Tree Automata

http://list. mpri.master.univ-paris7.fr/wws/info/cours-1-18
cours—-1-180mpri.master.univ-paris7.fr

Florent Jacquemard
Stefan Ciobaca

INRIA Saclay & LSV (CNRS/ENS Cachan)

florent.jacquemard@inria.fr
ciobaca@lsv.ens-cachan.fr

cours-1-18@mpri.master.univ-paris7.fr
florent.jacquemard@inria.fr
ciobaca@lsv.ens-cachan.fr

TATA book http://tata.gforge.inria.fr
(chapters 1, 2, 3, 7, 8)

Tree

Automata
Techniques and
Applications

HUBERT COMON MAX DAUCHET REMI GILLERON
FLORENT JACQUEMARD DENIS LUGIEZ CHRISTOF LODING
SoPHIE TISON MARC TOMMASI

http://tata.gforge.inria.fr

Part |

Motivations and Plan

Plan

Motivations
Logic on trees
Automated deduction
Strategies of Evaluation
Program Verification
XML Processing

Logic

example:
tEVra(r)=3Jyy >z Aby)

> automata = semantic tools for deciding logics
(e.g. monadic second order logic).

» caracterization of tree models with automata
= "compilation” formula — automaton

> decision of the satisfiability
= emptiness decision for the automaton

Automated deduction

trees = terms in first order logic (Herbrand models)
Automatization of inductive reasoning, inductive reducibility

Example :

axioms: 04+ z =z, s(x) +y = s(z +y).
x + 0 = x is an inductive theorem: it is valid in the initial model

» domain of the initial model: 0, s(0), s(s(0)),...
» = irreducible terms (normal forms)

> terms generated by the tree grammar N :=0 | s(N).

x + y is inductively reducible.

Automated deduction

Example :

axioms: p(s(z)) =z, s(p(z)) ==z

O+z=2z sx)+y=s(z+y), pl)+y=plx+y).
x + 0 = z is an inductive theorem.

Normal forms = domain of the initial model, generated by:

NO = 0,
Ns := s(Ng) | s(
N, :

I
w0
—~
=
N
w0
—~
=z =2
=
~—

Evaluation Strategies

Evaluation in functional programming languages
Strategies for reduction by rewriting

» terms in normal form (irreducible)
> terms normalizable

» existence of needed redex

Example :

V(T,x9) =T, V(z1, T) = T: no needed redex.
Jdx1, Vg, V(z1,22) = T (evaluation of x2 not necessary)
Jxg, V1, V(x1,22) = T (evaluation of x; not necessary)

test: existence of a V(z1,Q) and a V(Q, z2) evaluated to T.
with the construction of a tree automaton and emptiness decision.

tous ces langages sont reconnaissable par TA.

Program Verification

Regular Model Checking:

Model Checking techniques for infinite state systems.

static analysis of safety properties using symbolic reachability
analysis techniques.

Abstract models

» Pushdown systems for sequential programs
with procedure calls

» Petri nets for multi-threaded programs
(without procedure calls)

Generalization: process algebra

p=0[X|p-plplp

Program verification

pu=0[X|p-plplp

v

0: null process (termination)
» X: program point
> p - p: sequential composition

v

p||p: parallel composition
Transition rules:

» procedure call: X — Y - Z (Z = return point)

v

conditional continuation: Y; - Z — t;

dynamic thread creation: X — Y'||Z (Z = return point)
handshake : X|Y — X'||Y’

actually - is modulo A and || modulo AC = unranked tree model

v

v

Verification

Same technique applies to the verification of other infinite-states
systems.

» configuration / state = tree

> process,

» message exchanged in a protocole,

> local network with a tree shape,

> tree data structure in memory, with pointers
(e.g. binary search trees)...

» set of configurations = tree language L
» transition relation between configurations (post)
> Safety: pOSt*(Linit) N Lerror = @

Web data (XML Document)

<rss version="2.0">

<title>My blog</title>

<link>http://myblog.blogspot.com</link>

<description>bla bla bla</description>

<item>
<title>Concert</title>
<link>http://myblog.blogspot.com/me/Mon blog/...</link>
<guid>b6f7dalaa-ab93-4a2e</guid>
<pubDate>Fri, 21 Mar 2009 14:40:02 +0100</pubDate>
<description>...</description>

<image href="..."></image>

<comment link="..." count="0" enabled="0">...</comment>
</item>
<item>

<title>Journée de surf</title>

</item>
</rss>

Web data

rss
tltleffﬁﬁ:igzieffszfffgzg— ltem‘\\\\\\\\\\\ item

. title llnk guld pubDate desc image comment ...

HTML Document

<html>
<head>...</head>
<body>
<h1>...</h1>
<table>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>...</td>
</tr>
</table>
</body>
</html>

html
~ ~
head body
| ~
hi table
tr tr tr
7N\ I I
td td td td

XML Document Processing

documents = unranked trees

conformity

» class of documents with a predefined structure (valid
documents)

ex:

<table>
<tr> <td> cll </td> <td> cl12 </td> </tr>
<tr> <td> c21 </td> <td> c22 </td> </tr>
</table>

» defined by a schema (DTD, XML schema...) = tree language

» All the schema formalisms in use currently correspond to tree
automata.

XML Documents

ranked ‘ unranked
tree automata schemas
(DTD, XML schema, Relax NG)
membership validation
emptiness query satisfiability
inclusion schema entailment
tree transducers, transformation languages
rewrite systems (XSLT)
rewrite closure type inference

Plan

Overview

Trees

v

finite ranked trees (terms in first order logic)
> finite unranked ordered trees

» finite unranked unordered trees

v

infinite trees...

= several classes of tree automata.

Properties

» determinism,
» Boolean closures,

» closures under transformations
(homomorphismes, transducers, rewrite systems...)
minimization,
» decision problems, complexity,
» membership,
emptiness,
universality,
inclusion, equivalence,
emptiness of intersection,
finiteness...

vV Yy VY VvYy

» pumping and star lemma,

> expressiveness, correspondence with logics.

Plan

1. finite ranked tree automata

. correspondence with the monadic second order logic of the

tree (Thatcher and Wright's theorem).

. finite unranked ordered tree automata = Hedge Automata

Application to XML document processing.

. finite unranked unordered tree automata

= Presburger automata

alternating and 2 ways automata (on words and trees)
representation of tree automata as Horn clause sets

infinite word automata (conditions of Miiller and Biichi),
infinite tree automata (Rabin automata).

Part 1l

Finite Ranked Trees

Terms (in first order logic)

Plan

Terms and Rewriting

Signature

Definition : Signature
A signature X is a finite set of function symbols each of them with
an arity greater or equal to 0.

We denote ¥; the set of symbols of arity .

Example :
{+:2,5:1,0:0}, {A:2,v:2,-:1,T,L:0}.

We also consider a countable set X’ of variable symbols.

Terms

Definition : Term

The set of terms over the signature X and X is the smallest set
T (3, X) such that:

- Yo CT(E,X),
- XCT(EX),
-if feX,andif ty,...,t, € T(X,X), then
flt,...,tp) € T(X, X).
The set of ground terms (terms without variables, i.e. T(X,0)) is
denoted T (X).

Example :

z, =(@), A(V(z, =), ().

Terms (2)

A term where each variable appears at most once is called linear.
A term without variable is called ground.

Depth h(?):
» h(a) =h(z)=0ifa € Xy, x € X,
> h(f(t1,...,tn)) = max{h(t1),..., h(t,)} + 1.

Positions

A term t € T(3,X) can also be seen as a function from the set of
its positions Pos(t) into X U X.
The empty position (root) is denoted ¢.
Pos(t) is a subset of N* satisfying the following properties:
» Pos(t) is closed under prefix,
» for all p € Pos(t) such that t(p) € £,, (n > 1),
{pj € Pos(t) ‘j € N} = {pl,....,pn},
> every p € Pos(t) such that t(p) € XU X is maximal in
Pos(t) for the prefix ordering.

The size of ¢ is defined by ||t|| = |Pos(t)].

Subterm t|, at position p € Pos(t):
>t =t
> f(tl, ce 7tn)|ip = ti|p-

The replacement in ¢ of |, by s is denoted t[s],.

Positions (example)

Substitutions, Contexts

Definition : Substitution

A substitution is a function of finite domain from X into 7 (X, X).
We extend the definition to 7 (X, X) — T (X, X) by:

flt1,... th)o = f(tio,...,tho) (n>0)

Definition : Contexte
A context is a linear term.

The application of a context C' € T(%,{z1,...,z,}) to n terms
t1,...,tpn, denoted C[ty,...,t,], is Co with
o={z1—t1,...,zy — tp}.

Term Rewriting

A rewrite system R is a finite set of rewrite rules of the form
¢ —rwith 0,r € T(X,X).

The relation — is the smallest binary relation containing R, and
closed under application of contexts and substitutions.

i.e. s 5 tiff 3p € Pos(s),{ —r € R,0, s|p, = Lo and

t = s[rol,.

We note % the reflexive and transitive closure of =7

Example :
R = {+(0,2) = 2, +(5(x), 5) = s(+(z y)}-
+(s(s(0)), +(0, s(0))) = +(s(s(0)), 5(0))
= s(—l—(s(O),s(O)))
= s(s(+(0,s(0))))
=+ s(s(s(0)))

Plan

Definitions and Expressiveness

Bottom-up Finite Tree Automata

Definition : Tree Automata

A tree automaton (TA) over a signature ¥ is a tuple A =
(2,Q,QF, A) where Q is a finite set of states, Qf C Q is the sub-
set of final states and A is a set of transition rules of the form:
flqr,---,qn) = qwith f €%, (n >0) and q1,...,¢n,q € Q.

The state ¢ is called the head of the rule.

We say that a ground term ¢ € T(X) is accepted by A in the state
q iff t %) q.

The language of A in the state ¢ is
L(Aq):={teT(2)|t % q}.

The language of A is L(A) := U L(A, ") (regular language).
quQf

Tree Automata: example 1

Example :

Y={A:2,v:2,-:1,T,L:0}

Tree Automata: example 2

Example :

Y={A:2,v:2,-:1,T,L:0}
TA recognizing the ground instances of =(—(z)):

L = q T

~(q) — 9 = ¢

A= | %,{¢,9-, o}, {ar}, ﬁ(éq; — Zf ? q
Vi — ¢ Mea) — g

Example :

Ground terms embedding the pattern —(=(x)): AU {=(¢r) —
ar, V(g5 ¢x) = a5, V(qx, a¢) = af, ...} (propagation of gf).

Linear Pattern Matching

Proposition :

Given a linear term ¢ € T(X, X), there exists a TA A recognizing
the set of ground instances of t: L(A) = {to | o : X — T(2)}.

Regular Langages

Other definition (recursive) of L(A, q):

L(A,q) = {a€Xy|a—qgeA}
U U f(L(.A, q1),---,L(A, Qn))

g, yqn)—g€A

with f(L1,...,Ly) == {f(t1,... . tn) | t1 € L1,... ,ty € Ly }.

Runs

Definition : Run

A run of a TA (,Q,QF,A) on a term t € T(X) is a function
r : Pos(t) — @ such that for all p € Pos(t), if t(p) = f € X,
r(p) = q and r(pi) = q; for all 1 < i < n, then f(q1,...,q,) = q €
A.

The run 7 is accepting if 7(¢) € QF.
L(A) is the set of ground terms of 7 (X) for which there exists an
accepting run.

Pumping Lemma

Lemma : Pumping Lemma

Let A= (%,Q,Q%A).
L(A) # 0 iff there exists t € L(A) such that h(t) < |Q].

Lemma : Iteration Lemma

For all TA A, there exists k > 0 such that for all term t € L(.A) with
h(t) > k, there exists 2 contexts C, D € T (3,{z1}) with D # x;
and a term u € T(X) such that ¢ = C'[D[u]] and for all n > 0,
C[D"[u]] € L(A).

usage: to show that a language is not regular.

Non Regular Languages

We show with the Pumping and Iteration lemmatas that the
following tree languages are not regular:

» {f(t,t) |teT(D)}
> {f(g"(a),h"(a)) | n >0},
» {teT(®) | |7703)| is prime}.

Epsilon-transitions

We extend the class TA into TAe with the addition of another type
of transition rules of the form ¢ = ¢’ (e-transition).
with the same expressiveness as TA.

Proposition : Suppression of e-transitions

For all TAe A., there exists a TA (without e-transition) A" such
that L(A) = L(A.). The size of A is polynomial in the size of A..

pr.. We start with A. and we add f(q1,...,q,) — ¢ if there exists
fla,...,qn) = qand ¢ = ¢.

Top-Down Tree Automata

Definition : Top-Down Tree Automata

A top-down tree automaton over a signature X is a tuple A =
(2,Q,Q™Mt, A) where Q is a finite set of states, QM C (@ is the
subset of initial states and A is a set of transition rules of the form:
q— f(q1,-.-,qn) with f €%, (n >0) and q1,...,¢n,q € Q.

A ground term t € T(X) is accepted by A in the state ¢ iff ¢ <>t

The language of A starting from the state ¢ is
L(A,q) —{tET ‘q—>t}

The language of A is L(A) := U L(Q,q").
qieQinit

Top-Down Tree Automata (expressiveness)

Proposition : Expressiveness

The set of top-down tree automata languages is exactly the set of
regular tree languages.

Remark: Notations

In the next slides of this chapter,

TA = Bottom-Up Tree Automata

Plan

Determinism and Boolean Closures

Determinism

Definition : Determinism

A TA A is deterministic if for all f € X,,, for all states q1,...,qy
of A, there is at most one state ¢ of A such that A contains a

transition f(q1,...,qn) — q.

If A is deterministic, then for all ¢ € T(X), there exists at most
one state g of A such that t € L(A,¢q). It is denoted A(t) or A(t).

Completeness

Definition : Completeness

A TA A is complete if for all f € X,,, for all states ¢1,...,q, of A,
there is at least one state ¢ of A such that A contains a transition

flat, - an) = q.

If Ais complete, then for all ¢ € T(X), there exists at least one
state g of A such that ¢t € L(A, q).

Completion

Proposition : Completion

For all TA A, there exists a complete TA A, such that L(A.) =
L(A). Moreover, if A is deterministic, then A, is deterministic.
The size of A, is polynomial in the size of A, its construction is
PTIME.

pr.. add a trash state ¢, .

add a trash state ¢q; for missing left members + propagation of
qr: f(@e s @ @i G-, 0:) = i, ¢ € QU {qL}

Lemma
forallt € T(X), t € L(A) ifft € L(A.).

pr.:

= is immediate

< by contradiction, an accepting run r of A. on t
cannot contain ¢ . Otherwise, r(¢) = ¢, which is
not final.

Determinization

Proposition : Determinization

For all TA A, there exists a deterministic TA Ay such that
L(Aget) = L(A). Moreover, if Ais complete, then A4 is complete.
The size of Ay is exponential in the size of A, its construction is
EXPTIME.

pr.: subset construction.

Exercice :
Determinise and complete the previous TA (pattern matching of
~(=(2))):
— q — q
ﬁ(Q) - q (Q) - q-
A=|%{q,¢- 9} {a}, (g-) — g —(gr) — g
Vig,9) = ¢ AMNg,9) — g
V(g ax) — a V(g q) — g

subset construction: transitions

f(S1, ..., Sn) = {¢| 31 € S1...3qn € Sn. flq1,--.,qn — q € A}

where 51,...,5, C Q.

Lemma
forallt € T(X),te L(Ay,S) iff S={qe@Q|te L(Aq)}.

pr.:: induction on t.
REM: (see below) deterministic and complete TA = finite
Y-algebra with homomorphism & : T(X) — Q. L(A) = 6—1(Qs).

