
The h1 Tool Suite

Jean Goubault-Larrecq

LSV/UMR 8643, CNRS, ENS Cachan & INRIA Futurs projet SECSI

61 avenue du président-Wilson, F-94235 Cachan Cedex

goubault@lsv.ens-cachan.fr

Phone: +33-1 47 40 75 68 Fax: +33-1 47 40 75 21

December 6, 2005

Abstract

This describes the theoretical basis and practical usage of the h1 tool suite. This is a set

of tools that allow one to handle tree-regular languages in various formats, including deter-

ministic, non-deterministic, and alternating finite tree automata, but also various fairly general

clausal formats, the central one being the H1 class due to Nielson, Nielson, and Seidl. Alter-

natively, this can also be seen as a terminating automated theorem prover for the H1 class; or

as an automated theorem prover for general clause sets, which however makes some controlled

mistakes in the spirit of abstract interpretation: this is notably useful in proofs of security pro-

tocols. Other aspects of the h1 tool suite include producing certain forms of automated proofs

by induction in the Coq proof assistant, deciding Presburger arithmetic, and displaying tree

automata.

Contents

1 Introduction 2

2 Tree Automata, Clauses 6

3 The h1 Tool Suite through Examples 10

3.1 A Toy, Introductory Example . 10

3.2 The Dreadsbury Mansion Murder Mystery Example 12

3.3 Computing with Tree Automata . 14

3.3.1 Visualizing Tree Automata . 16

3.3.2 Computing Intersections of Tree Automata 16

3.3.3 Checking Tree Automata for Emptiness, Testing Membership 19

3.3.4 Converting Alternating to Non-Deterministic Tree Automata 21

3.3.5 Purging Tree Automata . 24

1

3.3.6 Determinizing Tree Automata . 24

3.3.7 Computing Unions, Transitive Closures 29

3.3.8 Complete Deterministic Tree Automata, Taking Complements 35

3.4 The Needham-Schroeder Symmetric Key Protocol Example 39

4 The h1 Prover 45

4.1 How to Use h1 . 45

4.2 Theoretical Background . 50

4.3 Principle of Operation . 50

5 Explaining and Checking Proofs: h1trace, h1logstrip 50

6 Model-Checking Clause Sets and Explaining the Absence of Proofs with h1mc 50

6.1 Theoretical Background . 50

7 Determinizing Tree Automata with pldet 50

8 Converting XML Deterministic Tree Automata to Prolog Notation with auto2pl 50

9 Cleaning and Extracting Automata with plpurge 50

10 Converting Tree Automata and Prolog Programs to TPTP Files 50

11 Applying Morphisms to H1 Clause Sets with tptpmorph 50

12 Solving Presburger Arithmetic Formulas with linauto 50

13 Displaying Automata with pl2gastex 50

14 Log Files and h1getlog 52

15 Bugs 52

Concept Index 54

Command Index 55

1 Introduction

The h1 tool suite is a toolchest for handling finite tree automata, in various forms. There are

basically three forms, from most constrained to least constrained:

1. as deterministic bottom-up tree automata;

2. as alternating tree automata;

2

3. as pure Prolog programs (sets of Horn clauses) in the H1 class [Nielson et al., 2002].

The global architecture is given in the following figure. Some things are still missing from it,

and we will add them progressively later. The inner dashed box forms the core of the h1 tool suite.

The outer dashed box is the h1 tool suite itself.

auto2pl

h1 pl2tptp

Deterministic Tree Automata

pldet

[.xml]

[.pl]

[.p]
H1 Clause Sets

Alternating Tree Automata

The main thing to understand is that the h1 tool suite includes tools to convert between all three

formats of tree automata, forming the core of the h1 tool suite. The tools h1, pldet, auto2pl,

pl2tptp are used to navigate between all three formats.

In the h1 tool suite, deterministic tree automata are represented in files in XML format.

Alternating tree automata are represented as Horn clauses, in Prolog notation; in particular,

you can run them in any Prolog implementation (whatever the use of this may be).

