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Beyond domains and quasi-Polish spaces
Motivating example: measure extension theorems

Locating LCS-complete spaces
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G-DELTA SUBSETS

G5 = countable intersection of opens W), ne
(with the subspace topology)

Every Polish space X is Gs in
its space Y of formal balls

and Y is an W-continuous dcpo
[Edalat,Heckmann98]

Same for quasi=-Polish spaces =
topological space underlying separable
Smyth-complete quasi-metric [deBrecht| 3] XisGsinY
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In fact: TRl O
Gs subsets of W-continuous dcpos |} ]W
= quasi-Polish spaces [GL,Ngl 7]
........................................................ 2\ Wh

Defn. X is domain-complete iff
X is Gpg in a continuous dcpo Y

Defn. X is LCS-complete iff

X is Gp in a locally compact sober
space Y Xis Gsin Y
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MOTIVATION

LCS-complete spaces generalize Useful theorems!
— domains (next)
— Polish, quasi-Polish spaces

LCS-complete

locally compact
sober
T

( continumis dcpo ) ( quasi-Polish

o

(Hausdorff spaces)
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VALUATIONS AND MEASURES

Continuous valuation V: Measure |:
—VIOX_’R+U{00} —uﬂB(X)—'RwJ{oo}
measures open sets measures Borel sets

— Scott-continuous —_Hi(2)=0
— Vv(92)=0

— V(U u V)+v(Un V) -
=v(U)+V(Y) = H(Up £)=2, U(E)

— (En)nen pairwise disjoint

Fact. Every measure on a countably-based space X
restricts to a continuous valuation.

Conversely...



MEASURE EXTENSION
FHECREMS

Thm [Alvarez-Manilla,Edalat,Saheb-DjahromiO0 + Jones90]
Every (finite) continuous valuation extends to a measure
— on a continuous dcpo.
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Thm [Alvarez-Manilla00; Keimel,Lawson05]
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— on a locally compact sober space.
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MEASURE EXTENSION
FHECREMS

Thm [this paper]
Every continuous valuation extends to a measure
— on an LCS-complete space.

LCS-complete

locally compact
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T
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(Hausdorff spaces)
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iv]
Thm. Every continuous valuation Vv e

extends to a measure e ]
— on an LCS-complete space X. = -\ 4
........................................................ N2 Wi
Proof.
Let i:X—Y = inclusion map
i[V] is a continuous valuation on Y

iIv1(V) = v(V n X)

Xis Gg in Y (loc. compact sober)
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Thm. Every continuous valuation V
extends to a measure
— on an LCS-complete space X.

Proof. i[V] extends to a measure Jon Y %
by [AMOO,KLO5] hence on X

for every open U of X,
U=Vn Xfor some open Vof Y

= Mn (V n Wh),so
u(U) /=\ inf, W(V n W,) = inf, v(U) = v(U). O

{works only if vV (hence M) bounded... J




PEASURE EXEENSICOIN
FHECREMS

Thm. Every continuous valuation V
extends to a measure
— on an LCS-complete space X.

Proof. i[V] extends to a measure Jon Y %
by [AMOO,KLO5] hence on X

for every open U of X, 3

U=Vn Xfor some open Vof Y
= Mn (V n Wh),so

H(U) = infy (V0 Wa) = infy V(U) = V(U). ©

{ ...otherwise use tricks introduced by Heckmann (1996) J
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PEASURE EXEENSICOIN
FHECREMS

Thm. Every continuous valuation Vv
extends to a measure X

— on an LCS-complete space X. —

This is tight [deBrecht95] (cofinite topology)

w
[

(Right) both X are Fg in their sobrifications

Take v / v(U)=1 for every non-empty U

(Scott

Any U extending V must satisfy p({n})=0 topology)

hence U=0... which does not extend V.
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Continuous complete quasi-metric spaces [Kostanek,Waszkiewicz| 0]
embed as Gj subsets of their poset of formal balls — a continuous dcpo.