Top-Down Tree Automata and Determinism

Definition : Determinism

A top-down tree automaton (3,Q,Q™t, A) is deterministic if
Q™ = 1 and for all state ¢ € @ and f € X, A contains at
most one rule with left member ¢ and symbol f.

The top-down tree automata are in general not determinizable .
Proposition :

There exists a regular tree language which is not recognizable by a
deterministic top-down tree automaton.

pr.. L = {f(a,b),f(b,a)}.

Boolean Closure of Regular tree Languages

Proposition : Closure
The class of regular tree languages is closed under union, intersection
and complementation.

op. technique time of calcul
and size of automata
U disjoint U linear
N Cartesian product quadratic
- determinization, completion, exponential
invert final / non-final states (lower bound)
Remark :

For the deterministic TA, the construction for the complementation
is polynomial.

Plan

Decision Problems

Cleaning

Definition : Clean
A state g of a TA A is called inhabited if there exists at least one
t € L(A,q). A TA is called clean if all its states are inhabited.

Proposition : Cleaning

For all TA A, there exists a clean TA A jeqn such that L(Agean) =
L(A). The size of A jeqr is smaller than the size of A, its construc-
tion is PTIME.

pr.. state marking algorithm, running time O(|Q| x ||A[]).

state marking: we construct M C @ containing all the inhabited
states.

> start with M = ()

» for all f € X, of arityn >0, and all ¢1,...,q, € M such that
there exists f(q1,...,q,) — ¢ in A, add ¢ to M (if it was not
already).

We iterate the last step until a fixpoint M, is reached. We can
show that g € M, iff existst € L(A,q).

Membership Problem

Definition : Membership

INPUT: a TA Aover 3, aterm ¢t € T(X).
QUESTION: ¢ € L(A)?

Proposition : Membership

The membership problem is decidable in polynomial time.

Exact complexity:
» non-deterministic bottom-up: LOGCFL-complet
» deterministic bottom-up: unknown (LOGDCFL)
» deterministic top-down: LOGSPACE-complete.

if A is deterministic, we compute in polynomial time the unique
run of A sur t.

if A is non-deterministic, we compute in polynomial time the
unique run of Ay, on t, computing the necessary states on the fly.
the number of states computed is < ||||. construction of r:

bottom relabeling of ¢:
» for p leaf position, 7(p) = {q | t(p) = ¢ € A}
» for p internal node, t(p) of arity n,

r(p) = {q | 3q1 € r(p1),...,3qn € r(pn) t(p)(q1,...,qn) — q € A}

LOGCFL: problems reducible in log-space into
context-free language, between NL (NlogSPACE) and
NC1 (Boolean circuits of depth log(n)).

LOGDCFL: problems reducibles in log-space into
deterministic context-free language.

Emptiness Problem

Definition : Emptiness

INPUT: a TA A over X.
QUESTION: L(A) =07

Proposition : Emptiness

The emptiness problem is decidable in linear time.

pr.:
quadratic: clean, check if the clean automaton contains a final
state.

linear: reduction to propositional HORN-SAT.

linear bis: optimization of the data structures for the cleaning
(exo).

Remark :
The problem of the emptiness is PTIME-complete.

PTIME-complete: réduction of the problem called generalisation.
The generalisation: problem is PTIME-hard.

generalisation-IN: @ finite, f: Q@ X Q@ — Q, V C Q,
q€Q.

generalisation-QUESTION: ¢ € f*(V, V) (smallest
set, containing V, closed by appl. of f.)

Instance-Membership Problem

Definition : Instance-Membership (IM)

INPUT: a TA Aover ¥, atermt € T(X,X).
QUESTION: does there exists o : vars(t) — T(X) s.t. to € L(A)?

Proposition : Instance-Membership

1. The problem IM is decidable in polynomial time when ¢ is
linear.

2. The problem IM is NP-complet when A is deterministic.
3. The problem IM is EXPTIME-complete in general.

Problem of the Emptiness of Intersection

Definition : Emptiness of Intersection

INPUT: n TA Ay,..., A, over 3.
QUESTION: L(A;)N ﬂL(n) =07

Proposition : Emptiness of Intersection
The problem of the emptiness of intersection is EXPTIME-complete.

pr.. EXPTIME: n applications of the closure under N and
emptiness decision.

EXPTIME-hardness: APSPACE = EXPTIME
reduction of the problem of the existence of a successful run

(starting from an initial configuration) of an alternating Turing
machine (ATM) M = (T, S, s¢, S¢,0).

Let M = (T, S, sg, S, 9) be a Turing Machine (T': input alphabet,
S: state set, s¢ initial state, Sf final states, J: transition relation).
First some notations.

» a configuration of M is a word of I'*I'gI'* where
I's ={a®|ael,s e S} In thisword, the letter of I'g
indicates both the current state and the current position of
the head of M.

> a final configuration of M is a word of I"*I"g,I'*.
> an initial configuration of M is a word of I's,I'*.

> a transition of M (following &) between two configurations v
and v’ is denoted v > v/

The initial configuration vg is accepting iff there exists a final
configuration vs and a finite sequence of transitions vg > ... > vf?
This problem whether vg is accepting is undecidable in general.

If the tape is polynomially bounded (we are restricted to
configurations of length n = |vg|¢, for some fixed ¢ € N), the
problem is PSPACE complete.

M alternating: S' = S5 Sy.

Definition accepting configurations:

» every final configuration (whose state is in Sf) is accepting

» a configuration ¢ whose state is in S5 is accepting if it has at
least one successor accepting

> a configuration ¢ whose state is in Sy is accepting if all its
successors are accepting

Theorem (Chandra, Kozen, Stockmeyer 81)
APSPACE = EXPTIME

In order to show EXPTIME-hardness, we reduce the problem of
deciding whether v is accepting for M alternating and
polynomially bounded.

Hypotheses (non restrictive):

> 59 € S3or sg € SyNSe
> sg is non reentering (it only occurs in vg)

> every configuration with state in Sy has 0 or 2 successors

v

final configurations are restricted to bg,b* where b € I is the
blank symbol.

v

St is a singleton.

2 technical definitions: for k < n,

view(v, k) = v[k|v[k + 1] ifk=1
v[k — 1]v[k] ifk=n
v[k — 1]v[k]v[k + 1] otherwise

view(v, vy, vg, k) = (view(v, k), view(vy, k), view (va, k))

v > (v, v9) iff
1. if v[k] € I'g, then Jw > wy, ws s.t.
view (v, v1,v9, k) = view(w, wy, wa, k)
2. ifvlk] =a €T, then v1[k] € {a} Uag and vy =€ or
vo[k] € {a} Uas.
first item: around position k, we have two correct transitions of

M. This can be tested by the membership of view(v, v1, v2, k) to a
given set which only depends on M.

Lemma
v >y, vy iffVk <n vy (v, v9).

Term representations of runs:
rem. a run of M is not a sequence of configurations but a tree of
configurations (because of alternation).
Signature X: (): constant, I': unary, S: unaires, p binary.
Notation: if v = ay ...ay, v(z) denotes ap(an—1(...a1(x))).
Term representations of runs:

» ve(p(0, D)) with v final configuration,

» v(p(t1,t2)) with v V-configuration, t; = v (p(t1.1,t1.2)),
to = vh(p(ta,1,t2,2)) are two term representations of runs, and
vy D> v, vy > V)

> v(p(t1,0)) with v 3-configuration, t; = v} (p(t1,1,t12)) term
representations of run, and vy > v’l.

notations for t; = v} (p(t1,1,t12)):
> head(t1) = v;
> left(t)) =t11
> right(t1) = t12.

This recursive definition suggest the construction of a TA
recognizing term representations of successful runs. The difficulty

is the conditions vq > v}, ve > v}, for which we use the above
lemma.
We build 2n deterministic automata :
for all 1 < k < n, Ay recognizes
» ve(p(0,0)) (recall there is only 1 final configuration by hyp.)
» v(p(t1,t2)) such that t; # () and
> v >y (head(t1), head(t2))
> left(t1) € L(Ax), right(t1) € L(Ay) U {0},
> 1o = 0 or |eft(t2) € L(Ak), I’ight(tg) S L(Ak) U {@}
idea: A}, memorizes view(head(t1), k) and view(head(t2), k) and
compare with view(v, k).
for all 1 < k < n, Aj, recognizes the terms vy (p(t1,%2)) with
t1 = to = 0 (if so universal and final) or to = () (if s existential,
not final) and t1,%2 € T', minimal set of terms without s
containing

> 0
» v(p(t1,t2)) such that t; # () and

> v 1>y (head(t1), head(t2))
> left(t1) € T, right(t1) € T,

> 1o = 0 or |eft(t2) eT, I’ight(tg) eT

n
representations of successful runs = L(Ap) N L(AL).
k

I-—1

Problem of Universality

Definition : Universality
INPUT: a TA A over X.
QUESTION: L(A) = T(X)

Proposition : Universality
The problem of universality is EXPTIME-complete.

pr.. EXPTIME: Boolean closure and emptiness decision.

EXPTIME-hardness: again APSPACE = EXPTIME.

Remark :
The problem of universality is decidable in polynomial time for the
deterministic (bottom-up) TA.

pr.. completion and cleaning.

we build A recognizing the terms which are not representing a
successful run of M. A is (necessarily) ND, this makes the
construction simpler than for Theorem on emptiness of
intersection.

A is the union of
» Aj;: error in encoding (ill-formed term)
» Ajy: not initial (use hyp. of Theorem) of N)
» Ajs: non final "leaf’ (use hyp. of Theorem () of N)

» Ay: problem with state V or 3.
We use the hyp. that 3 configurations have successor and V
configurations have 0 or 2 successors.
Ay detect a wrong number of successors.

> Ajs: exists wrong transition.
top-down ND, choose 1 k, 1 configuration v, 1 "successor” v;
(1 <14 <2)and test that v oy v;.

Problems of Inclusion an Equivalence

Definition : Inclusion

INPUT: two TA A; and A5 over 3.
QUESTION: L(A;) C L(A»)

Definition : Equivalence

INPUT: two TA A; and A5 over 3.
QUESTION: L(A;) = L(A»)

Proposition : Inclusion, Equivalence

The problems of inclusion and equivalence are EXPTIME-complete.

pr.. L(Ay) C L(Ag) iff L(A;) N L(Ag) = 0.
EXPTIME-hardness: universality is 7(X) = L(A3)?

Remark :
If Ay and Aj are deterministic, it is O (]|A1|| x [Az2]]).

Problem of Finiteness

Definition : Finiteness

INPUT: aTA A
QUESTION: is L(.A) finite?

Proposition : Finiteness

The problem of finiteness is decidable in polynomial time.

pumping: L(A) is of infinite cardinality iff

Jt € L(A),|Q| < h(t) < 2|Q| (but the test is not polynomial).
polynomial: search for the existence of a loop

dqg inhabited (quadratic test), gs € Qf, C, D contexts s.t.

> Clg] <o q (test in O(|A])) and

» D[q] == g5 (test in O(||A])).

Plan

Minimization

Theorem of Myhill-Nerode

Definition :
A congruence = on T(X) is an equivalence relation such that
for all f € X, if s1 = t1,..., Sy = tp, then f(s1,...,8,) =
ft, ... tn).

Given L C T(X), the congruence =y, is defined by:

s =g tif for all context C € T (%, {«}), C[s] € Liff C[t] € L.

Theorem : Myhill-Nerode
The three following propositions are equivalent:
1. L is regular

2. L is a union of equivalence classes for a congruence = of
finite index

3. = is a congruence of finite index

Proof

1 = 2. A deterministic, def. s =4 t iff A(s) = A(¢).

2 = 3. we show that if s = ¢ then s =, t, hence the
index of =1, < index of = (since we have =C=y).

If s =t then C[s] = C[t] for all C[] (induction on
C), hence C[s] € Liff C[t] € L, i.e. s = t.

3 = 1. we construct Amin = (Qmin,anin,Am;n),

> (Qmin = equivalence classes of =,
> anin = {[s] | s € L},
> Apin = {f([sl], . [Sn]) — [f(sl, . ,Sn)]}

Clearly, Amin is deterministic, and for all s € T(X),
Amin(s) = [s]L, i.e. s € L(Amin) iff s € L.

Note that the # of states of A, is < # of states of
Afa. Ast. L(A) =L, because =4 is finer that
=r4) (EAC=L(4) hence index = 4) < index =4).

Minimization

Corollary :

For all DTA A = (£,Q,Qf, A), there exists a unique DTA Amin
whose number of states is the index of =4 and such that

L(Amin) = L(A).

Let A= (2,Q,Qf,A) be a DTA, we build a deterministic minimal
automaton A, as in the proof of 3 = 1 of the previous theorem
for L(A) (i.e. Qmin is the set of equivalence classes for =, 4)).

We build first an equivalence ~ on the states of Q:
> gm0 q iffg,q € Qfougq,d € Q\Q"

> g~y ¢ iff gy g et VEES,,
VQ1,---,(]2‘—1,(]2‘+1,---,(]nEQ (1§Z§n)v

A(f(q17 <5 4i—1,9,4i4+1, - - - 7qn)) ~k A(f(qu B >Qi—17q/7qi+1>' B

Let =~ be the fixpoint of this construction, = is =L(A) hence
Amin = (Z Qmmanma mln) with :

>CQmin:{ N‘qEQ}
> Qmin = {ld'l~ | " € Q"},
> Amin = {f((h %77[qn]%) - [f(QI>7qn)]z}

recognizes L(A). and it is smaller than A.

9

Algebraic Characterization of Regular Languages

Corollary :
A set L C T(X) is regular iff there exists
> a X-algebra Q of finite domain Q,
» an homomorphism h : T(X) — A,
» a subset Qf C @ such that L = h~1(QF).

operations of Q:
for each f € 3, there is a function f<: Q" — Q.

proof:

=-: deterministic and complete TA A = finite
Y-algebra with domain @ 4, and homomorphism

h:T(2) = Q. L(A) = h=1(Qs).

<: define s = t iff h(s) = h(t).

It is a congruence of finite index and L is a union of
equivalence classes of =.

Then we use 2 = 1 of Th. Myhill Nerode.

Plan

Tree Transformations
Tree Homomorphisms
Tree Transducers

Tree Transformations, Verification

» formalisms for the transformation of terms (languages):
rewrite systems, tree homomorphisms, transducers...

= transitions in an infinite states system,

= evaluation of programs,

= transformation of XML documents, updates...
» problem of the type checking:

given:

» Lin CT(X), (regular) input language

» h transformation 7(X) — T(X')

» Lout C T(X') (regular) output language

question: do we have h(Liy) € Loyt?

Tree Homomorphisms

Definition :
h:T(X)— T
R(f(t1,.. tn)) == te{m1 < h(t1),...,zn < h(tn)}
for f € X, with ty € ’T(E’,{azl,...,azn}).

h is called

> linear if for all f € X, £ is linear,
» complet if for all f € X, vars(ty) = {z1,..., 20},
» symbol-to-symbol if for all f € X, height(ts) = 1.

Homomorphisms: examples

Example : ternary trees — binary trees

Let ¥ = {a :0,b:0,9:3}, ¥ ={a:0b:0,f:2} and
h:T(X) = T(X') defined by

>ty = f(x1, f(x2,23)).
h(g(a, g(b,b,b),a)) = f(a, f(f(f(b, f(b,D))),a))

Example : Elimination of the A
Let X={0:0,1:0,-:1,vV:2,A:2},3% ={0:0,1:0,—:1,V:
2} and h: T(2) = T(X) with tpn = =(V(—(z1), 7 (z2))).

Closure of Regular languages under Linear Homomorphisms

Theorem :

If L is regular and h is a linear homomorphism, then h(L) is regular.

This is not true in general for the non-linear homomorphisms.