Finally, H1 clause sets are represented in TPTP format. TPTP (a Thousand Problems for

Theorem Provers) is a publicly available repository used to test automated theorem provers, due to

Suttner and Sutcliffe [2002]. The h1 tool suite handles TPTP input files that contain only clauses.

This allows you to use any automated, clausal theorem prover in place of the h1 prover if you so

wish. The h1 prover, one of the tools of the h1 tool suite, is an automated theorem prover. In

addition to searching for proofs, it is also able to produce counter-models and describe them as

alternating tree automata; h1 is described in Section 4.

Additional tools operate on such counter-models and proofs. They form the rest of the h1 tool

suite. As far as proofs are concerned, the h1 tool keeps a trace of all proof steps it did in a trace

log. This trace log is in a proprietary format that the h1trace and h1logstring tools can

work on. (Don’t assume anything on this format, it may change in the future.) This is pictured in

the following figure.

3

auto2pl

h1 pl2tptp

Deterministic Tree Automata

[.log]H1 trace logs

Coq proofs

(of contradictions)

[.v] Human−readable proofs

(of contradictions)

pldet

[.xml]

[.pl]

[.p]
H1 Clause Sets

h1trace h1trace

h1

Alternating Tree Automata
h1logstrip

The purpose of h1trace is to explain the proofs found by h1, both to humans, as a proof

in natural deduction in text format, and to machines, as a formal proof, in Coq notation. Coq is a

proof assistant developed in the LogiCal team at INRIA Futurs [Barras et al., 1999–2003]. Since

proof traces in .log format, as produced by h1 and read by h1trace are huge, they are output

by h1 in gzip-compressed format. You may use the standard tool zcat in place of cat to read

such compressed files. More in Section 5.

The h1 tool is also able to work on general clause sets, not just in the H1 format. In this case,

h1 will output a proof candidate, which however may fail to be a proof. In case this is a wrong

proof, h1trace will do its best to explain the wrong proof to humans. This can be used to design

a true proof.

In case a prover does not find a proof of some given query, you usually have no choice but

to trust it that there is indeed no proof. In case h1 does not find a proof of some given query, it

outputs a model. This model can be independently checked by the h1mc model-checking tool;

h1mc takes as input both a description of the model M, as an alternating tree automaton, and a

trace log obtained from some given clause set S, and checks whether the clauses in S all hold in

the model M. This is a way of getting confident that there is indeed no proof of the initial query,

i.e., that your query is wrong. More useful is the fact that h1mc can give you an explanation, based

on M, why you query is wrong. As with h1trace, this explanation can be made for humans,

in text format, or in Coq format, to be checked independently by the Coq proof assistant. This is

important in security protocols for instance, where a proof of secrecy consists in showing that there

is no proof of the fact that the intruder can get hold of a given secret. This was shown by Selinger

[2001], see Goubault-Larrecq [2004]. Adding h1mc gives you the following picture of the h1 tool

suite.

4

auto2pl

h1 pl2tptp

Deterministic Tree Automata

[.log]H1 trace logs

Coq proofs

(of contradictions)

[.v] Human−readable proofs

(of contradictions)

pldet

[.xml]

[.pl]

[.p]
H1 Clause Sets

h1trace h1trace

h1

Alternating Tree Automata

Coq proofs

(of consistency)

[.v] Human−readable proofs

(of consistency)

h1mc

h1logstrip

The h1mc tool is described in Section 6.

Additionally, various tools are provided. First, there are two conversion utilities, auto2pl,

which converts deterministic tree automata in XML format into Prolog format (Section 8); and

pl2tptp, which converts alternating tree automata in Prolog format into TPTP format (Sec-

tion 10). Since every deterministic tree automaton is a particular case of an alternating tree au-

tomaton, and every alternating tree automaton is a particular case of an H1 clause set (see Sec-

tion 2), these two utilities entail no loss of information. In particular, to convert deterministic tree

automata into H1 clause sets, just run auto2pl on the former, getting an intermediate file which

you then convert to H1 clause sets using pl2tptp.

