Automates d'arbre

TD $n^{\circ}4$: Logic and Hedges

Charlie Jacomme

October 03, 2017

Exercise 1: MSO on finite trees

We consider trees with maximum arity 2. Give MSO formulae which express the following :

- 1. X is closed under predecessors
- 2. $x \subseteq y$ (with \subseteq the prefix relation on positions)
- 3. 'a' occurs twice on the same path
- 4. 'a' occurs twice not on the same path
- 5. There exists a sub tree with only a's
- 6. The frontier word contains the chain 'ab'

Exercise 2: From formulaes to automaton

Give tree automatons recognizing the languages on trees of maximum arity 2 defined by the formulae :

- 1. $(x \in S \land (x \downarrow_1 y \Rightarrow y \in S)) \land (z \in S \Rightarrow P_f(z))$
- 2. $\exists S.(x \in S \land (x \downarrow_1 y \Rightarrow y \in S)) \land (z \in S \Rightarrow P_f(z))$

Exercise 3: The power of Wsks

Produce formulae of WSkS for the following predicates :

- the set X has exactly two elements.
- the set X contains at least one string beginning with a 1.
- $x \leq_{lex} y$ where \leq_{lex} is the lexicographic order on $\{1, ..., k\}^*$.
- given a formula of WSkS ϕ with one free first-order variable, produce a formula of WSkS expressing that there is an infinity of words on $\{1, ..., k\}^*$ satisfying ϕ .

Exercise 4: The limit of Wsks

Prove that the predicate x = 1y is not definable in WSkS.

Homework for next week : To the infinity...

Let $\Sigma = \{a, b\}$. Define a DFHA \mathcal{A} such that $L(\mathcal{A})$ is the set of all trees such that "for every leaf labeled with a, there is an ancestor from which there is a path whose nodes are labeled with b". Here "ancestor" means strict ancestor and "from which there is a path" means that there is a path from a son of this ancestor to a leaf.