Example : Non-linear homomorphisms
Y={a:0,g:1,f:1}, ¥ ={a:0,9:1,f :2},
h:T(E)— T&) with t, = a, tg = g(z1), t; = f'(z1,21).
Let L = {f(g"(a)) ! n >0},

h(L) = {f'(g"(a),g"(a)) | n > 0} is not regular.

proof theorem (the construction is in [TATA])

let A= (Q,Qf, A) be clean and s.t. L(A) = L, we build

A = (Q,Qf, A") with e-transitions s.t. L(A") = h(L(A)).

For each 7 = f(q1,...,qn) = g € A, with ty € T(X', &},) (linear),
let Q" = {q, | p € Pos(ty)}, and A, defined as follows: for all

p € Pos(ty):

» if ty(p) = g € X5, then g(qp,, -, qp,,) —) € A,
> if t(p) = x;, then ¢; = q € Ay,

> q" S qeA,.

» Q' =QUU,en Q"
> Qf = Qr,

» A= UTEA AT'

h(L) = L(A).

Closure of Regular Languages under Inverse
Homomorphisms

Theorem :

For all regular languages L and all homomorphisms h,
h=Y(L) is regular.

A= (Q',Qf, A’) complete deterministic such that L(A") = L.
We construct A = (Q, Qf, A) with Q = Q' U {s} where s ¢ @,
Qf = Qf and A is defined by:

v

for a € X, ifta%qthena%qEA;

» for f € X, withn >0, for p1,...,p, € Q, if

ti{x1 < p1,. . @ < pu} —p> g then f(q1,...) 2 g €A
where ¢; = p; if z; occurs in £y and ¢; = s otherwise;

» fora € X, a — s € A;

v

for f € ¥, where n >0, f(s,...,s) = s € A.

— q iff h(t) ALA q.

Closure under Homomorphisms

Theorem :

The class of regular tree languages is the smallest non trivial classe
of sets of trees closed under linear homomorphisms and inverse ho-
momorphisms.

A problem whose decidability has been open for 35 years:

INPUT: a TA A, an homomorphism h
QUESTION: is h(L(.A)) regular?

Tree Transducers

Definition : Bottom-up Tree Transducers
A bottom-up tree transducer (TT) is a tuple U = (£,%/,Q, QF, A)
where

» X, Y are the input, resp. output, signatures,

» () is a finite set of states,

» Qf C Q is the subset of final states
» A is a set of transduction (rewrite) rules of the form:

» f(qi(x1),. .., qn(xn)) = ¢q(u) with f € X, (n > 0),
qi,---,qn,q € Q, x1,...,T, pairwise distinct and
we T {z1,...,zn}), or

» q(x1) = ¢ (u) with ¢,¢' € Q, u e T(X', {z1}).

A TT is linear if all the u in transduction rules are linear.

The transduction relation of U is the binary relation:

LU) = {(t,1) | t 7= q(t"),t € T(£),¢ € T(Y'),q € Q"}

Example 1

Ur=({f:1La:0{g:2,f,f :1,a:0},{¢.d'}.{d}. A1),

Example 2

(Zin) Yin U {f/ : 1}7 {Q) q/v qf}) {qf}) AQ);

{f:2,9:1,a:0},

n —

by
Uy =

g™ (a),m >0}

{{f(t1,t2), f'(tr) | L2

L(Us)

Languages

Theorem :
» The domain of a TT is a regular tree language.

» The image of a regular tree language by a linear TT is a
regular tree language.

Transducers and Homomorphisms

An homomorphism is called delabeling if it is linear, complete,
symbol-to-symbol.

Definition : Bimorphisms

A bimorphism is a triple B = (h,h', L) where h, h’ are homomor-
phisms and L is a regular tree language.

L(B) = {(h(t),h'(t)) | t € L}

Theorem :
TT = bimorphisms (h, ', L) where h delabeling.

TATA book http://tata.gforge.inria.fr

chapter 3:
» automata for tuples of
trees,
Tree > logic WSES,
Automata » applications.
Techniques and
Applications

HuBERT COMON Max DAUCHET REMI GILLERON
FLORENT JACQUEMARD DENIS LUGIEZ CHRISTOF LODING
SOPHIE TISON MARC TOMMASI

http://tata.gforge.inria.fr

Logic and Automata

> logic for expressing properties of labeled binary trees

= specification of tree languages, example:
tE=Vra(z) = 3yy >z Aby)

» compilation of formulae into automata
= decision algorithms.

» equivalence between both formalisms
[Thatcher & Wright's theorem].

Plan

WSES: Definition

Interpretation Structures

L := set of predicate symbols Py, ... P, with arity.

A structure M over L is a tuple
M= (D,PM,... . PM)

where

» D is the domain of M,

» every PM (interpretation of P;) is a subset of D*%(F)
(relation).

Term as structure

> signature, k = maximal arity.

Ly :={=,<,5,..., 5% La | a € X}

tot € T(X), we associate a structure t over Ly
t:= (Pos(t),=,<,S1,..., Sk LL, Lj,--+)

where
» domain = positions of ¢ (Pos(t) C {1,...,k}*)
» = equality over Pos(t),
» < prefix ordering over Pos(t),
» S; ={{p,p-i) | p,p-i € Pos(t)} (i™" successor position),
> Lo = {p € Pos(t) | t(p) = a}.

FOL with £ successors

» first order variables x, . ..

» form = a::y‘a:<y
Si(z,y) ! ‘ Sk(z,y) ‘ Ly(x) a€X
form A form ‘ form V form ! —form
Jx form ‘ Va form

Notation: ¢(z1,...,Zm),
where x1,...,x,, are the free variables of ¢.

WSES: syntax

» first order variables x, . ..
» second order variables X,Y ...
» form = x:y‘x<y‘x€X
Sl(aj’y) | ‘ Sk(ﬂ?,y) ‘ La(aj) a€l
form A form ‘ form V form | —form
‘ dz form ‘ 34X form | Vx form ‘ VX form

Notation: ¢(z1, ..., Tm, X1,...,Xn),
where x1,...,%m, X1,...,X,, are the free variables of ¢.

WSES: semantics

v

teT(X),

» valuation o of first order variables into Pos(t),
» valuation ¢ of second order variables into subsets of Pos(t),
> o0 Ex=yiffo(z) =0(y),

> 10,0 =a <yiff o(x) <prefiz 0(y),

> o0 Exe Xiff o(z) € 0(X),

> t0,0 = Si(z,y) iff o(y) = o(x) -1,

> t.0,0 = Ly(z) iff t(o(x)) = a ie o(x)e L,
> 1,00 E 1 A2 ifft, 0,0 = ¢1 and t,0,0 |= ¢2,
t,o,0 = o1V oo ifft,o,0 = ¢y or t,0,0 = ¢a,
t,0,0 |= 0 iff £,0,0 £ 6,

v

v

WSES: semantics (quantifiers)

> t,0,0 = dz ¢ iff x ¢ dom(o), x free in ¢
and exists p € Pos(t) s.t. t,0 U{z — p},d = ¢,
> t,0,0 =Vr ¢ iff x ¢ dom(o), x free in ¢
and for all p € Pos(t), t,0 U {z — p},d = ¢,
> t.0,0 =3X ¢ iff X ¢ dom(d), X free in ¢
and exists P C Pos(t) s.t. t,0,0 U{X — P} = ¢,
> t,0,0 EVX ¢iff X & dom(6), X free in ¢
and for all P C Pos(t), t,0,0 U{X — P} = ¢.

WSES: languages

Definition : WSkS-definability
For ¢ € WSEKS closed (without free variables) over Ly,

¢):={teT(Z)|tF ¢}

Example :
Y ={a:2,b:2,c:0}. Language of terms in T(X)
» containing the pattern a(b(x1,x2),x3):
Jz3y Si(z,y) A La(z) A Le(y)
» such that every a-labelled node has a b-labelled child.
¥23y La(x) = Vioy Siw,y) A Lo(y)
» such that every a-labelled node has a b-labelled descendant.
Vady Lo(z) = x < y A Ly(y)

WSES: examples

» root position: root(z) = -Jyy < x
» inclusion: X CY =Ve(ze X =z€Y)
> intersection: Z=XNY=Ve(zeZ < (reXANzxe€Y))
» emptiness: X =) =Verz ¢ X
> finite union'

X = UX /\X CX) AV (a:EX:>\/a:€X

i=1 i=1

> partltlon.

n—1 n

X1,..., X, partition X = X = UX/\/\ /\ XinX; =10
=1 =1 j=i+1

WSES: examples (2)

> singleton:
sing(X) =X #0AVY (YCX = (Y =XVY =0))
» < (without <)

8
IN
<

Il

yeX
vX /\Vsz’(z’EX/\\/SZ-(z,z’)):>zeX
i<k
szreX

r<y = 3X (Vzze X = (37 \/Sz-(z',z)/\z'eX)\/z:x)
i<k

ANye X

Thatcher & Wright's Theorem

Theorem : Thatcher and Wright
Languages of WSkKS formulae = regular tree languages.
pr.: 2 directions (2 constructions):

» TA — WSKS,

» WSES — TA.

Plan

Automata — Logic

Regular languages — WSES languages

Let ¥ = {a1,...,an}.

Theorem :
For all tree automaton A over X, there exists ¢ 4 € WSES such that
L(¢a) = L(A).

= (E) Q) va A) with Q = {qO) s 7Qm}

¢4 existence of an accepting run of Aont e T(X).

¢.A =3Y,...3Y, ¢Iab()/\¢acc()/\(btro()/\(btr()

regular languages — WSES languages

<]5|ab(7): every position is labeled with one state exactely.

¢pa(Y)=vVe \/ zevin N (zeVim-zeY))
0<i<m 0<i,j<m
i#j
¢acc(Y): the root is labeled with a final state

Gacc(Y) = Vg root(zg) = \/ o €Y;

regular languages — WSES languages

b (Y): transitions for constants symbols

b (V) = N\ (VazL =V xeY)

a€Xg a—q; EA

¢ (Y'): transitions for non-constant symbols

¢ (Y) = /\ Vo Vy ... Yy,
fex;0<i<k
(Lf(a:) ANS1(z,y1) Ao A Sj(a:,yj))
J
\/ reYiNy €Yy N Ny; €Yy,
F(@iy i)2 GEA

Plan

Logic — Automata

Theorem Thatcher & Wright

Theorem :
Every WSES language is regular.

For all formula ¢ € WSKS over X (without free variables) there
exists a tree automaton Ay over 3, such that L(Ay) = L(¢).

Corollary :
WSES is decidable.
pr.: reduction to emptiness decision for 4.

Theorem Thatcher & Wright

Ay is effectively constructed from ¢, by induction.

» automata for atoms
= need of automata for formula with free variables.
it will characterize

» Boolean closures for Boolean connectors.

» 1 quantifier: projection.

Theorem Thatcher & Wright

When ¢ contains free variables, A, will characterize both terms
AND valuations satisfying ¢: L(Ay) = {(t,0,9) | t,0,0 = ¢}.
Below we define the product (¢, 0,9).

v for free second order variables:

teT(X)

§:{X1,..., Xy} s 2Pos®) 7 txdeT(Ex{0,1}")

arity of {a,b) in ¥ x {0,1}" = arity of a in X.

for all p € Pos(t), (t x 6)(p) = (t(p),b1,...,by,) where for all
1 < n,
» b, =1 ifp S 5(XZ),

» b; = 0 otherwise.

v free first order variables are interpreted as singletons.

WSES,

We consider a simplified language (wlog).

» no first order variables,
» only second order variables X,Y ...,
» form = XCY|Y=X-1|...|Y=X-k
| XCL, a€Xx
form A form ‘ form V form | —form
3X form | VX form

interpretation Y = X -i: X ={z}, Y ={y}andy =2 1.
ex: singleton

singleton(X) = 3Y (Y CXAY # XA
~Z(ZCXNZ#XNZ#Y))

WSES — WSES

Lemma :
For all formula ¢(x1,...,2m, X1,...,X,) € WSKS,
there exists a formula ¢/(X1,...,X] . X1,..., X,,) € WSES,
stt. t,0,0 = é(z1, ..y T, X1, -0, Xi)
ifft,0’Ud = ¢'(X1,..., X, X1,..., Xy), with o : X! — {o(z;)}.
pr.. several steps of formula rewriting:
1. elimination of <,
2. elimination of S;(z,y) (i < k), Ls(z) (a € X),

elimination of first order variables (use singleton(X)).

compilation of WSES, into automata

notation: Xy, := X x {0,1}™.

For all ¢(X1,...,X,) € WSkSy and m > n,
we construct a tree automaton [¢],, over Yy recognizing

{tx 6] 0:{X1,..., X} = 2P0t 6= o(Xy,..., X))}

projection, cylindrification

projection
projyt Upsn T Em) = T (X))
delete components n+1,...,m.

Lemma : projection

For all n <m, if L C T (X)) is regular then proj, (L) is regular.
cylindrification (m > n)
Cyln,m L C T(Z[n}) = {t € T(Z[m]) | p’f’Ojn(t) S L}

Lemma : cylindrification
For all n < m, if L C T(X,) is regular, then cyl,, ,,(L) is regular.

compilation: X; C X5

Automaton [X; C Xs]o:
> signature X5 = X x {0,1}2.
» states: qo
» final states: qq

» transitions:

(a,0,0)(q0,---,90) — o
a,0,1)(go,---,9) — qo
(a,1,1)(q0,---,90) — o

—

For m > 2,

[X1 C Xo]m := cyly,, ([X1 C Xa]2)

compilation: X; = X5 -1

Automaton [X; = Xa - 1]2:
> signature X5 = X x {0,1}2.
> states: qo,q1, g2
» final states: g9

> transitions:

(a,0,0)(q0,---,q0) - qo
(a,1,0)(qo,---,q0) - q
(a,0,1)(q1,90,- - -, q0) — Q2
(a,0,0)(qo,---,90,G2,90,---,90) — G2

For m > 2,

[Xo = X1 1] = cyzzm([[Xg =X -1])

compilation: X; C L,

Automate [X; C Lg]::
> signature X5 = X x {0,1}2.
» states: qo
» final states: qq

> transitions:
(a,0)(qo,---,q0) — o
(b,0)(q05---,90) — qo (b#a)
(a,1)(qo0s---,q0) — qo

For m > 1,

[X1 € Lalm := Cyll,m([[Xl - La]]l)

compilation: Boolean connectors

> [[gb(Xl, ..
[o(Xq,..., X

, n)\/ (X1, o, Xo)]m =
with m > m

o} :
zﬂm U)[[(b(Xla"an’)]]m
> [[¢(X1,)/\qb(Xl,...,Xn/)]]m =

)]]mm [[(b(Xlau'an/)]]m

[[¢(X17---7
with m > max(n,n’)
> [[_‘QS(le s ’Xn)]]m = T(Z[m]) \ [[qb(Xl, ..

for m > n.

, Xn)lm

compilation: quantifiers

v

[[Ean—i-l ¢(X17 cee 7Xn+1)]]n = pT’Ojn(M(Xla s aXn—i-l)]]n—i-l)
NB: this construction does not preserve determinism.

[[Ean+1 ¢(X1, e ,Xn+1)]]m =

cylmm([[EanH o(Xq,... ,Xn+1)]]n) for m > n.

V= -3

v

v

v

Theorem Thatcher & Wright

Theorem :

For all formula ¢ € WSSy over 3 without free variables, there
exists a tree automaton Ay over 3, such that L(Ay) = L(¢).

Ay = [¢]o can be computed explicitely!

Corollary :

For all formula ¢ € WSES over X without free variables there exists
a tree automaton Ay over X, such that L(Ag) = L(¢).

using translation of WSKS into WSS first.

