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Beyond domains and quasi-Polish spaces

Motivating example: measure extension theorems

Locating LCS-complete spaces

If time permits: Stone duality, consonance, …
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        (with the subspace topology)

Every Polish space X is Gδ in  
         its space Y of formal balls 
                and Y is an ω-continuous dcpo 
         [Edalat,Heckmann98]

Same for quasi-Polish spaces =  
topological space underlying separable 
Smyth-complete quasi-metric [deBrecht13]
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= quasi-Polish spaces [GL,Ng17]
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           X is Gδ in a continuous dcpo Y

Defn. X is LCS-complete iff  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LCS-complete spaces generalize  
— domains 
— Polish, quasi-Polish spaces
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Useful theorems! 
(next)
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VALUATIONS AND MEASURES

Continuous valuation ν:  
— ν : OX → ℝ+ ∪ {∞}  
    measures open sets 
— Scott-continuous 
— ν(∅)=0  
— ν(U ∪ V)+ν(U ∩ V)  
     =ν(U)+ν(V)

Measure μ:  
— μ : B(X) → ℝ+ ∪ {∞}  
    measures Borel sets 
— μ(∅)=0  
— (En)n∈ℕ pairwise disjoint  
     ⇒ μ(∪n En)=∑n μ(En)

Fact. Every measure on a countably-based space X 
          restricts to a continuous valuation.

Conversely…



MEASURE EXTENSION 
THEOREMS

Thm [Alvarez-Manilla,Edalat,Saheb-Djahromi00 + Jones90] 
Every (finite) continuous valuation extends to a measure 
— on a continuous dcpo.
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MEASURE EXTENSION 
THEOREMS

Thm. Every continuous valuation ν 
           extends to a measure  
— on an LCS-complete space X.

Proof. 
Let i:X→Y = inclusion map  
     i[ν] is a continuous valuation on Y  
     i[ν](V) = ν(V ∩ X)
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MEASURE EXTENSION 
THEOREMS

Thm. Every continuous valuation ν 
           extends to a measure  
— on an LCS-complete space X.

Proof.  i[ν] extends to a measure μ on Y  
      by [AM00,KL05] hence on X

for every open U of X,  
U = V ∩ X for some open V of Y  
   = ∩n (V ∩ Wn), so 
μ(U) = infn μ(V ∩ Wn) = infn ν(U) = ν(U).  ☐
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…otherwise use tricks introduced by Heckmann (1996)



MEASURE EXTENSION 
THEOREMS

Thm. Every continuous valuation ν 
           extends to a measure  
— on an LCS-complete space X.  
This is tight [deBrecht95]

(Right) both X are Fσ in their sobrifications

X
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

…

ω

(cofinite topology)

X

0
1

2
3

4
5

6
7

8
9

…

ω

(Scott
topology)



MEASURE EXTENSION 
THEOREMS

Thm. Every continuous valuation ν 
           extends to a measure  
— on an LCS-complete space X.  
This is tight [deBrecht95]

(Right) both X are Fσ in their sobrifications

Take ν / ν(U)=1 for every non-empty U

X
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

…

ω

(cofinite topology)

X

0
1

2
3

4
5

6
7

8
9

…

ω

(Scott
topology)



MEASURE EXTENSION 
THEOREMS

Thm. Every continuous valuation ν 
           extends to a measure  
— on an LCS-complete space X.  
This is tight [deBrecht95]

(Right) both X are Fσ in their sobrifications

Take ν / ν(U)=1 for every non-empty U

Any μ extending ν must satisfy μ({n})=0  
hence μ=0… which does not extend ν. ☐
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LOCATING *-COMPLETE SPACES

Continuous complete quasi-metric spaces [Kostanek,Waszkiewicz10] 
embed as Gδ subsets of their poset of formal balls — a continuous dcpo.
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compactly 
Choquet-complete

convergence 
Choquet-complete Let me focus on those



THE STRONG CHOQUET GAME

Two players α, β



THE STRONG CHOQUET GAME

Two players α, β X



THE STRONG CHOQUET GAME

Two players α, β

β picks open V0, x0∈V0

X

V0

x0



THE STRONG CHOQUET GAME

Two players α, β

β picks open V0, x0∈V0

α picks smaller open U0 
containing x0

X

V0

x0

U0



THE STRONG CHOQUET GAME

Two players α, β

β picks open V0, x0∈V0

α picks smaller open U0 
containing x0

β picks smaller open V1, 
x1∈V1

X

V0

x0

U0

V1

x1



THE STRONG CHOQUET GAME

Two players α, β

β picks open V0, x0∈V0

α picks smaller open U0 
containing x0

β picks smaller open V1, 
x1∈V1

…

X

V0

x0

U0

V1

x1

U1

V2
x2

U2



THE STRONG CHOQUET GAME

X

V0

x0

U0

V1

x1

U1

V2
x2

U2

X Choquet-complete  
iff whatever β’s strategy,  
α can ensure ∩n Un≠∅



THE STRONG CHOQUET GAME

X

V0

x0

U0

V1

x1

U1

V2
x2

U2

X Choquet-complete  
iff whatever β’s strategy,  
α can ensure ∩n Un≠∅

X convergence Choquet-
complete [Dorais,Mummert10] 
iff α can ensure that 
(Un)n is a base of neighborhoods 
of some point.



