Software Engineering at MPRI - Tutorial on

the version control system git, and its extensions

Amélie Ledein
ledein@lsv.fr

October 9, 2020

Amélie Ledein Tutorial October 9, 2020 1/31

Introduction

Don't forget ...

Amélie Ledein Tutorial October 9, 2020 2/31

Introduction

Don't forget ...
e Rigor

— Code, methodology, specifications and tests

Amélie Ledein Tutorial October 9, 2020 2/31

Introduction

Don't forget ...
e Rigor
— Code, methodology, specifications and tests
o Adaptability
— Components could be re-used in a (slightly different) context.

Amélie Ledein Tutorial October 9, 2020 2/31

Introduction

Don't forget ...
e Rigor
— Code, methodology, specifications and tests
o Adaptability
— Components could be re-used in a (slightly different) context.
o Modularity

— Segment project in modules with clearly defined interfaces.
— Develop and test independently, facilitate re-use and change.

Amélie Ledein Tutorial October 9, 2020 2/31

Introduction

Don't forget ...
e Rigor
— Code, methodology, specifications and tests
o Adaptability
— Components could be re-used in a (slightly different) context.
o Modularity

— Segment project in modules with clearly defined interfaces.
— Develop and test independently, facilitate re-use and change.

@ Abstraction

— Do not specify implementation details, i.e. things that can easily
change.

Amélie Ledein Tutorial October 9, 2020 2/31

Introduction

Don't forget ...
e Rigor
— Code, methodology, specifications and tests
o Adaptability
— Components could be re-used in a (slightly different) context.
o Modularity

— Segment project in modules with clearly defined interfaces.
— Develop and test independently, facilitate re-use and change.

@ Abstraction

— Do not specify implementation details, i.e. things that can easily
change.

OK, but how can you share your code?

Amélie Ledein Tutorial October 9, 2020 2/31

Introduction

Don't forget ...
e Rigor
— Code, methodology, specifications and tests
o Adaptability
— Components could be re-used in a (slightly different) context.
o Modularity

— Segment project in modules with clearly defined interfaces.
— Develop and test independently, facilitate re-use and change.

@ Abstraction

— Do not specify implementation details, i.e. things that can easily
change.

OK, but how can you share your code?
o USB-key

Amélie Ledein Tutorial October 9, 2020 2/31

Introduction

Don't forget ...
e Rigor
— Code, methodology, specifications and tests
o Adaptability
— Components could be re-used in a (slightly different) context.
o Modularity

— Segment project in modules with clearly defined interfaces.
— Develop and test independently, facilitate re-use and change.

@ Abstraction

— Do not specify implementation details, i.e. things that can easily
change.

OK, but how can you share your code?

o USB-key

Amélie Ledein Tutorial October 9, 2020 2/31

Introduction

Don't forget ...
e Rigor
— Code, methodology, specifications and tests
o Adaptability
— Components could be re-used in a (slightly different) context.
o Modularity

— Segment project in modules with clearly defined interfaces.
— Develop and test independently, facilitate re-use and change.

@ Abstraction

— Do not specify implementation details, i.e. things that can easily
change.

OK, but how can you share your code?
o USB-key

o Email

Amélie Ledein Tutorial October 9, 2020 2/31

Introduction

Don't forget ...
e Rigor
— Code, methodology, specifications and tests
o Adaptability
— Components could be re-used in a (slightly different) context.
o Modularity

— Segment project in modules with clearly defined interfaces.
— Develop and test independently, facilitate re-use and change.

@ Abstraction

— Do not specify implementation details, i.e. things that can easily
change.

OK, but how can you share your code?
o USB-key
o Emait

Amélie Ledein Tutorial October 9, 2020 2/31

Introduction

Don't forget ...
o Rigor
— Code, methodology, specifications and tests
o Adaptability
— Components could be re-used in a (slightly different) context.
o Modularity

— Segment project in modules with clearly defined interfaces.
— Develop and test independently, facilitate re-use and change.

@ Abstraction

— Do not specify implementation details, i.e. things that can easily
change.

OK, but how can you share your code?
o USB-key
o Emait
@ Dropbox, Google Drive, etc.