Size of .AQ

Theorem : Stockmeyer and Meyer 1973

For all n there exists dz1—Jydxo—Iys . .. Iz, Iy, ¢ € FOL such
that for every automaton A recognizing the same language

osize(¢)
size(A) > 227 }n

Plan

Fragments and Extensions of WSES

WSES and FO

Using the 2 directions of the Thatcher & Wright theorem:
WSES > ¢p— A 3Y;...3Y, ¥
with ¢ € FOL.

Corollary :

Every WSKS formula is equivalent to a formula 3Y7 ... 3Y,, ¢ with
1 first order.

FO C WSKS

Proposition :
The language L of terms with an even number of nodes labeled by
a is regular (hence WSkES-definable) but not FO-definable.

pr.. with Ehrenfeucht-Fraissé games.

Ehrenfeucht-Fraissé games

goal: prove FO equivalence of finite structures
(wrt finite set of predicates L£).

Definition
for two finite L-structures A and B A =,,, B iff for all ¢ closed, of
quantifier depth m, A = ¢ iff B = ¢

Ehrenfeucht-Fraissé games

Gm (A, B)
1 Spoiler chooses a; € dom(2l) or by € dom(*B)
1" Duplicator chooses by € dom(B) or a1 € dom ()

m’ Duplicator chooses by, € dom(B) or a,, € dom(2)

Duplicator wins if {a3 + b1,...,am > by} is an injective partial
function compatible with the relations of 2 and B (VP € P,
Pm(ail, e ,ain) iff PB(bil, ey bzn))

= partial isomorphism.

Otherwise Spoiler wins.

Theorem : Ehrenfeucht-Fraissé
A =,, B iff Duplicator has a winning strategy for G,, (2, B).

Ehrenfeucht-Fraissé Theorem

more generally: equivalence of finite structures + valuation of n
free variables.

for two finite L-structures 2 and B and
at,...,an € dom(2l), B1,...,0n € dom(B), m >0,

Qlualu"'uan =m %7/617"'7/811
iff for all ¢(x1,...,x,) of quantifier depth m,

A 0, b 6(F) iff B, 0y = 6(7)
where o, = {x1 = a1,...,z, = an},

op = {z1— P1,..,Tn = Bn}
Games: the partial isomorphisms must extend
{Oél — ,81,...,Oén — ,Bn}

FO C WSkS
let ¥ ={a:1,1:0}.

Lemma :

For all m > 3 and all 4,5 > 2™ — 1,
Duplicator has a winning strategy for G,,(a’*(L),a’(L)).

Corollary :

The language L C T (X) of terms with an even number of nodes
labeled by a is not FO-definable.

» Star-free languages = FO definable holds for words
[McNaughtonPapert] but not for trees.

» It is an active field of research to characterize regular tree
languages definable in FO.
e.g. [Benedikt Segoufin 05] & locally threshold testable.

Restriction to antichains

Definition :

An antichain is a subset P C Pos(t) s.t. Vp,p' € P,

p£p andp ¥ p.

antichain-WSkS: second-order quantifications are restricted to
antichains.

Theorem :

If X1 = 0, the classes of antichain-WSkS languages and regular
languages over X conincide.

Theorem :
chain-WSKS is strictly weaker than WSKS.

MSO on Graphs

Weak second-order monadic theory of the grid
> finite alphabet,
Egrid = {:7S—>,ST,La | a < Z}

Grid G : N x N — X; Interpretation structure:

G = <NxN,:7x—|—17y+1,LaQ,LbQ,...>.

Proposition :
The weak monadic second-order theory of the grid is undecidable.

csq: weak MSO of graphs is undecidable.

MSO on Graphs (remarks)

» algebraic framework [Courcelle]:
MSO decidable on graphs generated by a hedge replacement
graph grammar = least solutions of equational systems based
on graph operations: || : 2, exch; ; : 1, forget; : 1, edge : 0,
ver : 0.

> related notion: graphs with bounded tree width.

» FO-definable sets of graphs of bounded degree = locally
threshold testable graphs (some local neighborhood appears n
times with n < threshold - fixed).

Undecidable Extensions

Left concatenation: new predicate

Sy ={{1-p)|p,1-pePos(t)}

Proposition :
WS2S + left concatenation predicate is undecidable.

Predicate of equal length.
Proposition :
WS2S + |z| = |y| is undecidable.

Plan

Monadic second-order logic of the infinite binary tree (S2S)

525

¥ finite alphabet (all symbols have arity 2),
EE = {:7<7517527La | ac E}

infinite binary tree ¢ : {1,2}* — X.
Set of infinite binary trees over ¥ is denoted 7% (X).

Interpretation structure associated to t € T%(X):

formulae: same syntax as WS2S.
S2S: interpretation (and quantification) sur des ensembles infinis.

525

> < y=x<yVIz(z-0<zAz-1<y)
> fini(X) =
VWY CXAY #0=
(Jy y minimal pour <., dansY A y maximal pour <, dans Y))

Proposition :
WS2S C S2S

WS2S langages: exemples

» Ty = arbres de T¥({0,1}) avec un chemin contenant un
nombre infini de 1.

$o(X1) = 3X (path(X)AVz (z € X = Ty (z < yAy € XAy € X1))

» T, = arbres de 7% ({0,1}) dont tous les chemins contiennent
un nombre fini de 1.

$1(X1) = ~¢o(X1) =
VX (path(X) = Jz(z e X AVy(z <yAye X =y ¢ Xy)))

Automates de Biichi
T“(X) est I'ensemble des arbres binaires infinis étiquetés par X
(alphabet fini).
Definition : Automate d'arbres de Biichi

Un automate de Biichi sur l'alphabet ¥ est un tuple A =
(Q,q', F,A) ol @ est un ensemble fini d'états, ¢ € Q est I'état
initial, ' C (@ est le sous-ensemble des états finaux et A est un
ensemble de régles de transition de la forme: ¢ — d(qo,q1) avec
deXetq,q,qn €Q.

Un calcul de A sur un arbre t € T¥(X) est un arbre r € T¥(Q)
respectant A: pour toute position p € {0,1}* de r,

r(p) — t(p)(r(p0),r(pl)) € A.

Le calcul 7 est acceptant ssi pour tout chemin (infini) 7 partant de
la racine de r, Inf(m) N F # 0

Inf () := {q €qQ ‘ 3%, 7w(1) = q}

Langages de Buchi: exemples

Soit ¥ = {a, b}.
1. arbres de T%(X) avec un nombre infini de a sur chaque
chemin,

2. arbres de T“(3) avec un chemin contenant un nombre infini
de a.

Automates de Rabin

Definition : Automate de Rabin

Un automate de Rabin sur I'alphabet ¥ est un tuple A =
(Q,q',9,A) ol Q est un ensemble fini d'états, ¢ € Q est I'état
initial, @ = {(L1,01),..., (Ln,Up)} (Vi < n, L;,U; C Q) et A
est un ensemble de regles de transition de la forme: ¢ — d(qo,¢1)
avecd € Y et q,q0,q1 € Q.

Un calcul r est acceptant ssi pour tout chemin infini 7 de r, il
existe i < n t.q. Inf(r)NL; =0 et Inf(w) NU; # 0.

Theorem : Théoreme de Rabin

Pour tout automate de Rabin A, il existe un automate de Rabin
reconnaissant 7% (X) \ L(A).

Rabin vs Buchi

Soit ¥ = {a, b}.
Le langage des arbres de T(X) dont tous les chemins contiennent
un nombre fini de a

» est Rabin-reconnaissable,

> n'est pas Biichi-reconnaissable.

S2S vs WS2S

Proposition :
Un sous-ensemble de 7%({0,1}") est un langage de Biichi
ssi il est défini par une formule de S25 de Ila forme

Y1... 3V oY1, ..., Y, Xy, ..., X,) avec ¢ € WS2S.

Corollary :
S2S ¢ WS2S

car les automates (d’arbres) de Biichi ne sont pas clos par
complément.

Proposition :

Un sous-ensemble L C 7% ({0,1}") est défini en WS2S ssi L et
T%({0,1}™) \ L sont des langages de Biichi.

Theorem :
Toute formule de S2S de la forme ¢(x1, . . ., z,,) se traduit en WS2S.

Decidable Extensions

» SEKS
> SwS

» théorie du second ordre monadique de fonctions d'arité 1 (sur
un domaine quelconque dénombrable).

Part IV

Unranked Ordered Labeled Trees

Hedge Automata (HA)

TATA book http://tata.gforge.inria.fr

chapter 8: Automata for Unranked Trees

Tree

Automata
Techniques and
Applications

HuBERT COMON Max DAUCHET REMI GILLERON
FLORENT JACQUEMARD DENIS LUGIEZ CHRISTOF LODING
SOPHIE TISON MARC TOMMASI

http://tata.gforge.inria.fr

ranked terms = first order terms over a signature
every symbols has a fixed arity

automated deduction, program analysis, evaluation strategies
in functional languages...

unranked terms = finite trees (directed, rooted) labelled over
a finite alphabet

one node can have arbitrarily (though finitely) many childrens
the number of children of a node does not depend on its label
Web data

Web data (XML Document)

<rss version="2.0">

<title>Mon blog</title>

<link>http://myblog.blogspot.com</link>

<description>bla bla bla</description>

<item>
<title>Concert</title>
<link>http://myblog.blogspot.com/me/Mon blog/...</link>
<guid>b6f7dalaa-ab93-4a2e</guid>
<pubDate>Fri, 21 Mar 2009 14:40:02 +0100</pubDate>
<description>...</description>

<image href="..."></image>

<comment link="..." count="0" enabled="0">...</comment>
</item>
<item>

<title>Journée de surf</title>

</item>
</rss>

Web data

rss
tltleffﬁﬁ:igzieffszfffgzg— ltem‘\\\\\\\\\\\ item

. title llnk guld pubDate desc image comment ...

HTML Document

<html>
<head>...</head>
<body>
<h1>...</h1>
<table>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>...</td>
</tr>
</table>
</body>
</html>

html
~ ~
head body
| ~
hi table
tr tr tr
7N\ I I
td td td td

XML Documents

» class of documents with a predefined structure (valid
documents)

ex:
<table>
<tr> <td> cll </td> <td> cl12 </td> </tr>

<tr> <td> c21 </td> <td> c22 </td> </tr>
</table>

» defined by DTD, XML schema... = tree language

XML Documents

ranked ‘ unranked
tree automata schemas
(DTD, XML schema)
membership validation
emptiness query satisfiability
inclusion schema entailment
tree transducers, transformation languages
rewrite systems (XSLT)
rewrite closure type inference

Plan

Unranked Ordered Trees

Unranked ordered trees

» > is a finite alphabet.
tree := a(hedge) (a€X)
hedge := tree*

v

a hedge can be empty. () is denoted by a.
The set of all unranked ordered trees over X is denoted /(X).
The set of hedges over X is denoted # ().

set of positions C N*: as for terms.

v

v

v

Example: tree of U(X)

html
~ ~
head body
I ~
a n1” table
! \
b tr’/// tr\\\\tr
/N I I
td td td td
| | ! |
c1 Co d e
positions
/) \
1
211 222

2211 2212 2221
| | |
22111 22121 22211

Example: language C U ()

v

Y = {a,b}.
L := terms of U(X)

> height at most 1,
> root is labelled by a,
» even number of leaves, all leaves labelled by b.

L = {a,a(bb),a(bbbd), ...}
finite description: L = a((bb)*)

v

v

v

Plan

Hedge Automata, Determinism

Hedge Automata (HA)

Definition : Hedge Automata

A Hedge Automaton (HA) over an alphabet ¥ is a tuple A =
(2,Q,Qf, A) where Q is a finite set of states, Qf C Q is the sub-
set of final states and A is a set of transition rules of the form:
a(L) — q with a € ¥ and L C Q* is a regular language.

A run of AontelU(X)is atree r € U(Q) such that
» r and t have the same domain,

» for all p € Pos(t), with t(p) = a, r(p) = q, there exists
a(L) — q € A such that r(pl)...r(pn) € L, where n is the
number of successors of p in Pos(t).

The run 7 is accepting (successful) iff r(e) € QF.

HA Languages

> language of A: L(A) is the set of terms on which there exists
an accepting run of A,

» language of A in state ¢ € Q: L(A, q) is the set of terms ¢
such that there exists a run r of A on ¢ with r(¢) = g,

> L(A) = | L(A.9).

q€Qs

» equivalently, L(A, q) is the smallest set of terms
a(ty,...,tn) € U(X) (n > 0) such that there exists a
transition a(L) — ¢, and states q1, ..., q, € @ with
ti€ L(A,q) st.i<mnand q...q, € L.

HA language: Example 1

v

Y = {a,b}.
L := terms of U(X)
> height 1,
» root is labelled by a,
» even number of leaves, all leaves labelled by b.

L = {a,a(bd),a(bbbd),...}.
finite description: L = L(A) with
A= (2, {90, %}, {aa}, {b = @, a((00)*) = @a}).

v

v

v

Boolean expressions with variadic A and V

» ¥ ={A,V,0,1},

> transitions:

0 — qo 1 - ¢
Ao (g0 | a1)*) — o Nargi) — @
V(o) — a0 V(@a(w|a)) = «

() — @ (1) —

> example: Boolean expression and associated run

\///<\/\\/ / \

/\ / I\ / I\ /\ /|\ /I\
101 01000 ¢ 9@ @1 9 @1 9 g Qo

HA language: Example 3

» ¥ ={a,b,c}.
» L := terms of U(X)

» with 2 b's at positions p; and p2, and
» one c on the smallest common ancestor of p; and ps.

c
I

RN
N/

a b a
/\
c

N\

b
|
c a

a

a
b

HA language: Example 3

» ¥ ={a,b,c}.
» L := terms of U(X)

» with 2 b’s at positions p; and po, and
» one c on the smallest common ancestor of p; and p..

A=(%,Q,Q%A), avec Q = {¢, ®. ¢}, Q" = {qc}, A=

a(@) — q a@Q@*@pQ*) — @ a(@¢Q*) — g
Q) — @ (@ wQ*) — @ bQ*¢Q*) — g
(@) — q (Q*pQ* BwQ*) — ¢ c(Q*¢Q*) — g
a qe
VRN VAN
c b q a

Normalized Hedge Automata

Definition :

AHA A= (Z,Q,Qf,A) over X is called normalized if
for all a € ¥ and q € @, there is at most one transition of the form
a(L) — ¢ in A.

When A is normalized, we denote a(L,) — ¢ the unique
transition with a and gq.

Proposition :
For all HA A, there exista a normalized HA A, recognizing the same
language.

The size of A, is linear in the size of A.

Complete and deterministic hedge automata

Semantical definitions

Definition :

AHA A= (2,Q,QF,A) over ¥ is complete if for all t € U(X),
there exists at least one state ¢ € @ s.t. t € L(A,q).

Definition :
AHA A= (Z,Q,Qf, A) over ¥ is deterministic if for all t € (%),
there exists at most one state ¢ € @ s.t. t € L(A,q).

Complete and deterministic hedge automata

Syntactical definitions

Definition :

AHA A= (Z,Q,Q A) over X is complete if
for all a € ¥ and all finite sequence q1,...,q, € QF,
there exists a transition a(L) — g € A with ¢1 ... g, € L.

Definition :

AHA A= (Z,Q,Qf A) over X is deterministic if
for all transitions a(L1) — ¢1 and a(L3) — ¢2 in A,
either Ly N Ly =0, or g1 = qs.

Determinism: examples

HA for Boolean expressions evaluation : deterministic.
¥ ={AV,0,1}, Q@ ={qo, q1} et A:

0 — qo 1 - ¢
A o (q0 | a1)*) — a0 Nadg) — @
Vigogy) — a0 V(@Ga(o|a)) — @

Language with 2 b’s and common ancestor c¢: not deterministic.

