

Example: How find the blob ”4A558...”?
See on /.git/objects/4A/558...

This structure is too heavy?
The answer is no thanks to the ”Zlib” compression system that Git
uses to compress the data and maintain the correct weight.

Demonstration:
$ sudo apt install qpdf
$ zlib-flate -uncompress < FILE

Amélie Ledein Tutorial October 9, 2020 24 / 31



Some questions

How find a particular object?
Thanks to SHA1, in particular: .git/objects/
Example: How find the blob ”4A558...”?

See on /.git/objects/4A/558...

This structure is too heavy?
The answer is no thanks to the ”Zlib” compression system that Git
uses to compress the data and maintain the correct weight.

Demonstration:
$ sudo apt install qpdf
$ zlib-flate -uncompress < FILE

Amélie Ledein Tutorial October 9, 2020 24 / 31



Some questions

How find a particular object?
Thanks to SHA1, in particular: .git/objects/
Example: How find the blob ”4A558...”?
See on /.git/objects/4A/558...

This structure is too heavy?
The answer is no thanks to the ”Zlib” compression system that Git
uses to compress the data and maintain the correct weight.

Demonstration:
$ sudo apt install qpdf
$ zlib-flate -uncompress < FILE

Amélie Ledein Tutorial October 9, 2020 24 / 31



Some questions

How find a particular object?
Thanks to SHA1, in particular: .git/objects/
Example: How find the blob ”4A558...”?
See on /.git/objects/4A/558...

This structure is too heavy?

The answer is no thanks to the ”Zlib” compression system that Git
uses to compress the data and maintain the correct weight.

Demonstration:
$ sudo apt install qpdf
$ zlib-flate -uncompress < FILE

Amélie Ledein Tutorial October 9, 2020 24 / 31



Some questions

How find a particular object?
Thanks to SHA1, in particular: .git/objects/
Example: How find the blob ”4A558...”?
See on /.git/objects/4A/558...

This structure is too heavy?
The answer is no thanks to the ”Zlib” compression system that Git
uses to compress the data and maintain the correct weight.

Demonstration:
$ sudo apt install qpdf
$ zlib-flate -uncompress < FILE

Amélie Ledein Tutorial October 9, 2020 24 / 31



Some questions

How find a particular object?
Thanks to SHA1, in particular: .git/objects/
Example: How find the blob ”4A558...”?
See on /.git/objects/4A/558...

This structure is too heavy?
The answer is no thanks to the ”Zlib” compression system that Git
uses to compress the data and maintain the correct weight.

Demonstration:
$ sudo apt install qpdf
$ zlib-flate -uncompress < FILE

Amélie Ledein Tutorial October 9, 2020 24 / 31



Sommaire

1 Git

2 GitHub

Amélie Ledein Tutorial October 9, 2020 25 / 31



Git and GitHub/GitLab

Amélie Ledein Tutorial October 9, 2020 26 / 31



Graphical interface

See current code

See each commit

See each issue

Do integration continuous

etc.

Amélie Ledein Tutorial October 9, 2020 27 / 31



Continuous integration - Testing

Amélie Ledein Tutorial October 9, 2020 28 / 31



Gitter

Amélie Ledein Tutorial October 9, 2020 29 / 31



Zulip

Amélie Ledein Tutorial October 9, 2020 30 / 31



References

Interactive tutorial:

learngitbranching.js.org

Cheat sheet:

https:

//education.github.com/git-cheat-sheet-education.pdf

(English version)
https://training.github.com/downloads/fr/

github-git-cheat-sheet.pdf (French version)
https://ndpsoftware.com/git-cheatsheet.html

(Interactive one - English, French, Chinese, Spanish, German, Korean)

Reference book : http://git-scm.com/book

(https://git-scm.com/book/fr/v2/ in French)

Amélie Ledein Tutorial October 9, 2020 31 / 31

learngitbranching.js.org
https://education.github.com/git-cheat-sheet-education.pdf
https://education.github.com/git-cheat-sheet-education.pdf
https://training.github.com/downloads/fr/github-git-cheat-sheet.pdf
https://training.github.com/downloads/fr/github-git-cheat-sheet.pdf
https://ndpsoftware.com/git-cheatsheet.html
http://git- scm.com/book
https://git-scm.com/book/fr/v2/

	Git
	Git in a nutshell
	Basic commands
	Branching
	Data structures

	GitHub