Amélie Ledein Tutorial October 9, 2020 2/31

Introduction

Don't forget ...
o Rigor
— Code, methodology, specifications and tests
o Adaptability
— Components could be re-used in a (slightly different) context.
o Modularity

— Segment project in modules with clearly defined interfaces.
— Develop and test independently, facilitate re-use and change.

@ Abstraction

— Do not specify implementation details, i.e. things that can easily
change.

OK, but how can you share your code?
o USB-key
o Emait
o Dropbox—Google Driveete.

Amélie Ledein Tutorial October 9, 2020 2/31

The answer is ...

Amélie Ledein Tutorial October 9, 2020 3/31

or any version control systems (VCS).
(systémes de gestion de version, in French)

Amélie Ledein Tutorial October 9, 2020 3/31

Sommaire

O Git
o Git in a nutshell
@ Basic commands
@ Branching
@ Data structures

Amélie Ledein Tutorial October 9, 2020 4/31

Sommaire

O Git

@ Git in a nutshell

Amélie Ledein Tutorial October 9, 2020 5/31

What is a version control system?

Amélie Ledein Tutorial October 9, 2020 6/31

What is a version control system?

@ Software system that allows you to maintain and manage all versions
of a set of files.

Amélie Ledein Tutorial October 9, 2020 6/31

What is a version control system?

@ Software system that allows you to maintain and manage all versions
of a set of files.
@ Why a version management system?
e Revolve easily to a previous version.
o Follow the evolution of the project over time.
o Allow parallel work on disjointed parts of the project and manage the
competing modifications.
o Facilitate the detection and correction of errors.
e etc.

Amélie Ledein Tutorial October 9, 2020 6/31

What is a version control system?

@ Software system that allows you to maintain and manage all versions
of a set of files.
@ Why a version management system?
e Revolve easily to a previous version.
o Follow the evolution of the project over time.
o Allow parallel work on disjointed parts of the project and manage the
competing modifications.
o Facilitate the detection and correction of errors.

@ git

@ An example:
— A free and open source distributed version control system (DVCS)
— Designed to handle everything from small to very large projects

with speed and efficiency
Amélie Ledein Tutorial October 9, 2020 6/31

Git in detail

(Zone d’index)

Amélie Ledein Tutorial October 9, 2020 7/31

: On your computer

Index
(Zone d’index)

o Stash (remise): A place to hide modifications while you work on
something else.

Amélie Ledein Tutorial October 9, 2020 7/31

: On your computer

(Zone d’index)

o Stash (remise): A place to hide modifications while you work on
something else.
e Workspace (espace de travail): Local checkout.

Amélie Ledein Tutorial October 9, 2020 7/31

: On your computer

(Zone d’index)

o Stash (remise): A place to hide modifications while you work on
something else.

e Workspace (espace de travail): Local checkout.

e Index (zone d’index), staging area, staged files or (current
directory) cache: Files you want to commit. Before you " commit”
(checkin) files, you need to first add them to the index.

Amélie Ledein Tutorial October 9, 2020 7/31

: On your computer

(Zone d’index)

o Stash (remise): A place to hide modifications while you work on
something else.

e Workspace (espace de travail): Local checkout.

e Index (zone d’index), staging area, staged files or (current
directory) cache: Files you want to commit. Before you " commit”
(checkin) files, you need to first add them to the index.

o Local repository (dépot local): A subdirectory named .git that
contains all of your necessary repository files - a Git repository
skeleton.

Amélie Ledein Tutorial October 9, 2020 7/31

: On your computer

(Zone d’index)

o Stash (remise): A place to hide modifications while you work on
something else.

e Workspace (espace de travail): Local checkout.

e Index (zone d’index), staging area, staged files or (current
directory) cache: Files you want to commit. Before you " commit”
(checkin) files, you need to first add them to the index.

o Local repository (dépot local): A subdirectory named .git that
contains all of your necessary repository files - a Git repository
skeleton.

e Remote/upstream repository (dépot distant): Versions of your
project that are hosted on the Internet or network, ensuring all your
changes are available for other developers.