Then, there are miscellaneous utilities. The first, plpurge, extracts the part of a tree automa-

ton that is relevant to certain final states. In other words, it reads a tree automaton in Prolog format,

and eliminates all states and transitions that do not reach any final state. This cleaning step is use-

ful to help understand the structure of automata computed by h1, in particular as a preparation to

calling pl2gastex. The plpurge tool is described in Section 9. The second, tptpmorph,

applies certain kinds of morphisms to languages represented as H1 clause sets. This is described

in Section 11. The need for it should become apparent in conjunction with linauto, which im-

plements Boudet and Comon [1996]’s algorithm for deciding quantifier-free Presburger formulae

by converting them to automata. While linauto only deals with quantifier-free formulae, ex-

istential quantification can be dealt with by using tptpmorph, and universal quantification can

be implemented using existential quantification and complementation. Complementation can be

implemented by determinization (using pldet) and using auto2pl with the -negate option.

The linauto tool is described in Section 12.

Finally, pl2gastex is a utility that converts alternating tree automata to a sequence of gasTEX

macros, which can then be used in conjunction with LATEX to display them on screen or include

them in documents. A former attempt of a tree automaton visualizer is provided with autodot.

The latter converts deterministic tree automata to files in dot format; dot can then be applied

5

to these files to display them graphically. This is only useful for relatively small automata, and is

far from perfect for tree automata that are not just word automata. Don’t expect too much from

pl2gastex and autodot on anything else but small automata. The autodot utility is obso-

lescent: basically, it never gives satisfying output. The pl2gastex utility is more satisfactory,

but not perfect. See Section 13.

At this point the picture of the h1 tool suite is complete—up to the fact that I did not talk about

some minor extensions yet, and that more extensions may be added in the future.

auto2pl

h1 pl2tptp

Deterministic Tree Automata

Linear systems

of (in)equations
[.lin]

tptpmorph

[.log]H1 trace logs

Coq proofs

(of contradictions)

[.v] Human−readable proofs

(of contradictions)

Dot files [.dot]

pldet

gasTeX files [.tex]

[.xml]

[.pl]

[.p]

linauto

H1 Clause Sets

h1trace h1trace

h1

autodot

Alternating Tree Automata

Coq proofs

(of consistency)

[.v] Human−readable proofs

(of consistency)

h1mc

h1logstrip

plpurge

2 Tree Automata, Clauses

Automata on finite words are a very classical data structure to represent sets of words—possibly

infinite sets. Not all sets of words can be described this way; such special sets are called reg-

ular languages. Regular languages are reasonably expressive, and all the basic operations are

computable on them: testing for membership, for vacuity, computing unions, intersections, com-

plements notably.

An example of automaton is shown below. This is just a directed graph. Vertices are tradition-

ally called states, and edges are called transitions. Two other components are needed. First, we

need an initial state: in the example, we assume this is qinit. Second, we need final states. The

convention is that final states are circled; here, the only final state is qinit.

a

b

q
1

init
q

ε

6

Let us play a game. You start at the initial state qinit, then you must follow some transitions

(whichever you wish, you may even repeat the same transition as long as you wish), until you reach

a final state. While traveling around, collect the letters that label the transitions: this gives you a

sequence of letters, i.e., a word. (One exception, though: the ǫ symbols means “no letter”, and you

should just go through the corresponding transition without collecting any letter at all.) The fact

that you reached the final state is how you decide that the automaton recognized the word.

For example, starting from qinit, you may go up the a transition, then come back along the

ǫ transition. Since you’ve reached a final state, namely qinit (which is both initial and final), the

word a is recognized by the automaton. Or you may have decided to start from qinit, go up the

a transition, turn once inside the b loop, then come back through the ǫ-transition: the word ab is

recognized. In fact, you might have looped as many times as you wished, so any word abn, n ∈ N,

is recognized, too.

There is no need to stop when you reach a final state. For example, we may travel along a,

then b twice, then along ǫ, then again along a, then b three times, then ǫ, showing that ab2ab3 is

recognized. While we are at it, since qinit is already final, the empty word (with no letter) is also

recognized. We write ǫ for the empty word, as is traditional.