Y ={a,b,c} Q={qaq q} Q ={q} A:

a(@) — ¢ Q@ Q") — @ a(Q Q")
Q") — @ (Q*@pQ*) — @ b(Q*¢Q)
(@) — q (Q*pQ*wQ*) — ¢ c(Q*qQ*)

—
—
—

dc
dc
dc

HA completion

Proposition :

For all HA A, there exists a complete HA A. recognizing the same
language.

The size of A. is linear is the size of A.

pr.: add a trash state ¢, and transitions :

a(() @\ LagUQ1q1Q%) — a1
qeQ

HA determinization

Proposition :

For all HA A, there exists a deterministic HA A4 recognizing the
same language.

The size of Ay is exponential in the size of A (lower bound).

pr.: subset construction

Plan

Decision Problems

HA: membership decision

Proposition : €
The problem of membership is decidable in polynomial time for the
HAs whose languages L, 4 are given by NFAs.

» linear time for DHA whose languages L, 4 are given by DFA,

» NP-complete if the languages L, , are given by alternating
automata.

HA: emptiness decision

Proposition : ()
The problem of emptiness is decidable in polynomial time for HAs
whose languages L, , are given by NFAs.

pr.. state marking. M C Q,
> initialy, M = 0.
» at each step , if a(Lqq) — ¢ € A and Ly g N M* # ()
then M := M U {q}.

» PSPACE-complete if the languages L, 4 are given by
alternating automata.

HA: decision of inclusion and equivalence

Proposition : C, =

The problem of inclusion (resp. equivalence) is EXPTIME-complete
for HAs whose languages L, , are given by NFAs.

pr.i L(A1) C L(As) iff L(A1) N (U(D) \ L(Az)) = 0.

> in PTIME for DHAs whose languages L, 4 are given by DFAs.

» PSPACE-complete for DHAs whose languages L, , are given
by alternating automata.

Plan

Binary Encodings

Currying
Transformation into binary trees with @ and constants.

We associate the following signature to an alphabet X:

Sa:={a:0|aex}u{a:2}

The function curry : U(X) — T (Xa), is defined recursively:
» curry(a) 1= a,
» curry(a(ty, ... tn)) == Q(curry(a(ts,. .., ta—1)),curry(ty)).

binary operator on U (X)
a(t1 - tn) Qtpt1 = a(t1 - tn+1)

curry(t@t') = @(curry(t), curry(t))

Currying: example 1

curry(a(tl, .. ,tn)) = @(curry(a(tl, .. ,tn_l)),curry(tn))

Hreurry Q

a
AN RN
b/df @ @
| / N / N\ / N\
c g h @ d @ h
/N 7\
a @ g
7\

Currying: example 2

curry(a(ty, ..., ty)) := Q(curry(a(ty, . .

image of unranked Boolean expressions.

L tno1)),curry(ty))

I~ ey -

/

V A\ V @

/\ FARN VAR PN

1 0 1 1 0 0 @ @
/ \ / \
VARG Q@ 1
/ \ / \
@ 0 @
/\ /\
V A\

Currying: properties

Lemma :
curry is a bijection from U (X) into 7 (Xa).

Proposition :
L CU(X) is a HA language iff curry(L) is regular.

Let A= (Q,, F,A) be normalized and let B, , be the NFA
recognizing L in the (unique) transition a(L) — g of A associated
toa € ¥ and g € Q (its input alphabet is Q). Let P be the union
(assumed disjoint) for all transitions in A of the state sets of the
automata B, 4.

We construct an automaton A’ whose transitions, when computing
on curry(t) for some t € U(X), will simulate both the transitions of
A (vertical transitions) and the transitions of the NFAs B, ,
(horizontal transitions).

Let A= (QU P, X, F,A’) where A’ contains the transitions:

a — q if B, 4 recognizes the empty word,

a — init, 4 for all ¢ € @, where init, 4 is the initial state of
Bll,qv

Q(p,q) — p’ if there is a transition p <4+ p’ in some By 4, and

e
Q(p,q) — ¢ if there is a transition p >
where p' is a final state of B 4.

We can show by induction on ¢t € U(X) that t € L(A) iff
curry(t) € L(A").

;.
p’ in some By g,

Note that A’ is non deterministic.

Plan

Boolean Closure

HA: Boolean operations

Proposition :

The class of HA languages is closed under union, intersection and
complement.

HA: closure under morphisms

projection h : U(X) — U(X'), defined by extension to trees of an
application h : ¥ — ¥/

h(L) ={h(t)|t € L} and KA YI)={tcU(X)]|h(t) e L}
Proposition :

The class of HA languages is closed under projections and inverse
projections.

Plan

Minimization

Minimization

2 questions must be addressed

1. for which definition of determinism?
(minimization makes sense only for deterministic automata)

2. what to minimize?

For ranked tree automata, the answer to both questions is clear:

1. ranked DTA: every step of computation is deterministic

2. we want to minimize the number of states.

For unranked tree automata, this is not so clear:

1. even for DHA[DFA] (DHA whose horizontal languages are
defined by DFA), if we have a(L) — g and a(L’) — ¢’ and
LN L' =1, in configuration a(q; ... qy,) we must test both
q1---qn € L and q1 ... q, € L' before firing the right
transition. In the construction of a TA for curry(H A), we
choose ND.

2. there are states for the DHA and for the DFAs for the
horizontal languages.

Minimization of DHA

First approach: we ignore the formalism for horizontal languages,
i.e. we chose

1. DFAs (whatever for the horizontal automata)
2. number of states of the DFA
Congruence of a language L CU(X):

s=pt iff VCC[s]e L& CltjeL

Minimal DHA for the HA language L:
» states: {[t]=, |t €U(E)},
> final states: {[t]=, |t € L} (we simply write [t] below),

> transitions

{a(L, t]] Lojg = {[t1]--- [ta] | alts...ta) =1 t}},

Minimization of DHA (2)

2 drawbacks for the first approach

» the complexity of the effective construction depends on the
formalism for horizontal languages.

» no analogous of Myhill-Nerode theorem for DFA or DTA
(ranked):

L is an HA language = =g, has finite index
L is an HA language <+ =, has finite index

Minimization of DHA[DTA]

Second approach: we consider both vertical and horizontal states
and transitions, i.e. we chose

1. DFA[DTA] (DHA whose horizontal language are defined by
disjoint DFAs)

2. number of states of the DFA + number of states of the
horizontal (disjoint) DTAs

Minimization of DHA[DTA] (2)

first idea: use the curry encoding and minimize the ranked TA.

problem: the TA associated to an HA wrt curry is not
deterministic; we have a — init, 4 for all ¢ € Q.
other question: uniqueness of minimal automaton?

—> stepwise automata: one unique transition from each a € ¥ to
the start state of a deterministic machine that will read the state
sequence below a and output a state.

Moreover, vertical states = horizontal states.

Deterministic Stepwise Automata

Definition : stepwise automata

A deterministic stepwise hedge automaton (DSHA) is a tuple A =
(2,Q,Qy¢,60,0), where 3, @, and Qy are as usual, §y : ¥ = Q is
a function assigning to each letter of the alphabet an initial state,
and 0 : Q X QQ — @ is the transition function.

For a € ¥, 0q QT —Q
Sa(e) = do(a)
da(w-q) = 6(da(w),q)

A run of AontelU(X)is atree r € U(Q) such that
» r and t have the same domain,

> for all p € Pos(t), 7(p) = dyp)(r(p1) ... 7(pn)), where n is
the number of successors of p in Pos(t).

The run 7 is accepting (successful) iff r(¢) € QF.

Stepwise Automata & Ranked TA

stepwise ranked
DSHA A | DTA curry(A)
doa) =q a—q

a1, 2) = ¢ ‘ Q(q1,92) — ¢q

Lemma :

For all t,# € U(X) and ¢q,q¢’ € Q,
ifte L(A,q)and t’' € L(A,q'), then t@t € L(A,d(q,q)).

Lemma :
For all DSHA A, curry(L(A)) = L(curry(A)).

Minimal Stepwise Automata

Corollary :
DSHA recognize all HA unranked tree languages.

Corollary :

For each HA language L C U(X) there is a unique (up to renaming
of states) minimal DSHA accepting L.

Plan

Weak Second Order Monadic Logic MSO(—,)

Logic and Automata

> logic expresses properties of labeled trees
= specification of language,
» compilation of formulae into automata
= decision algorithms.
> equivalence between both formalisms
Thatcher & Wright's theorem for ranked trees and ranked TA.

analogous for unranked trees and HA.

Unranked term as structure

Y. finite alphabet

Ly = {:’\1/7_>’La | ac Z}

to t € U(X), we associate a structure ¢t over Ly,
t:= <P08(t)7 :2 \Lt, _>§7 Lt%’ Li, s >

domain := positions of t (Pos(t) C N*),
=L := equality over Pos(t),
L= {(p,p i)y |ieNyp,p-i € Pos(t)} (parent relation),
—t = {(p-i,p-i—i—l)|iEN,p,p-i,p-i+1€P08(t)}
(next sibling),
Lg = {pe€Pos(t)|tp) =a}.

MSO(—,]): syntaxe

Rappel: WS2S, Si(z,y1) A So(x,y2) for

/Y N\
Y1 Y2
formulas of MSO(—, |):
» first order variables . ..
» second order variables X. ..
> term =
» form = x:y‘miy‘m%y‘x€X|La(az) a€ed

form A form ‘ form V form ! —form
Jx form ‘ 34X form ! Vx form ‘ VX form

MSO(—, |): semantics

v

telU(®),

valuation o of first order variables into Pos(t),
valuation ¢ of second order variables into subsets of Pos(t),
t,o,0 =z =y iff o(x) = o(y),

o0 = lyiff3ieN, o(y) =o(x) -1,

,0,0 = ax — yiff Ipg € N*, i € N,
o(x)=po-iand o(y) =po-i+1,

t,o,0 = xe X iff o(x) € §(X),

t,0,0 = Ly(x) iff t(o(z)) = a,

,0,0 =1 Aoy iff t,0,0 = ¢1 and t, 0,0 |= ¢,
,0,0 =1 Voo iff t,0,0 = ¢ ort,o,0 = o,
0,6 |~ iff £,0,6 1 o,

I+ o+

I+ I+ o+

MSO(—, |): semantics (quantifiers)

> t,0,0 = dz ¢ iff x ¢ dom(o), x free in ¢
and exists p € Pos(t) s.t. t,0 U{z — p},d = ¢,
> t,0,0 =Vr ¢ iff x ¢ dom(o), x free in ¢
and for all p € Pos(t), t,0 U {z — p},d = ¢,
> t.0,0 =3X ¢ iff X ¢ dom(d), X free in ¢
and exists P C Pos(t) s.t. t,0,0 U{X — P} = ¢,
> t,0,0 EVX ¢iff X & dom(6), X free in ¢
and for all P C Pos(t), t,0,0 U{X — P} = ¢.

Second order monadic logic: examples

> root:
r=e=Vyaxl*y, or ~dyylx,
> leaf:
leaf(x) = —Jyz |y
> first child:
first(z) = ~Jyy— =
> last child:
last(z) = "Jyx—y

Second order monadic logic: examples (2)

» prefixe ordering = transitive closure of |:
rlry =
VX (ye X AVz2V2 (21N eX=zeX))=aeX
orzxlfy=3dXaxe X Ay e XA
Vz[(z€XAz#z)= 32 (F € XN]2)]

> transitive closure of —:
xSy =
VX (ye XAVz2VZ (zo 2N eX=zeX)=aeX
orrsy=3Xzc XAy XA
Vz[(zeXANz#xz)= 32 (7 € X N —2)]

Defining languages of U(X) in MSO(—,])

Y={a,...,an},
Definition : MSO(—, |)-definability

For <]5 € MSO(—, i) without free variables over Ly,
L(¢):={tcU(Z) | t E ¢}

Theorem :
A subset of U(X) is a HA language iff it is definable in MSO(—, |).

HA — MSO(—,)

Let ¥ ={a1,...,a,}.

Theorem :
For all hedge automaton A over ¥, there exists ¢4 € MSO(—,)
such that L(¢a) = L(A).

Let A= (Z,Q,Qf, A), normalized, with @ = {q1,...,¢n}, and
P ={p1,...,pn} disjoint union of state sets of NFAs for the
horizontal languages L, , C Q*, a € ¥, ¢ € Q.

¢4 existence of an accepting run of Aont e U(X).

pa:=3Y:...3Y,,3Zy ...32, (Y, Z)

HA — MSO(—,)

ba=
ANZy = {E}/\ZO,Zh'

Y1,...,Y,, partition Pos(t)

A \/EEYZ‘

vy

x by Afirst(y)

AN zlyny —v

V

Az Ly Alast(y))

V

=

=

pk—qﬂ'—)pkleL

=

.., Zp, partition Pos(t)

\/ Yy € Zg

pr=initial(L)

(yeEZrANyeY; ANy € Zy)

V' WeZinyeY))

pyr €final(L) pp, “%->p, €L

MSO(—,])) — HA

Theorem :
Every subset of ¢/ (X) definable in MSO(—,) is a HA language.

For all formula ¢ € MSO(—,) over ¥ (without free variables)
there exists a hedge automaton Ay over ¥, such that

L(Ag) = L(9).

Corollary :
MSO(—,) is decidable.

pr.: reduction to emptiness decision for A.

Operator "first child next sibling”

Correspondence with algebras of ranked terms (symbols of arity 0
or 2): representation of unranked terms as binary terms with
pointers and lists.

We associate the following signature to an alphabet X:

Sp:={a:2|aeSU{#:0}

The operator fcns : H(X) — T(X4), is defined recursively:
> fens(a) = a(#, #),
> fcns(a(ty, ...ty) a(fcns (t1,...,t),#),
» fens(ty, ..., ty) := fens(ty)[fens(ta, . .., tn)]2 if n > 2.

Operator "first child next sibling”: example

a rfens a
I / \
b/d\f b #
| A PN
c g h c
/ N\ / N\
S
/ \
/g\
h

Operator "first child next sibling”: properties

Lemma :
fcns is a bijection from H(X) into T(X4).

For all t € T(X4), fens™(t) € U(X) iff t|a = #.

Proposition :
If L CU(X) is a HA language, then fens(L) is regular.

Proposition :
If L C T (Xy) is regular, then fens™ (L) NU(X) is a HA language.

Let A= (Q,Q, A) a HA over X, s.t. every L, , (a € X, ¢ € Q)
recognized by B, g = (Pa g, inite g, Foq, Ragq). P = Umq P4 and
F=,,Faq We construct A(Q', Q¢, A’), a TA over ¥y

> Ql =PU {QBQ#},

> Q¢ = {as},
» A’ contains

> # = qy,

v

#—pforallpeF,

> b(inity 4, p') — p if Ja,q p —>Aql j
a,q

> a(inite,q, q4) — gr if ¢ € Qs.

*

ti o div p 5 P € Fug iff fens(ty ... tn) —> p (induction on
the hedge).

MSO(—,])) — HA

¢ € MSO(—,|) over ¥+ ¢' € WS2S over ¥y
fens(L(9)) = L(¢)

¢ = Ly(e-2) A
1) obtained from ¢ by replacements of atoms:
¢ | Y
xly |[yex-1-2*
T —y y=ux-2

yex-1-2"=3X (x-1 € XAy € XAVz (2 € XNz #y=22¢€ X))

¢ € MSO(—,) over ¥ @' € WS2S over X4
: th.
: Thatcher
; fens™I NU(D) & Wright

Ay HA over ¥ Ay TA over 3y

Plan

HA Variants, Regular Languages modulo Associativity

Extensions of HA

Definition : CF-HA

A CF-HA is a tuple (3,Q, Qf, A), where @, Qs are as for HA and
the transitions of A have the form a(L) — ¢ with a € ¥, ¢ € Q,
and L C Q" is a context-free language.