The default name is origin.
Amélie Ledein Tutorial October 9, 2020 7/31

Sommaire

O Git

@ Basic commands

Amélie Ledein Tutorial October 9, 2020 8/31

Index
(Zone d’index)

git clone <url>

git fetch

git add <file(s) or dir>

gitadd -u

gitrm <ﬁ1e[s]i.

gitmv <file(s)>

git commit [-m ‘<msg>’] git push

git reset <file(s)>

git commit -a |[-m ‘<msg>"] I

Amélie Ledein Tutorial October 9, 2020

Synchronization with the remote repository

$ git clone <url>
Retrieve an entire repository from hosted location via URL.
$ git fetch <alias>
Fetch down all the branches from that Git remote.
$ git merge <alias/<branch>
Merge a remote branch into your current branch to bring it up to
date.
$ git pull
Fetch and merge any commits from the tracking remote branch.

Amélie Ledein Tutorial October 9, 2020 10/31

98ca9

commit
tree
parent
author
committer

The initial commit

size
92ec2

Scott
Scott

Snapshot A

of my project

34ac2

commit size
tree 184ca
parent 98ca%9
author Scott
committer Scott
g #1328 - stack
certain con

Fixed

Snapshot B

f3

Bab

commit size
tree 6de24

parent
author
committer

formats

34ac2
Scott
Scott

lity to add new
central interface

Snapshot C

Octobe

r 9, 2020 11

Amélie Ledein

Make modifications

$

git add <file(s)>

Add a file (or several) as it looks now to your next commit (stage).
git rm <file(s)>

Delete the file (or several) from the project and stage the removal for
commit.

git mv <old-name-file> <new-name-file>

Rename the file and stage the renaming.

git mv <existing-path> <new-path>

Change an existing file path and stage the move.

git reset <file(s)>

Unstage a file (or several) while retaining the changes in working
directory.

git commit [-m "<descriptive message>]"

Commit your staged content as a new commit snapshot.

git push <alias> <branch>

Transmit local branch commits to the remote repository branch.

Amélie Ledein Tutorial October 9, 2020 12/31

Exercise 1

1. Clone the repository from
https://github.com/amelieled/SE_GIT_MPRI.git

2. Add at least 5 new items in the grocery list.
3. Fix the 5 errors.

4. Add a new section.

Amélie Ledein Tutorial October 9, 2020 13 /31

https://github.com/amelieled/SE_GIT_MPRI.git

Informative commands

@ Setup:
Configuring user information used across all local repositories.
$ git config --global user.name "[firstname lastname]"
Set a name that is identifiable for credit when review version history.
$ git config --global user.email "[valid-emaill"
Set a email address that will be associated with each history marker.
Note : export EDITOR=emacs (or vim, etc.)
To configure correctly your editor with Git.
@ To collect information:
$ git status
Show modified files in working directory, staged for your next commit.
$ git diff
Diff of what is changed but not staged.
$ git diff --staged
Diff of what is staged but not yet committed.

Amélie Ledein Tutorial October 9, 2020 14 /31

Sommaire

O Git

@ Branching

Amélie Ledein Tutorial October 9, 2020 15/31

$ git branch
List your branches.
A star (*) will appear next to the currently active branch.

$ git branch <branch-name>
Create a new branch at the current commit.

$ git branch -d <branch-name>
Delete the specified branch.

$ git checkout <branch-name>
Switch to another branch and check it out into your working directory.

$ git merge <branch-name>
Merge the specified branch’s history into the current one.

$ git log
Show all commits in the current branch’s history.

Amélie Ledein Tutorial October 9, 2020 16 /31

Gitk - Graphical interface

® update comment
?srgs pull request #287 from Rehan-MALAK/syntax-tools-doc
vscode highlighting : start from scratch
vim/emacs and documentation synchronized with parser
Merge pull request #284 from Rehan-MALAK/vscode-debug
{Isp] structure of .vscode/ directory
Merge pull request #280 from folanquir271
Merge branch master' into 271
doc it vicode version
indent
extra rsdeﬂmtmn of Array.pp
indentatior
Werge remote-tracking branch mef27 into 27
Merge branch 'master' into 271
doc vscode: do make clean first
fixindentation
doc: const > constant
pure: const -> constant
Merge remote-tracking branch 'lp/master” into 271
ignore npm-debug.lo
doc: vscode plugin requires npm and node-typescript
Merge pull request #281 from Rehan-MALAK/lsp-makefile
[lsp] add Makefile

Id SHAL :

T c
Recherche), | | commit |contient :