To wrap up the example, the above automaton recognizes exactly the language (ab∗)∗, that is

the set of all words on the alphabet {a, b} which are concatenations of words abn, n ∈ N. It turns

out that this is just the set of words that, if non-empty, start with a.

Alternatively, we can describe this same set of words as a set of Horn clauses, i.e., as a very

simple Prolog program. To this end, create a fresh predicate symbol q for each state q. The

meaning of q(t) is that the word t should be recognized at q, i.e., there is a trip along the transitions

in the automaton, starting from the initial state, and ending exactly on the state q, along which the

letters collected form the word t. We also encode words as terms: ǫ will be a constant denoting

the empty word, and we add each letter ℓ at the end of word t by writing the term ℓ(t); this means

in particular that each letter is now viewed as a unary function symbol. The automaton above then

gets described as a Prolog program with one clause for each transition, plus one to say that the

empty word is recognized at the initial state:

qinit(ǫ) q1(a(X)):–qinit(X)

q1(b(X)):–q1(X) qinit(X):–q1(X)

You may ask Prolog whether the word ab2 is recognized at qinit by submitting the query

?qinit(b(b(a(ǫ))))

and it will answer “yes”. Prolog will also answer the query

?qinit(b(b(a(b(ǫ)))))

by “no”, meaning that bab2 is not in the language.

Prolog, as a notation, is fine, as we shall see. Prolog, as a tool to check properties, is ill-suited:

on the more complex clauses we shall encounter below, Prolog would loop infinitely in general;

h1 on the other hand is meant to return, always, on its input clauses.

7

The notion of automata, on words, can be generalized to automata on first-order terms, a.k.a.,

tree automata. These are very similar structures, except they recognize sets of ground terms. The

automaton of Figure 1, to take an example, recognizes the set of all lists of even natural numbers at

state qlist−even. To be precise, it recognizes the set of all terms cons(t1, cons(t2, . . . , cons(tn, nil)
. . .)), where each ti is of the form Sni(O), ni even. Note that the transition O (up left) starts from

no state, while the transition cons(,) (middle) starts from a pair of states, qeven and qlist−even.

Figure 1: Recognizing the lists of even natural numbers

q
even

q
odd

q
list−even

s (_)

0

cons (_, _)

nil
s (_)

To define the semantics of tree automata, the simplest is just to describe their translation to

Horn clauses. Each transition again gives rise to exactly one clause:

qeven(O) qeven(S(X)):–qodd(X) qodd(S(X)):–qeven(X)

qlist−even(cons(X,Y)):–qeven(X), qlist−even(Y) qlist−even(nil)

There is no need to define initial states in tree automata; e.g., O is recognized at qeven, using the

transition qeven(O), of arity 0.

In general, a tree automaton is any finite set S of clauses of the form

P (f(X1, . . . , Xn)) :– P1(X1), . . . , Pn(Xn) (1)

where X1, . . . , Xn are pairwise distinct variables. When n = 0, we retrieve initial clauses such

as qeven(O). When n is restricted to be at most 1, tree automata are just ordinary, word automata

(without ǫ-transitions).

A set of ground terms is called regular if and only if it is exactly the set of terms t such that t is

recognized at P in some tree automaton S (i.e., such that P (t) follows logically from the clauses

in S).

The format of clauses (1) is very particular. First, clauses (1) are definite clauses. Formally,

definite clause are implications of the form

P (t):–P1(t1), . . . , Pn(tn) (2)

where P (t), P1(t1), . . . , Pn(tn) is an unordered set of atoms. (An atom is just a predicate P applied

to some term t; read “P holds of t”, or “t is recognized at P ”.) If n = 0, this is called a fact, and

is often written just P (t).

8

Any set S of definite clauses has a least Herbrand model. A Herbrand model is just a col-

lection of ground atoms P (t). The least Herbrand model H(S) of S can be described as follows.

