TD6

Chargé de TD : Adrien Koutsos

adrien.koutsos@lsv.fr

Exercice 1

Montrer que le problème suivant est indécidable :

Donnée: f une fonction primitive récursive; **Question:** f est elle identiquement nulle?

Exercice 2

Montrer que les fonctions suivantes sont récursives primitives, avec la convention que 0 correspond à false, et que tout les autres entiers correspondent à true.

- Les connecteurs logiques \land, \lor, \neg .
- La soustraction, avec la convention que a b = 0 si b > a.
- L'égalité Eq et la fonction être pair Even.
- La division par deux $div_2(n) = m$ if n = 2.m or n = 2.m + 1.

Exercice 3 (Schéma de minimisation bornée)

Étant données ψ et ξ récursives primitives, on définit

$$\phi(\vec{n}) = \min_{m \le \psi(\vec{n})} (\xi(\vec{n}, m) = 0)$$

Montrer que ϕ est récursive primitive – on pourra renvoyer une valeur quelconque quand le minimum n'est pas atteint.

Exercice 4 (Codage des paires)

Montrer qu'il existe $J:\mathbb{N}^2\to\mathbb{N},$ et $K,L:\mathbb{N}\to\mathbb{N}$ telles que :

- 1. J, K et L sont récursives primitives,
- 2. J est une bijection et
- 3. on a K(J(x,y)) = x et L(J(x,y)) = y pour tous x,y.

Exercice 5 (Itération)

Soit g,h des fonctions primitives récursives, montrer que la fonction $It_{g,h}$ définie comme $It_{g,h}(n,x)$ =

```
r = g(x)
for i = 1 to n do
  r = h(r,i-1);
done
return r
```

est primitive récursive.

Exercice 6

Montrer que la classe des fonctions primitives récursive est la plus petite classe contenant les fonctions de base et close par composition et itération.

Exercice 7 (Fibonacci)

Montrer que la fonction définie comme suit est récursive primitive :

$$f(0) = 1$$

 $f(1) = 1$
 $f(n+2) = f(n+1) + f(n)$

Exercice 8

Montrer les propriétés suivantes des fonctions $(\psi_n)_{n\in\mathbb{N}}$ de la hiérarchie de Grzegorczyk:

- Pour tout $n, m, \psi_n(m) \ge 1 + m$ Pour tout n, la fonction ψ_n est strictement croissante.
- Pour tout $m, n, k, \psi_n(m) + k \le \psi_{n+k}(m)$.