Frédéric Blanqui <frederic.blanqui@in
Frédéric Blanqui <fblanqui@users.nor
Rehan MALAK <rehan.malak@inria.fr>
Rehan MALAK <rehan malak@inria.fr>
Emilio Jesus Gallego Arias <e+git@xa(
Rehan MALAK <rehan.malak@inria.fr>
Fréderic Blanqui <fblanqui@users.nor
Frédéric Blanqui <fblanquiGusers.nor
Frédéric Blanqui <frederic.blanqui@in
Frédéric Blanqui <frederic.blanqui@in
Frédéric Blanqui <frederic.blanqui@in
Frédéric Blanqui <frederic.blanqui@in
Fréderic Blanqui <frederic.blanqui@in
Frédéric Blanqui <fblanquiBusers.nor
Fréderic Blanqui <frederic.blanqui@in
Frédéric Blanqui <frederic.blanqui@in
Fréderic Blanqui <frederic.blanqui@in
Frédéric Blanqui <frederic.blanqui@in
Frederic Blanqui <frederic.blanqui@in
Frédéric Blanqui <frederic. blanqui@in
Frederic Blanqui <frederic.blanqui@in
Frédéric Blanqui <fblanquiBusers.nor

n MALAK <rehan.malak@inria.fr>

201911
201911
201911
201911
201911
201811
201911
201811
201911
201811
201911
201811
201911
201811
201911
201811
201911
201811
201911
201911
201911
201911

201911

-2111:35:00
-2111:03:01
19 20:42:00
19 20:04:59
1915:30:48
1913:14:18
1712:21:04
17 12:20:20
15 18:06:49
16 22:51:50
16 19:30:08
16 19:38:01
15 15:58:01
15 14:15:54
15 13:56:52
15 15:56:14
15 14:43:12
15 13:50:52
15 13:47:45
15 13:46:30
15 13:45:04
1513:11:48
15 13:00:55

Rechercher | |

@ Diff " Ancienne version Nouvelle version

Lignes de contexte: |3 21 [Ignorer les

Bract

4 Patch Arbre

<JfTous Tes champs

d'espace [différence par ligne

inductive Expr
| Lit : Nat - Expr
| Add : Expr - Expr - Expr
| If : BExpr ~ Expr - Expr - Expr
with BExpr : TYPE =

| BLit : Bool - BExpr
| And : BEXpr - BEXpr - BEXpr
| Not : BEXpr - BEXpr
| Equal : Expr - Expr ~ BExpr
**theoren"*

Lp]

Or if you prefer:

Amélie Ledein

git log -—-graph.

Tutorial

<t
src/corefhandle.ml
srcfcorefinductive. ml
srcfcorefparser.ml
src/corefpretty.ml
src/corefsr.ml
src/corefterms.ml

October 9

2020

0]

[T

Examining logs, diffs and object information

$ git log branchB..branchA
Show the commits on branchA that are not on branchB.

$ git log —-follow <file>
Show the commits that changed file, even across renames.

$ git diff branchB...branchA
Show the diff of what is in branchA that is not in branchB.

$ git log --stat -M
Show all commit logs with indication of any paths that moved.

$ git show <SHA>
Show any object in Git in human-readable format.

— Easier on Github (See later)

Amélie Ledein Tutorial October 9, 2020 18 /31

Sommaire

O Git

@ Data structures

Amélie Ledein Tutorial October 9, 2020 19/31

SHAL1 is a hashing algorithm taking an input up to 254 bits, and returns a
unique sequence of 40 hexadecimal characters.

I
—SHap

toto.ml
% ” —SHAL ” 1caea35t.5b4t?si1 o
titi.ml

@ “ SHA1
tata.ml

By hashing the contents of a file, Git obtains a series of unique digits
symbolizing the file. Then, Git backs up only the files which are different
hash (Git does not care about the names of the files, it only considers the

content.).
Amélie Ledein Tutorial October 9, 2020 20/31

There are four Git objects:

The Blob (Binary Large Object): It more commonly represents a file.

The Tree: It more commonly represents a directory or folder of your
application.

Its content is the list of SHALs of Blobs or other Trees that it can
contain. What gives a tree structure of files.

The Commit: This is the complete state of your project at a given
moment, i.e. a snapshot.