Definition : CS-HA

A CS-HA is a tuple (3, Q, Qf, A) where @, Qs are as for HA and
the transitions of A have the form a(L) — ¢ with a € ¥, q € Q,
and L C @Q* is a context-sensitive language.

CF-HA: example

¥ ={a,b, f}, language L of trees of U(X):
» whose internal nodes are labeled by f,

» with the same number of leaves a than leaves b under every
node.

language of the CF-HA (@, Qf, A) with @ = {q, ¢a, g5} and
A={a—qa, b—=aq, [f(L)—q}

L is the language generated by the context-free grammar

N € ‘ all permutations of NN N, ‘ q
Ny = qo Np:=gq

Rem.: L is not a HA language.

Regular Languages modulo A (ATA)

Signature 3 = X W Xa.
The symbols of ¥4 are binary and follow the associativity axiom:

a(x1,a(xe,x3)) = ala(ry,z2), x3) (A)
Given a TA B over X, we note
A(L(B)) == {t e T(2) | t ¢ s € L(B)}

(ATA language)

Proposition :

> the class of regular tree languages is strictly included in the
class of ATA languages.

» The class of ATA languages is not closed under intersection.

Correspondences T (X) <> U(X)

Let ¥a = {a}.
flat -

hflat :
flat=1 -

Definitions (g € ¥£,, \ Xa):

flat(g(t1, ... tn))
flat(a(t1,t2))

hflat (g(s Sp)to... tm)
hﬂat((81,82)t2 .tm)
flat ™ (g(t1 ... t,))

flat™ (alts .. . ty))

T(

T
%)
(=

- UX)

- H(X)

- T
g(flat(t1) ... flat(tn))
a(hflat(ty ta))
flat(g(s1,..., sn))hflat(ts ..
hﬂat(8182 to... tm)
g(flat=L(ty),. .., fat=Y(t,))
a(flat™(t1), a(flat = (ts), ...,

a(flat
(m >2)

“H(tm-1), flat™ ()

)

CF-HA < ATA

Proposition :
CF-HA = ATA

N

for all CF-HA A there exists a TA B such that
L(B) = flat ' (L(A)).
for all TA B there exists a CF-HA A such that
L(A) = flat (A(L(B))).

U

CF-HA: Results

Proposition :
The class of CF-HA languages is not closed under intersection and
complementation.

Proposition : ()
The emptiness problem is decidable in polynomial time for CF-HA.

Proposition : €
The membership problem is decidable in polynomial time for CF-HA.

pr.. Consequences of the correspondence with ATA and results for
these languages.

Generalized Tree Automata (GTA)

Definition : GTA

A generalized Tree Automata (GTA) over a signature X is a tuple
B=(Z,Q,Qf,A) where Q is a finite set of states, Qf C Q is the
subset of final states and A is a set of transition rules of the form
flq, - sqn) = qor flqu,.-.,an) — f(di,-...q,) with f € £,
(n>0)and q1,...,qn,4},---,q, € Q.

For a TA or GTA B, we define the languages:

L(B) = {teT(Y) t%qEQf}
La(B) = {teT(X) |t nx ac Q)

where AJA" Is rewriting modulo A: A/AT TSRO RO

Languages of TA and GTA modulo A

Proposition :
For all GTA B, there exists a TA B’ such that L(B') = L(B).

Proposition :
For all TA B, La(B) = A(L(B)).
Csq: the emptiness of La(B) for a TA B is decidable.

Proposition :
For a GTA B, in general La(B) # A(L(B)).

CS-HA < GTA modulo A

Proposition :
CS-HA = AGTA

N

for all CS-HA A there exists a GTA B such that
La(B) = A(flat™ ' (L(A))).

for all GTA B there exists a CS-HA A such that
L(A) = flat (La(B)).

U

GTA & CS-HA: decision results

Proposition : € CS-HA
The membership problem is PSPACE-complete for CS-HA.

Proposition : € GTA

The membership problem t € La(B) given a GTA B is PSPACE-
complete.

Proposition : () CS-HA
The emptiness problem is undecidable for CS-HA.

Proposition : # GTA
The emptiness problem La(B) given a GTA B is undecidable.

Summary

. Boolean closures
CS-HA = AGTA () undecidable.
o no closure under N and —
CF-HA = ATA () decidable.
. Boolean closures
AR = ™A decidable.

Part V

Unranked Unordered Labeled Trees

Presburger Automata (PA)

» previous lecture: unranked ordered trees
» XML documents
» hedge automata (HA), MSO(—,).
» cf. TATA chap. 8.
» this lecture: unranked unordered trees
» web data
» Presburger automata (PA), PMSO.
» cf. article "Numerical Document Queries”,
Helmut Seidl, Thomas Schwentick, Anca Muscholl, 2003.

Plan

Unranked Unordered Trees

Unranked Unordered Trees

» Y is a finite alphabet.
tree := a(multiset) (a € X)
multiset := {tree, ..., tree}

v

a({tl, . ,tn}) is denoted a(ty, ..., t,).
» rem: the multiset can be empty. a(() is denoted a.

v

The set of unranked unordered trees over ¥ is denoted /s ().

Examples of languages of trees of Us ()

» ¥ = {a,b}.
> terms of Uz ()
» of height 1,
» with one b at the root,
> the leaves are a or b:
i. with an even number of a (HA),
ii. with the same even number of a than b (= HA).

Plan

Presburger Arithmetic

Presburger Arithmetic

Presburger Formulae:

term = x (first order variables)
n (natural number)
term + term

form = term = term
—form ‘ form V form ‘ form A form
Vx form ! Jdx form

Interpretation in the domain of natural numbers.

(n1,...,mp) E od(x1,...,2p) (T1,...,) free variables)
iff ¢(n1,...,np) is evaluated to true.

Presburger Arithmetic

» notation: terms nx for x + ... + z,
————

n
» the natural can be restricted to 0 and 1,

> the atoms can be restricted to x =n and x =y + 2.

Examples:
»r<y=y=z+2.
> odd(x)=Jyz=y+y+ 1

Presburger Arithmetic

Theorem : Presburger Arithmetic
Presburger Arithmetic is decidable.

» lower bound 2-EXPTIME (Fischer and Rabin 1974)

» upper bound 3-EXPTIME (Klaedtke 2004, with an automata
construction)

» NP-complete for the existential fragment.

Presburger Arithmetic

Decidability of Presburger Arithmetic.

We can associate to a formula ¢(z1,...,x,) a finite automaton
over the alphabet {0, 1}? recognizing the set of
<b171, ... ,bp71> ... <b1’k, ... 7bp,k> such that

big...b1g, ..., bp1...b,} are the binary representations of
integers n1,...,n, satisfying ¢.
Hence we can decide wether there exists nq,...,n, such that

(n1,...,np) = o(z1,...,2p).

Presburger Arithmetic and Automata

finite automaton for x1 + o = x3

Semi-linear sets

Definition :
> A linear set is a subset of NP of the form
{o+v7+...+0m | m>0,71,..., T, € B},
for 7p € NP and B C NP finite (fixed).

» A semi-linear set is a finite union of linear sets.

models of Presburger formulae = semi-linear sets.

Projection and Parikh theorem
Y ={a1,...,ap}.
Definition : Parikh Projection

The Parikh projection of a word w € ¥* is the tuple #(w) =
(ma1,...,mp) where m; (i<p) is the number of occurrences of a;
in w.

For a set L C X%, we denote #(L) := {#(w) | w € L}.

Theorem :

For all context-free language L C X*, there exists a Pres-
burger formula ¢(z1,...,xp) such that #(L) := {(n1,...,np)
d(x1,...,xp)}.

When L is regular, the Presburger formula is computed in linear
time (in the size of the NFA defining L).

Conversely, given a Presburger formula ¢(z1,...,2,), one can
build a NFA A such that

#(L(A) = {(n1,...,np) = S, ..., 20)}.

Plan

Presburger Automata (PA)

Presburger Automata (PA)

Definition : Presburger Automata

A Presburger Automaton (PA) over an alphabet ¥ is a tuple A =
(2,Q,QF, A) where Q = {q1, . .. ,qp} is a finite set od states, Qf C
@ is the subset of final states and A is a set of transition rules of
the form: a(¢) = g witha € 3, ¢ € Q, and ¢ = ¢(x1,...,2,) is a
Presburger formula with one free variable z; for each state g;.

The language of A in state ¢ € @, denoted L(.A, q), is the smallest
subset of terms a(ty,...,t,) € Uz(X) such that

> there exists i1,...,%, < p such that for all j < n,
» there exists a transition a(¢) — ¢ € A such that

#(Gins 5 Gin) F (@155 Tp).

The language of A is L(A) = U,cq, L(A, q)-

PA: example 1

Y ={a,b, f}.

Set of trees of Us(X) where all the a and b label the leaves:

= ({a},{a}.{a(zg = 0) = q,b(zg = 0) — g, f(true) — q})

PA: example 2

Y ={a,b,c}.
Set of trees of Us(X) with the same number of a and of b under
each node.

A= ({40 @, 0} {da> @, 0}, {a(d) = qa; b(®) = @1, c(8) = q})

with ¢ = x4, = g, .

PA: example 3

Y = {a,b}.

Set of trees of Us(X) where all internal node are labeled by a and
every node labeled by a has at least as much sons without b than
sons containing b.

Q= Qf = {qa 0}
The state ¢, accepts the trees containing a b and g, accepts the
others.

A — { a(ana 2 sz = O) — qa a(ana 2 sz > O) — qb
b(wg, =g, =0) — @

Normalized Presburger automata

Definition :

APA A= (2,Q,QF A) sur X is called normalized if for all a €
and ¢ € @, there is at most one transition of the form a(¢) — ¢ in
A.

When A is normalized, we note a(¢q,) — ¢ the unique transition
with a and gq.

Proposition :
For all PA A, there exists a normalized PA A,, recognizing the same
language.

The size of A, is linear in the size of A.

Plan

Determinism

Complete and deterministic Presburger automata

Definition : Deterministic PA

APA A= (Z,Q,QF, A) over X is deterministic if for all a € ¥ and
all ¢iyy...,q, € Q% ifa(d) — g€ A and a(¢') — ¢ € A are such
that #(qiy,---,4i,) = ¢ and #(qi,, ..., qi,) E ¢, then ¢ = ¢'.

Lemma :
The determinism of PA is decidable.

Definition : PA complets

APA A= (%,Q,Qf, A) over X is complete if for all a € X and all
Qiys -+ - Qi, € Q" there exists at least one transition a(¢) — ¢ € A

such that #(q;,, ..., qi,) = .

Completion of PA

Proposition : Completion
For all PA A, there exists a complete PA A, recognizing the same
language.

The size of A, is linear in the size of A.

pr.. Let A= (Q,Qs, A) be a PA (normalized).
We add the state ¢;: A, = (Q U {q.}, Qs A.) with

A, = a(qba,q Nag, = 0) — gstoa(pag) > qEA

U a(/\ “Paq Vg >0) = qu
q€Q

Determinization of PA

Proposition : Determinization
For all PA A, there exists a deterministic PA Ay recognizing the
same language.

The size of Ay is exponential in the size of A (lower bound).
pr.. Let A= (Q,Qs,A), normalized with @ = {q1,...,q}-

Aa=(29{SCQ|SNQs#0},A,)

Presburger formulae in Ay: a free variable xg for each S C Q.

e-transitions and elimination

Remark :
PA with transitions ¢ — ¢’ = PA.

Plan

Boolean Closure

PA: operations Boolean

Proposition :

The class of languages of PA is closed under intersection and com-
plementation.

U disjoint union (linear) or product (quadratic, preserves
determinism).

M de Morgan law or product (quadratic).

— complete, determinize, invert final states (exponentiel).

Plan

Decision Problems

PA: decision of membership

Proposition : €
The problem of membership is decidable for PA.

> in polynomial time for DPA,
» NP-complete for NPA.

PA: emptiness decision

Proposition : ()

The problem of emptiness is decidable in polynomial time for PA.

pr.: states marking, construction of M; C Q.
» initially, My = (.
> at each step, if for ¢ € Q \ M;, /\ zp =0A \/ Gaq IS

PEQ\M; a€ey
satisfiable, then M, 11 := M; U {q}.

PA: decision of inclusion, equivalence

Proposition : C, =
The problems of inclusion and equivalence are decidable for PA.

pr.: L(.Al) - L(Ag) iff L(Al) N (Z/{Q(E) \ L(Ag)) = 0.

Plan

Regular Languages modulo Associativity and Commutativity

Correspondence between PA, HA and AC-TA

There is a correspondence between:
> the languages of PA

» the languages of CF-HA whose (CF) languages in transitions
are closed under permutation

> the class of closure of regular tree languages modulo AC

Rappel: CF-HA

Definition : CF-HA
CF-HA: tuple (2, Q, Qs, A) like a HA whose transitions are of the
form a(L) — g witha € 3, g € @, and L C Q* is CF.

Regular languages modulo AC (AC-TA)

Signature ¥ = Xy W {a}.
The symbol a is binary and follows the axioms of associativity and
commutativity:

a(zy,a(re, x3)) = ala(ry, 2), x3) (A)

a(z1,22)) = a(z2,21) ()

For a TA B over X, we note
AC(L(B)) :={t € T(X) | t =ac s € L(B)} (language of AC-TA)

Proposition :

» the class of regular tree languages is strictly included in the
class of AC-TA languages.

» La class of AC-TA languages is closed under Boolean
operations.

Correspondence between PA, HA and AC-TA

There is a correspondence between:
> the languages of PA

» the languages of CF-HA whose (CF) languages in transitions
are closed under permutation

> the class of closure of regular tree languages modulo AC

Correspondences T (X) <> Us(X)

We assume Xac = {a}.

flat T(E) — UX)
hiat: T(Z) — H(T)
flat™: Up(D) — T(%)

Definitions (g € £, \ {a}):

fat(g(te, ..., tn)
flat(a(ty,t2)

hﬂat(g(sl,...,sn to...tm
t

; g(flat(t1) ... flat(tn))
))
hflat (a(sl, s9)ta... m)
()
)

a(hﬂat(t1 tg))
flat (g(sl, cel, Sn)) hflat(ty .. .tm)
hflat(sisate ... tm)

g(Aat™(t1),..., fAat™(tn))
a(tl, a(tQ, e ,a(tm_l, tm)))
(m >2)

Plan

Weak Second Order Monadic Logic PMSO

Weak Second Order Monadic Logic of Presburger

Syntax of formulae of PMSO.

» first order variables . ..

» second order variables X. ..

>

form

pres

term

v=y|zly|alz)|zeX |z/pres (a€X)
form A form ‘ form V form ‘ —form

dx form ! 34X form ! Vx form ‘ VX form

term = term

—pres ‘ pres V pres ‘ pres A pres

Yz pres ‘ dz pres

z (first order integer variable)

n (natural number)

[X] (X second order var.)

term + term

formulas pres such that the variables 2z are bounded.
rem. no atoms x — y as for ordered trees.

Weak Second Order Monadic Logic of Presburger
Semantics of PMSO.

>

v

vV v.vyy

interpretation domain : set ||t|| of nodes of a tree t € Us(X),
o: first order variables — ||¢||,

p: second order variable — 2/t

t,o,plEx=yiff o(z) is o(y),

t,o,p = x|y iff o(z) is the father of o(y) in ¢,

t,o,p = a(x) iff o(z) labeled by a in t,

t,o,pEx e X iff o(x) € p(X),

t,o,p = /¢ iff (n1,...,np,) = ¢ where n; is the number of
sons (in t) of o(x) in p(X;) (with dom(p) = {X1,...,X},}),
t,o,p ’:wl V by ith’J’p ’:wl ort,o,p): Yo,

t,o,p E 1 A iff t,o,p =41 and 2,0, p = 9o,

t,o,p | Y iff u,o B,

t,o, p = Jx 1 iff there exists p € ||t]| s.t.

t,oU{p —z},p E 9,

t,o,p = 3X iff the exists P C ||¢|| s.t.

t,o,pU{P — X} =1,

PMSO: examples

> root:
r=c¢=-dyylx
> leaf:
leaf(x) = —Jy x|y
s ly=3YY = {y} Aa/iym
» prefix ordering = transitive cloture of |:
zl*y=VvX (a; EXNVV (ze€ XNzl =7 EX)) =
ye X

PMSO languages

Definition : language
The language defined by the closed PMSO formula v over 3 is the
set of terms ¢ € Up(X) s.t. t = 1.

language of PMSQ: example 1

The set of trees of the form f(a,...,a,b,...,b) with the same
number of a and b.