LCS-complete

locally compact continuous complete quasi-
sober metr1c (d-Scott topology)

(Hausdorff spaces)

topologically
complete

T

( complete metric )

1

Polish )

( continuous dcpo ) ( quasi-Polish

s

C ®-continuous dcpo )
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Baire ) ( consonant )
[completely T

i C O-consonant )
Baire

sober

(_sober
LCS-complete

domain-complete

(Hausdorff spaces)

sober metric (d-Scott topology)

et

( continuous dcpo ) quasi-Polish

s

®-continuous dcpo )

locally compact continuous complete quasi- topologically
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T

( complete metric )

1
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Baire ) ( consonant )

completely compactly T
Baire Choquet complete C ©-consonant )
—~
convergence
Choquet-complete
LCS-complete

[ locally compact j [ continuous complete quasi-

4t me focus on those
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X Choquet-complete
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X convergence Choquet-
complete [Dorais,Mummert|
iff X can ensure that

(Un)n is a base of neighborhoods
of some point.
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X Choquet-complete
iff whatever B’s strategy,

& can ensure N, U,*+2

~ -

X convergence Choquet-
complete [Dorais,Mummert|
iff X can ensure that

(Un)n is a base of neighborhoods
of some point.

——__--..

Thm [deBrechtl3]. Quasi-Polish

= convergence Choquet-complete
+ countably-based
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CONVERGENCE

B picks open Vo, xoeVo

X finds yo<xo, in Yo n W,
and plays Up = tyon X.

DOMAIN-COMPLETE =

T e

N
'
---------------------------------

.

.

----------------------------------------
v

XisGsinY

Wo
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DOMAIN-COMPLETE =
CONVERGENCE GHOOU

For every n,U, = tyan X

In the end, (Un)» is a base of
neighborhoods of sup yn.

X sup y
s [, [ ]
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L CS-COMPLETE =

COMPALCERY CHOGIUE COIMEL R TE

For LCS-complete spaces,

replace T y, by compact
saturated sets Qp

Un = int(Qn) n X

In the end, (Un)n is a base of
neighborhoods of sup-y,

a non-empty compact
saturated set Q.

XisGsinY
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Thm (recap). T
domain-complete = convergence Choquet-cons

LCS-complete = compactly Choquet-complete

Used everywhere in the theory.
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Thm. Every metrizable LCS-complete Spacg” .o ~

is completely metrizable =~ /7 T T
(because Choquet-complete)
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Thm. LCS-complete#¥domain-complete\ %
({0, I}, with | uncountable, is compact T, .
but not convergence Choquet-complete)

~ o -”
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--------

Prop. Q is not LCS-complete

(not Choquet-complete: let B remove the first point of U,
in some fixed enumeration of Q; & cannot win)
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Thm. LCS-complete + countably-based
= quasi-Polish

Proof. Let B, form a countable base.

Instead of playing U,, & plays the intersection
of U, with the B;s that contain x,, i<n

Then Q = N, U, is not just compact

but supercompact,
hence of the form Tx [Heckmann,Keimell 3].

Hence the space is convergence Choquet-complete.

Recall [deBrechtl 3]: this + countably-based = quasi-Polish. O



THEEIRNAL Hil TUIRE
T eon ey

Choquet complete
YR

convergence
Choquet-complete
LCS-complete

[ locally compact ] [ continuous complete quasi-

Baire

completely [ compactly j T
. C ©-consonant )

(Hausdorff spaces)

topologically
sober metric (d-Scott topology) complete

T

( complete metric )

1

Polish )

( continuous dcpo ) ( quasi-Polish

s

( ®-continuous dcpo )




THEEINAL FIC EUIRE

Baire ) ( consonant )

completely compactly
Baire Choquet complete C ©-consonant )

—
convergence
Choquet-complete
LCS-complete

locally compact continuous complete quasi-
sober metr1c (d-Scott topology)

All the same
if countably-based

(Hausdorff spaces)

topologically
complete

T

( complete metric )

1

Polish )

( continuous dcpo ) ( quasi-Polish

e e

( ®-continuous dcpo )




CONCLUSION

A very rich theory,
extending both domains and (quasi-)Polish spaces,
with applications in topological measure theory

Much more to be read about in the paper!

Questions?