[ts content is the SHAL of the source Tree, and various information
such as the name of the commit, the name of the author, the date,
etc.

The Tag: This is an object used to qualify a particular commit by
giving it a comment.

Amélie Ledein Tutorial October 9, 2020 21/31

An example

98ca9..
eB8455. .
commit | size -
™ odezs.. blob size
tree 0de24
. = LICENSE:
parent il tree | size
(The MIT License)
author
Scoth blob | e8455 | README Copyright (c) 2087 Tom Preston-
committer | Scott -
tree |10afg | lib Permission is hereby gronted,
my commit message goes here 1 ree of charge, to ony persen of
and it is really, really cool ‘
10af9 bc52a. .
tree | size blob SIZS
- require "grit/index’
blob |be52a (mylib.rb regquire "grit/status’
tree |b70£8 |inc
1 module Grit
closs << self
attr_accessor :debug
b70£8..
ladla..
tree | size -
blob size
blob |0adla|tricks.rb
reguire 'arit/; ruby/reposi

require 'grit/git-runy/File_i

madule Grit
module Tricks

Each element has a unique SHAL.

Amélie Ledein Tutorial October 9, 2020 22/31

How Git stores its information?

Only thanks to the directory .git at the root of your project.

o config: file relating to the configuration of the Git environment, such
as information about the developer (name, email, etc.);

@ description: contains information about your project;

@ objects/: it is in this directory that all Git objects are stored
(commits, tags, trees, blobs);

e refs/*: contains information on local branches of the repository;
o logs/*: contains log messages;

o index: file containing information about the status of the next
commit.

@ HEAD: pointer to current branch;

@ hooks/: folder containing "hooks” or "triggers”, i.e. actions/scripts
that can be executed in pre or post condition.

Amélie Ledein Tutorial October 9, 2020 23 /31

Some questions

Amélie Ledein Tutorial October 9, 2020 24 /31

Some questions

o How find a particular object?

Amélie Ledein Tutorial October 9, 2020 24 /31

Some questions

o How find a particular object?
Thanks to SHA1L, in particular: .git/objects/

Amélie Ledein Tutorial October 9, 2020 24 /31

Some questions

o How find a particular object?
Thanks to SHAL, in particular: .git/objects/
Example: How find the blob "4A558...”?

Amélie Ledein Tutorial October 9, 2020 24 /31

Some questions

o How find a particular object?
Thanks to SHAL, in particular: .git/objects/
Example: How find the blob "4A558...”?
See on /.git/objects/4A/558...

Amélie Ledein Tutorial October 9, 2020 24 /31

Some questions

o How find a particular object?
Thanks to SHAL, in particular: .git/objects/
Example: How find the blob "4A558...”?
See on /.git/objects/4A/558...

@ This structure is too heavy?

Amélie Ledein Tutorial October 9, 2020

Some questions

o How find a particular object?
Thanks to SHAL, in particular: .git/objects/
Example: How find the blob "4A558...”?
See on /.git/objects/4A/558...

@ This structure is too heavy?
The answer is no thanks to the "Zlib” compression system that Git
uses to compress the data and maintain the correct weight.

Amélie Ledein Tutorial October 9, 2020 24 /31

Some questions

o How find a particular object?
Thanks to SHAL, in particular: .git/objects/
Example: How find the blob "4A558...”?
See on /.git/objects/4A/558...

@ This structure is too heavy?
The answer is no thanks to the "Zlib” compression system that Git
uses to compress the data and maintain the correct weight.

Demonstration:
$ sudo apt install qpdf
$ zlib-flate -uncompress < FILE

Amélie Ledein Tutorial October 9, 2020 24 /31

Sommaire

@ GitHub

Amélie Ledein Tutorial October 9, 2020

Git and GitHub/GitLab

B data
\=]some-data.csv
R

script_v1.R
=|script_v2_best.R
=|script_2020-08-10.R
9 doc
=report_v0.Rmd
=report_vl_SR_DB.Rmd
=Jreport_backup_2011.Rmd

Amélie Ledein

Tutorial

GitHub

GitLab

October 9, 2020 26 /31

Graphical interface

Pull requests _ Issues Explore

& Deducteam / lambdapi

Dunwaten ~ 14 Vrsar 113 ¥ Fork 24

<> Code (© Issues 54 11 Pullrequests 14 © Actions ("] Projects 00 wiki © security 122 Insights
P masr < | 1 3bancies G2 el e
D authors WP} induction (#407) 1. ~ 53cco77 9daysago <) 3,246 commits
docs [WIP] Induction (#407) 9 days ago
editors [WIP] Induction (#407) 9 days ago
libraries File management and module mapping improvement (#289) 7 months ago
sie [WIP] Induction (#407)

See current code

See each commit

See each issue

Do integration continuous

etc.