First, it contains all ground instances of the facts in S. Then, while there is a ground instance

P (tσ):–P1(t1σ), . . . , Pn(tnσ) of a clause P (t):–P1(t1), . . . , Pn(tn) in S, and P1(t1σ), . . . , Pn(tnσ)
are in H(S), then add P (tσ) to H(S). This procedure does not terminate in general, but enumer-

ates H(S).
In particular, any tree automaton has a least Herbrand model. It turns out that the ground atom

P (t) is in the least Herbrand model H(S) if and only if t is recognized at P in the tree automaton

S. Therefore, we may generalize the notion of a term t being recognized at some predicate P in

any set of definite clauses, by requiring that P (t) is in H(S).
A goal clause is an implication of the form

⊥:–P1(t1), . . . , Pn(tn) (3)

where ⊥ is meant to denote false. A Horn clause is a definite or a goal clause. We shall also write

P (t) instead of P (t):– when n = 0, and ⊥ instead of ⊥:–.

Not any set S of Horn clauses has a model. If it has one, that is, if S is satisfiable, then it again

has a least Herbrand model H(S). Again, we say that t is recognized at P in S if and only if P (t)
is in H(S).

Then it can be shown that the ground term t is recognized at P in the set S of definite clauses

if and only if S plus the goal clause ⊥:–P (t) is unsatisfiable (i.e., not satisfiable); that P is empty

in S, i.e., that P recognizes no term in S, if and only if S plus the clause ⊥:–P (X) is unsatisfiable,

where X is a variable. And there are automated means, called automated theorem provers, to check

the unsatisfiability of clause sets. Unfortunately, they do not always terminate. The h1 tool always

terminates, but only deals with so-called H1 clauses [Nielson et al., 2002].

We have said above that tree automata clauses (1) were very particular, because they were

definite clauses, and in particular they always have a least Herbrand model. They are also particular

in that the head (the atom at the left of :–) is restricted to be of the form P (t) with t itself of the

form f(X1, . . . , Xn), where X1, . . . , Xn must be distinct variables; and in that there is no function

symbol at all in the body (the set of atoms at the right of :–).

If you do not restrict the form of Horn clauses (2) and (3), then any prover that operates on

them is forced to relinquish either termination, soundness, or completeness. This is because the

satisfiability of Horn clauses is undecidable [Devienne et al., 1996]. Most automated theorem

provers in existence are sound, i.e., if they deduce a contradiction from S then S is unsatisfiable,

and complete, i.e., if S is unsatisfiable then they can derive a contradiction from S. Therefore they

have to fail to terminate sometimes. On the other hand, h1 is complete and terminates, but is only

sound on the subset of so-called H1-clauses.

The H1-clauses are exactly the Horn clauses, except that definite clauses (1) are restricted to

have a head of the form P (X), where X is a variable, or P (f(X1, . . . , Xn)), where X1, . . . , Xn

are distinct variables. While this is not the definition Nielson et al. [2002], this is equivalent to it,

see Goubault-Larrecq [2005].

On general Horn clauses, h1 applies an abstraction function which makes it still a terminating

and complete prover, but one which is unsound in general. So you might want to see h1 as a

9

counter-model finder rather than a prover. In some cases, though, h1 produces unsound “proofs”

that may be indicative of actual proofs.

Remember that h1 is sound, complete, and terminating on H1 clauses. Note that automata

clauses are a special case of H1 clauses. In fact, when h1 terminates, starting from a set S of H1

clauses, there are two possible outcomes:

• a contradiction has been derived; then S is unsatisfiable.

• no contradiction was derived; then S is satisfiable.

In the latter case, h1 also produces a model of S, in the form of an alternating tree automaton, i.e.,

a set of clauses of the form

P (f(X1, . . . , Xn)) :– B1(X1), . . . , Bn(Xn) (4)

where Bi(Xi) is a block, i.e., a list of atoms Pi1(Xi), . . . , Pini
(Xi). Note that tree automata clauses

are a special case of alternating tree automata clauses (take ni = 1 for each i), while alternating tree

automata clauses are special H1 clauses (with no function symbol in the body, the head is of the

form P (f(X1, . . . , Xn)) and not P (X), and every variable free in the body is among X1, . . . , Xn).