3X,3X, f(e) AVy(yeXaealy)A(yeXyeby))
ANVyely= (leaf(y) AN (y € Xo Vy € Xp))
N &/ 1X0)=1X,]

PMSO: PA example 2

Y = {a,b}.

The set of trees of Us(X) s.t. every internal node is labeled by a
and every node labeled by a has at least as much sons without b
than sons containing b.

X, 33XV (b(x) = leaf(x))
A (a) Ao/ xasps0 = 7 € X))
N (a(a:) A m/[Xa]Z[Xb]:O =T c Xa)
A (b(x) A x/[Xa}:[Xb}ZO =1z € Xp)
Q=Qf= {Qa7Qb}-
The state ¢, accepts the trees containing a b and g, accepts the

others.

A _ { a(ana 2 me = O) — qa a(ana 2 me > O) — qb
b(wg, =g, =0) — @

PMSO: examples of queries
Base of clients of an online music store, stored in an unordered
unranked tree.
A client is a subtree:
> root labeled by client
» informations in the sons (purchase, labeled at root by the
kind).
Query for clients x who have purchased more jazz than blues:

query,(x) = (IXja2z VY ¥ € Xjazz & jazz(y))
A\ (Elelues Vyy c Xblues = blues(y))
/\ Cllent(l‘) /\ x/[Xjazz}>[Xb1ues]

Query for clients « who have purchased more jazz than anything
else:
query,(x) = (IXja22 VY ¥ € Xjazz & jazz(y))
A (ElXother Vyy € Xother <~ _‘j azz(y))
A\ client(a:) A x/[Xjazz}>[Xother}

PMSO and PA

Theorem
L CU(X) is definable in PMSO iff L is a PA language.

Part VI

Presburger Constraints and Unranked Ordered Trees

Presburger Hedge Automata (PHA)

Presburger Hedge Automata (PHA)

Definition : Presburger Hedge Automata

A Presburger Hedge Automaton (PHA) over an alphabet X is a tuple
A=(2,Q,0f A) where Q = {q1, ... ,qp} is a finite set of states,
Qf C Q is the subset of final states and A is a set of transition
rules of the form: a(\/i(Li /\qbi)) —qwithaeX, ¢ge@, L; CQ*
regular language and ¢; = ¢(x1,...,2p) is a Presburger formula
with a free variable for each state.

for all w € Q* we define w = L; A ¢; if w € L; and #(w) = ¢;.

PHA: languages

The language L(A,q) of A in state ¢ €) is the smallest set of
ordered unranked trees a(ty,...,t,) € U(X) s.t.

> there exists i1,...,%, < p such that for all j < n,
tj € L(A, q;;),

> there exists a transition a(\/;,(L; A ¢;)) = q € A such that
Gy - G, = V,;(Li A @), i.e. there exists i s.t.

> G, ---qi, €Ly,
> #(qi, - Gi,) F bi(z1,... 7).

The language of A is L(A) = U,cq, L(A, q).

PHA: proprerties

Proposition :
» The class of PHA languages is closed under union and
intersection,

» The class of PHA languages is not closed under
complementation.

> U, N: product

» csq undecidability of the problem of universality.

Proposition :
DPHA # NPHA.

PHA: decision problems

Lemma :

Given a finite set @, L C Q*, regular, and ¢ = ¢(x1,...,2p) a
formula of Presburger (p = |Q)|), it is decidable whether there exists
w € L such that #(w) = ¢.

Proposition : €
The membership is decidable in PTIME for PHA.

Proposition : ()
The emptiness is decidable for PHA.

Proposition : V
Universality is undecidable for PHA.

PHA: logique

Theorem :

A set of trees of U(X) is recognizable by a PHA iff it is defined by
a PMSO formula of the form 94X ...3X} ¢ where ¢ is first order.

Corollary :
» EPMSO (existential fragment) is decidable in U(X).
» PMSO is undecidable over U(X).

Part VII

Mixed Labeled Trees (Unordered and Ordered)

Mixed Trees

> Y =Y1UX4C.

tree := a(hedge) | c(multiset) (a € X4,c € X a0)
hedge := tree,..., tree
multiset := {tree,..., tree}

» c({t1,...,tn}) is denoted c(t1,...,).

» The set of mixed unranked trees over ¥ is denoted M ().

Presburger m-Tree Automata (PMA)

Definition : Presburger m-Tree Automata

A Presburger m-Tree Automaton (PMA) over an alphabet ¥ =
Y4 UXac is a tuple A = (2,Q,Qf, A) where Q = {q1,...,qp} is
a finite set of states, Qf C @ is the subset of final states and A is
a set of transition rules of the form:
> a(L) —qwitha € Xy, qge@, L CQ"is a regular language
or
> c(gi)) —qwithce X, qgeQ, ¢p=0¢(z1,...,2p) isa
Presburger formula with one free variable for each state.

PMA: languages

The language L(A, q) of the PMA A in state ¢ € @, is the
smallest set of mixed trees
> a(ty,...,ty), a € X4, such that
> there exists i1,...,4, < p with t; € L(A,g;,) for all j <mn,
> there exists a transition a(L) — ¢ € A such that
G, --- i, €L,
> or c¢(t1,...,ty), ¢ € Xac, such that
> there exists i1,...,4, < p with t; € L(A,g;,) for all j <mn,
> there exists a transition ¢(¢) — g € A such that

#(qi, - qi,) FE O(w1,. .0 7p).

The language of Ais L(A) =J L(A,q).

q€Qs

PMA: properties

Proposition :
The class of PMA languages is closed under all Boolean operations.

Proposition :
DPMA = NPMA.

PMA: decision problems

Proposition : €
Membership is decidable for PMA.

Proposition : ()
Emptiness is decidable for PMA.

Consequences of the analogous results for PHA (PMA C PHA).

PMA: logic

Theorem :

The class of languages of M(X) definable by PMSO formulae is the
class of PMA languages.

Corollary
PMSO over M(X) is decidable.

Part VIII

Alternating Tree Automata

TATA book http://tata.gforge.inria.fr chapter 7

Tree

Automata
Techniques and
Applications

HUBERT COMON MAX DAUCHET REMI GILLERON
FLORENT JACQUEMARD DENIS LUGIEZ CHRISTOF LODING
SoPHIE TISON MARC TOMMASI

Chandra Kozen Stockmeyer. Alternation. J. ACM vol. 28, 1981

http://tata.gforge.inria.fr

Top-Down Tree Automata (rappel)

Context: Finite ranked terms of a signature X (every symbol has a
fixed arity).

Definition : Top-Down Tree Automata

A top-down tree automaton over a signature X is a tuple A =
(2,Q, Q™M A) where Q is a finite set of states, Q" C @ is the
subset of initial states and A is a set of transition rules of the form:
qg— f(q1,-.-,qn) with f € X, (n >0) and q1,...,¢n,q € Q.

A ground term ¢ € T(X) is accepted by A in the state ¢ iff ¢ = ¢.

The language of A starting from the state ¢ is
L(Aq) ={teT(2)|q—>xt}.

The language of A is L(A) := U L(Q,q).
quinit

Top-Down Tree Automata: example

Terms in T ({f:2, g:2,a:0}) containing exactly one g:
Q= {go. a1}, Q" = {1},

a — fle,q1) @ — fla1,q9)
e — 9(q0,90)
@0 — flew,0) @ — a

Terms in T ({f:2, g:2,a:0}) containing at least one g:
Q= {go. a1}, Q" = {1},

a — flep,q1) @ — flq,9)
@i — 9(g,9) 9@ — 9(q,9)
@0 — flg,0) @ — a

Top-Down Tree Automata (rappels, ctnd)

expressiveness:

D top-down C ND top-down = ND bottom-up
= D bottom-up

Non determinism and alternation

Non determinism:

q — f(ql,lv s ,an),

qa = flaka,--- qkn)
can be summarized into one single disjunctive transition:
¢ f—= (@, @n) Ve V(- Q)

or also

k n

i=1j=1

Alternating Ranked Tree Automata

Definition : Alternating Ranked Tree Automata

An alternating tree automaton over the ranked signature 3 is a tuple
A= (2,Q,Q™,0) where Q is a finite set of states, Q™" C Q is
the subset of initial states and § is a function from @ x X into

BT (Q x N) such that d(q, f) € B“'(Q X {1..arz’ty(f)}).

BT = positive Boolean combinaisons i.e. built with A and V only

Alternating Tree Automata: example

Terms in T({f:?,g:2,a:0}) containing exactly one g:

a — fle,q1) @ — fla1,q9)
o — 9(qq0)
@0 — flew,0) @ — a

a.f = ({g0,1) A{q1,2)) V ({1, 1) A {q0,2))
q,9 — {q0,1) A{q,2)

q,f — {(q0,1) A{qo,2)

q0,9 — false

qo,a — true

q,a — false

Alternating Tree Automata: runs

A run of an alternating tree automaton A = (X, Q,Q™™*,§) on a
term ¢t € T(X) is a tree r labelled by @ x N* such that:

> r(e) = (g,¢) for g € Q,

» if r(m) = (g, p) and t(p) = f, then there exists

S ={{q1,i1),.-,(qk,ik)} € Q x {L..arity(f)} such that
SE=d(g, f), and r(m-j) = (g;,p - i;) for all j € {1..k}.

L(A,q) ={t| Jrunrof Aontwith r(c) = (q,¢)}.

L(A) = U L(A,q) (3 an accepting run).

quinit

Run of Alternating Tree Automata: example 1

a, f — (g0, 1) A {q1,2) V ({q1,1) A {qo0,2))
q0, f — <QO’ 1> A <q0’ 2>

q1,9 — <q07]-> A <q07 2>

qo,9 — false

go,a — true

q,a — false

f <q17
/ \ / \

(q1,1) (qo0,2)

/\ /N

<QO7 11> <q17 12>

/\ /N

(q0,121) (qo,122)

Run of Alternating Tree Automata: example 2

of = [(an)A2,2)V((a2Al2,1) | Alaal) | g2.a—true | g2, false

af = (2)Ma22)V (g2 A g, 1) q1,a—false | qu,b—true

g, f = ({g3,1)A(g3,2))V({qa,1)\(q4,2)) qa,a—true | qa,b—true

gs.f = [(as,)Ala2.2)V({aa.)Aa1,2)) | Algs.1) | as.a—false | gs,b—true

qs,f — false qs,a—true | qs,b— false
/\ / \\

f (q2,1 (qa,1) (q1,2)
/\ a \ / \
b f (q1,11) (q2,12) (qs,11) (g3, 11) {(g3,12)
/\ AN AN

a b <Q47121> <q27121> <q1)122> <Q5) 21> <q47121> <q1)122>

Boolean Closure

Proposition :

Given two alternating tree automata A; and As over ¥, one can
construct in linear time some alternating tree automata recognizing

L(A;) UL(Asz), L(A1) N L(Az), and L(A;).

Expressiveness

Proposition :

Given an alternating tree automaton A over X, one can construct
in exponential time a deterministic bottom-up tree automaton A’
recognizing the same language.

The exponential blowup cannot be avoided.

Decision Results

Proposition :
The problem of membership is decidable in polynomial time for al-
ternating tree automata.

Proposition :
The problems of emptiness and universality are both EXPTIME-
complete for alternating tree automata.

Alternating Unranked Tree Automata

Context: Finite unranked ordered terms of an alphabet .

Definition : Alternating unranked tree automata

An alternating tree automaton over the unranked alphabet X is a
tuple A = (2, Q, Q'™*,0) where @ is a finite set of states, Q™ C Q
is the subset of initial states and J is a function from @ into

> true, false

> a, a, witha € X

» qNg, qV ', withq,¢ €Q
> (g, d1), (g, —), with g € Q

> is leaf, is leaf, is last, is last

Alternating Unranked Tree Automata: runs

A run of an alternating unranked tree automaton
A=(2,Q,Q™,5) onatermtelU(X) is a tree r labelled by
@ x N* such that:

> r(e)

= (q,¢), if ¢ € Q" the run is called successful

> if r(m) = (¢, p) then 7 is a leaf in r and

» d(q) = true

» d(¢) =aand t(p) =a

> 6(q) =aand t(p) #a

» if 6(q) = is leaf then pis a leaf in ¢

» if 6(q) = is leaf then pis not a leaf in ¢

» if 6(q) = is last then p=c or p=p’-i and
p - (i+1) ¢ Pos(t) (pis a last sibling in t)

if 6(q) =islast p=p' -iand p’ - (i +1) € Pos(t)

Alternating Unranked Tree Automata: runs (contd)

» if r(m) = (¢,p) then 7 is not a leaf in r and

» if 6(¢) = q1 A g2, then 7 has 2 children in 7, with
r(m-1) = {q1,p) and (7 - 2) = (g2, p),

» if 6(¢) = 1 V g2, then 7 has 1 child in r, with
r(m-1) = (q1,p) or r(m - 1) = (g2, p),

» if 6(¢) = {q1, 1), then pis not a leaf in ¢ and 7 has 1 child in
r, with r(7-1) = {q1,p- 1)

» if 0(q) = (q1,—), thenp=0p' -4, p'- (i +1) € Pos(t) and 7
has 1 child in r, with r(7 - 1) = {q1,p" - (i + 1))

Part IX

Tree Automata defined as Sets of Horn Clauses

Definition of tree automata as set of first order (universal) clauses.
Languages = Herbrand models.

+

uniforme formalism for the definition of several classes of
automata (alternating, 2-ways, with constraints...)

enables the use of techniques and tools from automatic
déduction in order to solve the classical decision problems

complexity

model is not operational
(not easy to construct a witness, a run...)

Clauses: syntax

» terms in T (3, X) over signature ¥ (3,,: symbol of arity n)
» finite set P of predicate symbols P, Q... (notation P,)

basically we will only considerer predicates of arity 0 or 1.
> literals positive: P(t), noté +P(t)

négative: —P(t), noté —P(t)

» clause: disjunction of literals £P;(t1) V...V £Px(tg)

empty clause (k = 0), denoted L.
» Horn clause: at most one positive literal

—Pi(t1) V...V —=Py(ty) V +P(t), denoted

Pl(tl), ... ,Pk(tk) = P(t)

> goal = negative clause

—Pl(tl) V...V —Pk(tk), denoted Pl(tl), ... ,Pk(tk) = 1.

Clauses: semantics

interpretation structure M of domain D:
M=(D,QMCD"|QeP,, fM:D"=D|fex,)
for Q € Py, QM € {true, false}.

> interpretation p: X — D
» valuation of terms [_Jaq, : T(3,X) = D

v

- [2lm.p = p(2),
- UG t) e = M (T Mg - T mup)
M, p = Ciff
- there exists +P(t) € C such that [t]a,, € PM
or

- there exists —P(t) € C such that [t]z,, ¢ P

M is a model of a set of clauses S (denoted M = S) iff for
all C € S, for all interpretation p, M,p = C.

S is called satisfiable iff it admits a model.

Herbrand Models

» a Herbrand structure H has domain 7 (%) and
fonctions f7(t1,... ,tn) == f(t1,...,tn)
(ground term with the symbol f at the root).