Amélie Ledein Tutorial

9 days ago

About

Proof assistant based on the AT~
calculus modulo rewriting

prootchecker proot-assistant rewriing

dependentiypes logical-ramework

M Readme

& View license

October 9, 2020 27 /31

Continuous integration - Testing

Travis CI

Amélie Ledein Tutorial October 9, 2020 28 /31

GITTER

#9 lambdapi

#8 lambdapi-emacs-mode

Deducteam,

and it can get complicated to debug (Why3 users had issues with this when testing my server)

Doesit really? It seemed to me that some language server can be used with anyIsp client ('m not clear on the

architecture of LSP, so I might confuse things up)
If we develop extensions, yep :)

Gabriel Hondet
Ah right right

brielhdt

Emilio Jests Gallego Arias @ejg
I'think that for now the only extension is this extra goals request

soitis notlike super-complex

DIVERIO Diego @vycastor

When developing an emacs mode, you also have to provide some configuration to the LSP client you're using

underneath, but it's pretty basic

Emilio Jesdis Gallego Arias
yup, thatwas one of the advantages of eglot, it kinda worked "config-free”

DIVERIO Diego @ astor
Soto support two different clients, we'll have to provide two emacs configuration, even if short

v 6070 BOTTOM

October 9

Zulip

Zulip - Finite_Set_Coq
File Edit View History Window Tools Help

G Gapintervalslist | @2 | (nodescription)

Allmessages CEDRERABIRD) Notifications gitlab
e ——— g oL _bates
LA] Amélie 3 commits to branch master. Commits by Amélie) Ledein (2) and camel
i)
s Update?()
© Recent topics Test de preuve equiv : echec ()
Ancien fichier avec une pseudo-proof (is_empty_spec) faite par quivalence surles arbres

Amélie
D Mentions Catherine

* Starred messages

]Amélie 1 commit to branch master. Commits by camel (1.

Etat de l'art Add fonctor interface (

Extensions
Gap intervalslist
Notifications gitlab GIL_bot &8
general 1 Amélie 1 commit to branch master. Commits by camel (1).
o Theterm j hastype U.Zfinite_subsetwhile itis expected to have type Z. ()
Interface foncteur

Realintervals list

GIL_bot &3

]Amélie 1 commit to branch master. Commits by camel (1.
« Aide Chantal()

1 Amélie 1 commit to branch master. Commits by camel (1),
« Problem elt_listand structure.elt_list ()

1 Amélie 1 commit to branch master. Commits by camel (1),
« New interface foncteur ()

Drafts (0) New private message Reply

Amélie Ledein Tutorial October 9, 2020 30/31

References

@ Interactive tutorial:
e learngitbranching. js.org
@ Cheat sheet:

o https:
//education.github.com/git-cheat-sheet-education.pdf
(English version)

e https://training.github.com/downloads/fr/
github-git-cheat-sheet.pdf (French version)

e https://ndpsoftware.com/git-cheatsheet.html
(Interactive one - English, French, Chinese, Spanish, German, Korean)

@ Reference book : http://git-scm.com/book
(https://git-scm.com/book/fr/v2/ in French)

Amélie Ledein Tutorial October 9, 2020 31/31

learngitbranching.js.org
https://education.github.com/git-cheat-sheet-education.pdf
https://education.github.com/git-cheat-sheet-education.pdf
https://training.github.com/downloads/fr/github-git-cheat-sheet.pdf
https://training.github.com/downloads/fr/github-git-cheat-sheet.pdf
https://ndpsoftware.com/git-cheatsheet.html
http://git- scm.com/book
https://git-scm.com/book/fr/v2/

	Git
	Git in a nutshell
	Basic commands
	Branching
	Data structures

	GitHub