THE STRONG CHOQUET GAME

X

V0

x0

U0

V1

x1

U1

V2
x2

U2

X Choquet-complete  
iff whatever β’s strategy,  
α can ensure ∩n Un≠∅

X convergence Choquet-
complete [Dorais,Mummert10] 
iff α can ensure that 
(Un)n is a base of neighborhoods 
of some point.

Thm [deBrecht13].  Quasi-Polish 
= convergence Choquet-complete 
+ countably-based
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x2∈V2
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DOMAIN-COMPLETE ⇒ 
CONVERGENCE CHOQUET-COMPLETE

For every n, Un = ↟yn ∩ X

In the end, (Un)n is a base of 
neighborhoods of sup yn.   ☐
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LCS-COMPLETE ⇒ 
COMPACTLY CHOQUET-COMPLETE

For LCS-complete spaces, 
replace ↑ yn by compact 
saturated sets Qn

Un = int(Qn) ∩ X

In the end, (Un)n is a base of 
neighborhoods of sup yn   
a non-empty compact 
saturated set Q. ☐

X

Y

X is Gδ in Y

W0

W1

W2

Q0

Q1

Q2



COMPACT CHOQUET-
COMPLETENESS

X

V0

x

U0

V1

x
U1

V2

x
U2

X is compactly Choquet-complete  
iff α can ensure that 
(Un)n is a base of neighborhoods 
of some non-empty compact sat. set Q.



COMPACT CHOQUET-
COMPLETENESS

X

V0

x

U0

V1

x
U1

V2

x
U2

X is compactly Choquet-complete  
iff α can ensure that 
(Un)n is a base of neighborhoods 
of some non-empty compact sat. set Q.

Thm (recap). 
domain-complete ⇒ convergence Choquet-complete 
LCS-complete      ⇒ compactly Choquet-complete



COMPACT CHOQUET-
COMPLETENESS

X
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X is compactly Choquet-complete  
iff α can ensure that 
(Un)n is a base of neighborhoods 
of some non-empty compact sat. set Q.

Thm (recap). 
domain-complete ⇒ convergence Choquet-complete 
LCS-complete      ⇒ compactly Choquet-complete

Used everywhere in the theory.
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Thm. Every metrizable LCS-complete space  
           is completely metrizable  
               (because Choquet-complete)

Thm. LCS-complete≠domain-complete 
               ({0,1}I, with I uncountable, is compact T2,  
                but not convergence Choquet-complete)

Prop. ℚ is not LCS-complete  
               (not Choquet-complete: let β remove the first point of Un  
               in some fixed enumeration of ℚ; α cannot win)
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Thm.  LCS-complete + countably-based 
            = quasi-Polish

Proof. Let Bn form a countable base.  
Instead of playing Un, α plays the intersection  
                of Un with the Bi s that contain xn, i≤n

Then Q = ∩n Un is not just compact  
                         but supercompact,  
                  hence of the form ↑x [Heckmann,Keimel13].

Hence the space is convergence Choquet-complete.

Recall [deBrecht13]: this + countably-based ⇒ quasi-Polish.  ☐
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THE FINAL PICTURE
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LCS-complete

locally compact 
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continuous dcpo

continuous complete quasi-
metric (d-Scott topology)

quasi-Polish

ω-continuous dcpo Polish

complete metric

topologically 
complete

compactly 
Choquet-complete

Baire

completely 
Baire

(Hausdorff spaces)

⊙-consonant

consonant

sober
convergence 

Choquet-complete

Wilker

All the same  
if countably-based



CONCLUSION

A very rich theory,  
extending both domains and (quasi-)Polish spaces,  
with applications in topological measure theory

Much more to be read about in the paper! 
                                                          (19 sections, 8 theorems, 14 propositions, 10 lemmata, and 72 essential vitamins and minerals!)

Questions?
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STONE DUALITY

O : Top → Frmop 
maps X to 
its lattice of open sets

pt : Frmop → Top  
maps L to space of 
completely prime filters of L

Adjunction, which restricts to 
several equivalences 
of categories 

Top Frmop

O

pt

⊣

quasi-Polish ⇄ countably 
presented locales 

[Heckmann15]

domain-complete ⇄ quotient of  
completely distributive lattice

LCS-complete ⇄ quotient of  
continuous distr. complete lattice

… by countably many relations u=⊤

(this paper)



CATEGORICAL PROPERTIES (1)

Let LCS be the category of LCS-complete spaces

Prop. LCS is closed under:  
— countable topological products 
— arbitrary sums.