(19 sections, 8 theorems, 14 propositions, 10 lemmata;

Domain-complete and LCS-complete spaces

Matthew de Brecht 1+

2 Graduate School of Human and Environmental Studies , Kyoto University, Kyoto, Japan
Jean Goubault-Larrecq ®?* Xiaodong Jia "%° Zhenchao Lyu 36

b LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay, France

Abstract

We study G5 subspaces of continuous dcpos, which we call domain-complete spaces, and G5 subspaces of locally compact
spaces, which we call LCS-complete spaces. Those include all locally compact sober spaces—in particular, all continuous dc;
all topologically complete spaces in the sense of Cech, and all quasi-Polish spaces—in particular, all Polish spaces. We
that LCS-complete spaces are sober, Wilker, compactly Choquet-complete, completely Baire, and ®-consonant—in part
consonant; that the countably-based LCS-complete (resp., domain-complete) spaces are the quasi-Polish spaces exactly; an
the metrizable LCS-complete (resp., domain-complete) spaces are the completely metrizable spaces. We include two applic:
on LCS-complete spaces, all continuous valuations extend to measures, and sublinear previsions form a space homeomorp
the convex Hoare powerdomain of the space of continuous valuations.

Keywords: Topology, domain theory, quasi-Polish spaces, G5 subsets, continuous valuations, measures
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pt
<
Top T JFrmerp
o
Sober spaces <= spatial locales

O :Top = Frmer

maps X to

its lattice of open sets
loc. compact sober == continuous

pt : Frmecr — Top

maps L to space of
completely prime filters of L continuous dcpos < completely

distributive lattices

distr. complete lattices

Adjunction, which restricts to

several equivalences quasi-Polish == countably

of categories
presented locales

[Heckmann| 5]



SHORNE DUALEEY

O :Top = Frmer
maps X to

its lattice of open sets

pt : Frmecr — Top
maps L to space of

pt

Top ™ T  _Frmo
o

quasi-Polish = countably

presented locales
[Heckmann| 5]

completely prime filters of L domain-complete < quotient of

completely distributive lattice

Adjunction, which restricts to

several equivalences

of categories

LCS-complete <= quotient of

continuous distr. complete lattice

... by countably many relations u=T

W]

(1aded siyy)
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Let LCS be the category of LCS-complete spaces

Prop. LCS is closed under:
— countable topological products
— arbitrary sums.
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Prop. LCS does not have:
— equalizers
(Q would arise as eq.of f,g : R = P(R)
with f(x)=(R—{x}) u @, g(x)=R)
Note that the category of quasi-Polish spaces has equalizers.

— coequalizers

(the sequential fan would arise

as such a coequalizer
but is not first-countable

The sequential fan
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CATEGORICAL PROPERTIES (3)

Prop. Every exponentiable object in LCS is locally compact

Baire space N! is Polish, hence LCS-complete
but is not locally compact

Corl. LCS is not Cartesian-closed

Thm. (Bonus.) The exponentiable objects
in the category of quasi-Polish spaces
are exactly the countably-based locally compact sober spaces.



CONSONANCE

For Q compact saturated, mQ =qef collection of opens U 2 Q
m(Q is a Scott-open filter in the complete lattice OX of opens

Every union U;=Q; is Scott-open in OX.

Defn. X is consonant iff those are the only Scott-opens of OX.
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“Thm. Every LCS-complete space
X is consonant.

Proof.
Let F be Scott-open in OY, U € F

We must find Q / U € -Q

U=UnYfor som@
Y IocaII Ximate

Un Wo m. with mt(Qo) nYeF

Repeat with int(Q) n Wi, etc.

XisGsinY

Let Q =4ef N1 Qn: compact by well-filteredness,
contained in U (U € mQ), and mQ C F by well-filteredness again. [
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IS consonant.

Corl. ... and X+ X+...+X is consonant, too,
i.,e. X is ©=consonant.

Y
XisGsinY
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THEERCE LR LS PIBES

Let £X = {lower semicontinuous maps : X = R+ u {00} }

with the Scott topology

Thm. If X is LCS-complete, then Scott=compact-open on LX.

Proof. Let f in Scott-open U.

Find a step function sup;i a; Xui < f in U.
By ©=consonance,

find Q; large enough < U,

and b; large enough < g;
Then N; [Qi> bi] contains f

and is included in ‘U. O
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Let LX = {lower semicontinuous maps : X = R+ u {0} }

with the Scott topology

Thm. If X is LCS-complete, then Scott=compact-open on LX.

Corl. In that case, LX is locally conveXx
... hence the isomorphism theorems of [JGL17] apply, e.g.:

Corl. If X is LCS-complete, then
the space of sublinear cont. functionals : LX — R+ u {00}

= the space of convex closed sets of cont. valuations on X