» H is completely defined by the set of ground atoms P(t) such
that H = P(t).

Theorem :
A set of clauses S is satisfiable iff it admits a Herbrand model.

Smallest Herbrand Models

Theorem :
Every satisfiable set .S of Horn clauses admits a smallest (wrt inclu-
sion) Herbrand model .

A set of Horn clauses S defines the following operator T's over sets
of ground atoms

B to ground, Py(t1),..., Py(t,) = P(t) € S,
Ts(L) = {P(ta) AR A }
U {J_} if Pl(tl),... ,Pn(tn) = 1 € S,
Py(t10),...,Py(tho) € L

The smallest fixpoint of Ts is |U,~; 74 (),
» if it contains L, then S is not satisfiable,

» otherwise, it is the smallest Herbrand model of S.

Languages and automata

The language of a satisfiable set S of Horn clauses for a predicate
Q is:
L(S,Q) ={t | Q(t) € Hs}

Let A= (2, {¢1,...,qx}, F,A) be a bottom-up tree automaton.
Let P ={Q1,...,Qx} be a set of unary predicates.
We associate to A the (satisfiable) set of Horn clauses

SA'_{ Y |f(q1,...,qn1)—>q€A}

Lemma :
For all state ¢, L(A,q) = L(Sa,Q).

Clauses/classes of automata

clauses of standard automate (z1,...,x, pairwise distinct)
Ql(ml)u"'aQn(xn) :Q(f(xhaxn)) (reg)

e-transitions

Qi(z) = Q(x) ()
alternating clauses
Q1(x),...,Qn(z) = Q(z) (alt)
2-ways (bidirectional) clauses (z1, ..., x, pairwise distinct)

Q(f(a:l, ce ,xn)) = QZ(J?Z) (bidi)

Decision problems, satisfiability

Let S be a satisfiable set of Horn clauses and let) be a predicate.

» membership: the ground term t € L(S, Q) iff
SuU{Q(t) = L} is unsatisfiable

» emptiness: L(S,Q) # 0 iff SU{Q(xz) = L} is unsatisfiable.
» membership of instance: there exists o such that
to € L(S,Q) iff SU{Q(t) = L} is unsatisfiable.
» emptiness of intersection: L(S,Q1) N...N L(S,Q,) # 0 iff
SU{Qi(z),...,Qp(x) = L} is unsatisfiable.

= we are interested in automated deduction techniques for
deciding the satisfiability when S represents an automaton.

Resolution

CV+Q(s) DV —-Q(t)
CoV Do
where o is the most general unifier (mgu) of s and t.

Horn clauses:

Pl(sl), e, Py (Sm) = Ql() Q (tl), o ,Qn(tn) = Q(t)
P1(510)7 : (Sma) Q2()7 s >Qn(tn0) = Q(ta)

where ¢ is the mgu of s and ¢;.

Theorem : correction, completeness

A set S of Horn clauses is unsatisfiable iff one can derive | by
resolution starting from S.

Terminaison of resolution

The application of the resolution rule to automata clauses (reg)
does not terminate.

Pl((L‘)

1 aPm(
Py (z1)

Tm
) Pm(wm

)= Q1(9(T)) Qi(y1),...,Qn(yn) = Qf(T))
), Q2(y2)s -, Qu(yn) = Q(f(9(F), y2:- -, yn))

PRI
P

Complete strategies for resolution

C D
Pl(Sl), e ,Pm(sm) = Ql(S) Ql(tl), e ,Qn(tn) = Q(t)

Pi(s10),..., Pn(sm0),Qa2(teo),...,Qn(tho) = Q(to)

ordered resolution for > :
» Q1(s) maximal for > in C,
» Q1(t1) maximal for > in D.

ordered resolution with selection :
selection function : clause — subset of negative literals.
> no literal is selected in C,
» Q1(s) is maximal for = in C,
» Q1(t1) is selected in D or
» no literal is selected in D and Q1(t) is maximal in D.

Completeness of ordered resolution

Theorem :
Ordered resolution with selection is complete for Horn clauses.

Starting from any unsatisfiable set S, we shall derive 1.

Choice of an ordered strategy with selection

» ordering > s.t. P(s) > Q(t) iff s > t for the subterm
ordering >.
> selection function sel:
> negative literals —Q(t) where ¢ is not a variable.

Lemma :
Every tree automaton (finite set clauses of type (reg)) is saturated
under resolution ordered by >.

Resolution ordered by > and with selection by sel cannot be
applied between automata clauses (reg) like in

Pi(r1),..., Pn(wm) = Q1(9(T)) Qi(y1),--., Qulyn) = Q(f(Y))
Pi(x1), -y P(@m), Q2(y2), - -+ Qn(yn) = Q(F(9(Z), y2, - - yn))

because no literal are selected in the clauses and Q1(y1) is not

maximal in {Q1(y1), -, @n(yn), Q(f)} (R @) = Qi(y1))-

Transformation of alternating automata

Proposition :

Given an alternating tree automaton nt .4 over 3, we can construct
in exponential time a deterministic bottom-up tree automaton A’
recognizing the same language.

Construction by application of ordered resolution with selection,
following an appropriated strategy.

Transformation of alternating automata

pr.. (proposition alternating automata — bottom-up deterministic
automata).

>

>

>

start from a set A of clauses of the form (reg) and (alt).
saturate with resolution ordered (by >) with selection (by sel).

all the clauses produced belong to a type containing an
exponential number of clauses

hence saturation terminates with a set A"

the application of resolution to A" U{Q(t) = L} (for a
ground term t) only involves clauses of the form (reg).

hence, for all @, L(A",Q) = L(A"|reg, Q).

Transformation of bidirectional alternating automata

In order to generalize the previous result (reg + alt — reg) to reg
+ alt 4 bidi — reg, we use the same principle with
» other ordering and selection function for defining the
resolution stratégy,

> and a new rule called e-splitting.

Proposition :

Given a bidirectional alternating tree automaton A over X, we can
construct in exponential time a bottom-up deterministic tree au-
tomaton A’ recognizing the same language.

e-splitting

An e-bloc B(x) is a set of negative literals —P(z) V...V —F,(x).

B(x),Q1(t1), ..., Qun(tn) = Q(1)
B(z) =g qB,Q1(t1),...,Qn(tn) = Q(2)

» gp is a nullary predicate associate in a unique way to B(z),

> 2 ¢ Qit1), .., Qn(tn), Q(t).

Theorem :

Ordered resolution with selection and e-splitting is complete for Horn
clauses.

Another choice of ordered strategy with selection

» ordering > s.t. P(s) > Q(t) iff s > t for the subterm ordering
> and P(s) > gp for all P and ¢p.
» selection function sel (by order of priority):
» splitting literals (¢p).
> negative literals —Q(t) where ¢ is not a variable.

Transformation of bidirectional alternating automata

Proposition :

Given a bidirectional alternating automaton A over ¥, one can con-
struct in exponential time a bottom-up deterministic tree automaton
A’ recognizing the same language.

pr.. same principle as for alternating automata, with the resolution
and e-splitting rules.

Decision of instance membership

Theorem :

The application of resolution ordered by >~ with selection by sel and
e-splitting terminates on the union of a set of clauses (reg) and a
goal clause of the form Q(t) = L.

invariant: the resolution only produces clauses of the following
2 types:
Pi(s1),. s Pn(Sm)s g1, -+ qk = [q] (gs)

where m, k >0, and s1,..., s, are subterms of ¢.

Pl(yil)v"' 7Pk’(yik)>Pll(f(yla'~ ayn))v"' 7Pr/n(f(§)) = [(]] (gf)

Where k‘,mZO, k+m>01 Zlaazkgnv and yl?“‘7yn are
distinct.

Part X

Tree Automata with Equality Constraints

Testing equality between brother subterms

in standard tree automata clauses, the variables z1,...,x, are
pairwise distinct

Ql(ﬂvl),...,Qn(wn):>Q(f(a:1,...,a:n)) (reg)
with variable sharing in
Qi(z1), ..., Qn(zn) = Q(f(z1,...,2,)) (brother)
we force equalities between brother subterm.

example: = Q(a),
Q(z1),Q(xz2) = Q(f(x1,22)),
Qx),Q(x) = Q¢(f(z,2))

Testing equality between brother subterms

expressiveness: tree automata with equality tests between brother
subterms 2 bottom-up tree automata.

Theorem :
The emptiness problem is EXPTIME-complete for tree automata
with equality tests between brother subterms.

Bogaert-Tison automates

Bruno Bogaert, Sophie Tison, 1992.

Tests of = and # between brother subterms (see chapter 4 TATA).
» determinizable in exponentiel time
» all Boolean closures
» emptiness decidable in PTIME for deterministic

» emptiness EXPTIME-complete for non-deterministic

Arbitrary equality tests

clauses with equality

Ql(zl)w . 7Qn(xn)7u1 =V1,..., Uk = Vg = Q(f(xh .

where k >0, ug,vi, ..., up, vp € T (S, {z1,...,2n}).

without restrictions, emptiness is undecidable.

,Tn))

(test)

Arbitrary equality tests: decidable class

We distinguish some predicates call test predicates, and assume a
partial ordering >~ over predicates such that
for all), test predicate and)y non-test, () > Q.

Ql(aj‘l), e ,Qn(xn),ul =Vly..., U = Vg = Q(f(a:l, e ,a:n))
(test)
where (@) is a test predicate, and for all); test predicate, Q > @Q;.

Q1(x1),...,Qn(xy) :Q(f(xl,...,xn)) (reg’)

where either all @, Q1,...,Q, are not test predicates
or () is a test predicate and at most one); = () and the others
are not test.

Arbitrary equality tests: decidable class

example: stuttering lists

= Qo(0) Qo(z) = Qo(s(x))
= Qu([]) Qo(x),Q:1(y) = Qi(cons(z,y))
Qo(z),Q2(y) = Qa(cons(z,y))

Qo(), Q1(y),y = cons(z,y’) = Qa(cons(z,y))

Arbitrary equality tests: decidable class

Theorem :
The satisfiability of a set of clauses of type (test) and (reg’) and a
goal clause Q(t) = L is decidable.

pr.: Saturation by ordered paramodulation with selection and
e-splitting.

Extension to langages (and equality tests) modulo equational
theories, by adding clauses = ¢ = r (of a restricted form).

Part Xl

Automates d’arbres a mémoire

Automates a pile

Extension des automates de mots finis (NFA) avec une mémoire
non bornée = pile.

A=(Z.T,Q,Q,Q",6).
> > alphabet d’entrée,
» [': alphabet de pile.
dC OQxEXxQxT U @QxIxI'xQ U @xXU{e}xQ

(push) (pop) (internal)
Example :
Y ={a,b}, T ={a}. push: ¢ % ¢«
internal : ¢ LN qf

f aia

pop: g =% g
reconnait: {a"ba™ | n > 0}.

Automates a pile (propriétés)

> expressivité 2 NFA

» méme expressivité que les grammaires hors-contexte
(N := N1Ny, N :=a)

» vide décidable

» pas clos par intersection, complément

> la restriction visibly: X = ¥4, W Xp0p & X
a les clotures Booléennes.

Lemma :
Le langage des piles accessibles est régulier.

Automates d'arbres a pile

Automates d’arbres a pile [Guessarian 83]:
» 3 signature d'entrée; en lecture: termes de T (%),
» [': alphabet de pile; mémoire auxiliaire = pile de I'*,

> transitions descendantes:

push a(y) — flaler(®)), .- anlen(v)))
pop qle(®) = fla®), . a(y))

pop a(L) = fla(L),...,qn(L))

int) — fla®,....a®))

€ qiy) — d)

» méme expressivité que les grammaires d'arbres hors-contexte.

Automates d'arbres a une mémoire

Automates ascendants avec une mémoire auxiliaire contenant un

arbre. A=

(,T,

Q, Q" A).

» 3 signature d'entrée; en lecture: termes de T (%),

» I': signature de pile; mémoire auxiliaire = terme de 7 (T).

» A: transitions de la forme

push
push

pop11
Ppop12
Z"rlto

Z"/Ltl
Z"rltg

L1l

Ll

Automates d'arbres a une mémoire (propriétés)

> expressivité D automates d'arbres ascendants

v

généralise les automates (de mots) a pile
vide décidable

pas clos par intersection ni complément

v

v

v

la restriction visibly a toutes les clotures Booléennes.

2= Dpush © Xpop,, W X pop ., W ipopy, W Xpops, B Dintg U Zinty ¥ Jin,

Décision du vide

Theorem :
Le vide est décidable en temps polynomial pour les automates a 1
mémoire.

» L(A,q) == {t|3ImeTI),t x> q(m)}

» M(A,q):={m|3teT(X),t %> qm)}

Lemma :
Pour tous A, q, L(A,q) =0 ssi M(A,q) = 0.

Lemma :
Pour tous A, q, M (A, q) est un langage d'automate bidirectionnel.

Décision du vide (2)

push

pop11
split :
int1

split :

Q1 (h(y11,y12)),
Q1 (h(y11,112)) 90

2
Flar(y1), g2(y2)

Q1(y1), Q2(y2
Q1(y1), 499,
Q2(y2)

S A I U

q(h(y1,2))
Q(h(y1,y2))
Q(?Jll)
Q(y11)
Q(y11)

4Q2

q(y1)

Q(y1)

Q(y1)

4Q2

(reg)

(bidi)

Automates d’arbres a une mémoire et contraintes

Version étendue avec contraintes = et # entre mémoires dans les
transitions nt.

intt fla(n) a2(y2)) 22 q(y)
int7 (), ¢2(y2)) WA ()
ity fla) ga(y2) L2 q(ye)
it} flan) a2(2) L2 q(y)

Automates d'arbres a une mémoire et contraintes:
exemples

» arbres binaires équilibrés
> powerlists
» arbres (binaires) rouge-noir
1. chaque noeud est noir ou rouge,
la racine est noire,
toutes les feuilles sont noires,

les deux fils d'un noeud rouge sont noirs,
tous les chemins contiennent le méme nombre de noeuds noirs.

ok wnN

Automates d’arbres a une mémoire et contraintes: décision

Theorem :

Le vide est décidable en temps exponentiel pour les automates a 1
mémoire et contraintes.

pr.: Résolution ordonnée avec sélection et e-splitting.

	Motivations and Plan
	Motivations
	Logic on trees
	Automated deduction
	Strategies of Evaluation
	Program Verification
	XML Processing

	Overview

	Finite Ranked Trees
	Terms and Rewriting
	Definitions and Expressiveness
	Determinism and Boolean Closures
	Decision Problems
	Minimization
	Tree Transformations
	Tree Homomorphisms
	Tree Transducers

	Weak Second Order Monadic Logic with k successors (WSkS)
	WSkS: Definition
	Automata Logic
	Logic Automata
	Fragments and Extensions of WSkS
	Monadic second-order logic of the infinite binary tree (S2S)

	Unranked Ordered Labeled Trees
	Unranked Ordered Trees
	Hedge Automata, Determinism
	Decision Problems
	Binary Encodings
	Boolean Closure
	Minimization
	Weak Second Order Monadic Logic MSO(, "3223379)
	HA Variants, Regular Languages modulo Associativity

	Unranked Unordered Labeled Trees
	Unranked Unordered Trees
	Presburger Arithmetic
	Presburger Automata (PA)
	Determinism
	Boolean Closure
	Decision Problems
	Regular Languages modulo Associativity and Commutativity
	Weak Second Order Monadic Logic PMSO

	Presburger Constraints and Unranked Ordered Trees
	Mixed Labeled Trees (Unordered and Ordered)
	Alternating Tree Automata
	Tree Automata defined as Sets of Horn Clauses
	Tree Automata with Equality Constraints
	Automates d'arbres à mémoire