CATEGORICAL PROPERTIES (2)

Prop. LCS does not have:  
— equalizers 
       (ℚ would arise as eq. of f, g : ℝ → ℙ(ℝ)  
            with f(x)=(ℝ–{x}) ∪ ℚ, g(x)=ℝ)  
       Note that the category of quasi-Polish spaces has equalizers.  
— coequalizers 
     (the sequential fan would arise  
                             as such a coequalizer  
        but is not first-countable  
 
        however every countable  
        LCS-complete space is first-countable)
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CATEGORICAL PROPERTIES (3)

Prop. Every exponentiable object in LCS is locally compact

Baire space ℕℕ is Polish, hence LCS-complete  
                                    but is not locally compact

Corl. LCS is not Cartesian-closed

Thm. (Bonus.) The exponentiable objects 
                        in the category of quasi-Polish spaces  
       are exactly the countably-based locally compact sober spaces.



CONSONANCE

For Q compact saturated, ■Q =def collection of opens U ⊇ Q

■Q is a Scott-open filter in the complete lattice OX of opens

Every union ∪i ■Qi is Scott-open in OX.

Defn. X is consonant iff those are the only Scott-opens of OX.



LCS-COMPLETE ⇒ CONSONANT
Thm. Every LCS-complete space 
X is consonant.

Proof. 
Let F be Scott-open in OY, U ∈ F.  
We must find Q / U ∈ ■Q ⊆ F.
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Proof. 
Let F be Scott-open in OY, U ∈ F.  
We must find Q / U ∈ ■Q ⊆ F.

U = U ∩ Y for some open U in X.

Y locally compact ⇒ approximate  
U ∩ W0 by Q0 with int(Q0) ∩ Y ∈ F

X

Y

X is Gδ in Y

W0

W1

W2

Q0

U

U



LCS-COMPLETE ⇒ CONSONANT
Thm. Every LCS-complete space 
X is consonant.

Proof. 
Let F be Scott-open in OY, U ∈ F.  
We must find Q / U ∈ ■Q ⊆ F.

U = U ∩ Y for some open U in X.

Y locally compact ⇒ approximate  
U ∩ W0 by Q0 with int(Q0) ∩ Y ∈ F

Repeat with int(Q1) ∩ W1, etc.

X

Y

X is Gδ in Y

W0

W1

W2

Q0

Q1

U

U



LCS-COMPLETE ⇒ CONSONANT
Thm. Every LCS-complete space 
X is consonant.

Proof. 
Let F be Scott-open in OY, U ∈ F.  
We must find Q / U ∈ ■Q ⊆ F.

U = U ∩ Y for some open U in X.

Y locally compact ⇒ approximate  
U ∩ W0 by Q0 with int(Q0) ∩ Y ∈ F

Repeat with int(Q1) ∩ W1, etc.

Let Q =def ∩↓Qn: compact by well-filteredness,  
contained in U (U ∈ ■Q), and ■Q ⊆ F by well-filteredness again.  ☐
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Thm. Every LCS-complete space 
X is consonant.

Proof. 
Let F be Scott-open in OY, U ∈ F.  
We must find Q / U ∈ ■Q ⊆ F.

U = U ∩ Y for some open U in X.

Y locally compact ⇒ approximate  
U ∩ W0 by Q0 with int(Q0) ∩ Y ∈ F

Repeat with int(Q1) ∩ W1, etc.

Let Q =def ∩↓Qn: compact by well-filteredness,  
contained in U (U ∈ ■Q), and ■Q ⊆ F by well-filteredness again.  ☐
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LCS-COMPLETE ⇒ CONSONANT
Thm. Every LCS-complete space X 
is consonant.

Corl. … and X+X+…+X is consonant, too,  
   i.e. X is ⊙-consonant.
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THE SPACE OF LSC MAPS
Let LX = {lower semicontinuous maps : X → ℝ+ ∪ {∞} }  
              with the Scott topology

Thm. If X is LCS-complete, then Scott=compact-open on LX.

f
Proof. Let f in Scott-open U.  
Find a step function supi ai χUi ≤ f in U.  
By ⊙-consonance,  
     find Qi large enough ⊆ Ui,  
     and bi large enough < ai 
Then ∩i [Qi > bi] contains f 
         and is included in U.  ☐
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THE SPACE OF LSC MAPS
Let LX = {lower semicontinuous maps : X → ℝ+ ∪ {∞} }  
              with the Scott topology

Thm. If X is LCS-complete, then Scott=compact-open on LX.

Corl. In that case, LX is locally convex  
          … hence the isomorphism theorems of [JGL17] apply, e.g.:

Corl. If X is LCS-complete, then  
          the space of sublinear cont. functionals : LX → ℝ+ ∪ {∞}  
          ≅ the space of convex closed sets of cont. valuations on X