From a theoretician’s perspective, this means that H1 clauses are not more expressive than

alternating tree automata clauses. And it is well-known that alternating tree automata are not more

expressive than plain tree automata: the languages defined by satisfiable H1 clause sets are just,

again, the regular tree languages. However, H1 offers considerably more freedom in describing

such languages than just using tree automata, because of the general form of H1 clauses.

The paper that introduced H1 is Nielson et al. [2002]. For some background theory on the way

h1 works, deciding H1 and converting H1 clause sets to tree automata by resolution techniques,

and abstracting general clause sets to H1 clause sets, see Goubault-Larrecq [2005].

3 The h1 Tool Suite through Examples

The h1 prover is the core of the h1 tool suite, and we shall explain the tool suite by running h1

on several examples.

The h1 prover is invoked by calling h1 with a sequence of flags, ended by a file name. The file

name should contain a set of clauses in TPTP clause format. Such files conventionally end with

the .p extension—but there is no obligation. Also, giving a single dash - as file name forces h1

to read the input clause set from standard input.

3.1 A Toy, Introductory Example

Examples are given in the distribution package. Here is a very small one (file test1.p):

i n p u t c l a u s e (c l a u s e 1 , c o n j e c t u r e ,

[++ p (a)]) .

10

i n p u t c l a u s e (c l a u s e 2 , c o n j e c t u r e ,

[−−p (X) , ++p (f (X))]) .

i n p u t c l a u s e (c l a u s e 3 , c o n j e c t u r e ,

[−−p (f (f (X)))]) .

This contains three clauses. Each clause is introduced by the keyword input clause. The first

argument, clause1, clause2, or clause3 above, is the name of the clause. Names are used in sundry

ways, mainly for explanation and documentation purposes. It is good practice to give each clause

a different name, but the tools of the h1 tool suite should work even when several clauses have the

same name.

The second argument can be the keyword conjecture or axiom; h1 just does not care: write

what you prefer here.

Finally, the third argument, enclosed between square brackets, is the clause itself. It is a list

of literals, separated by commas. Each literal starts with a sign, ++ for positive literals, −− for

negative literals. The clauses above are, in a more traditional notation:

p(a)

¬p(X) ∨ p(f(X))

¬p(f(f(X)))

This example is in fact a set of Horn clauses, which would be written in Prolog notation:

p(a)

p(f(X)) :– p(X)

⊥ :– p(f(f(X)))

Launch h1 on this file, test1.p, by typing

h1 test1.p

You will get the answer

∗∗∗ Der ived : c l a u s e 3 ∗∗∗

which means that a contradiction was found, using the clause named clause3 in the last step. In

other words, in the present example, it says that a fact of the form p(f(f(t))), matching the body

of clause3, can be deduced from the definite clauses (here, clause1 and clause2)

So far, so good, this is typically the least you could expect from a theorem prover.

However, h1 also produced two more files, test1.log.gz and test1.model.pl. If

you’re curious, look at test1.log.gz, by running

zcat test1.log.gz

Oh well, it is long, but it is not meant to be read by a human reader! If you’re perspicuous

enough, you’ll find some meaning buried inside this. However, this is really meant as a log file,

from which h1trace can extract a (mostly) readable proof (Section 5), and which h1mc can use

to get some essential information it needs (Section 6).

11

3.2 The Dreadsbury Mansion Murder Mystery Example

Here is a more complicated example, due to Len Schubert. This is problem 55 of Pelletier [1986].

Someone in Dreadsbury Mansion killed Aunt Agatha. Agatha, the butler, and Charles

live in Dreadsbury Mansion, and are the only ones to live there. A killer always hates,

and is no richer than his victim. Charles hates noone that Agatha hates. Agatha hates

everybody except the butler. The butler hates everyone not richer than Aunt Agatha.

The butler hates everyone whom Agatha hates. Noone hates everyone. Who killed

Agatha?

The problem is formalized in file butler-puzzle.p. The clauses are as follows. First,

“Agatha, the butler, and Charles live in Dreadsbury Mansion, and are the only ones to live there.”:

agatha in mansion in mansion(agatha)
charles in mansion in mansion(charles)
butler in mansion in mansion(butler)

Then, “A killer always hates, and is no richer than his victim.”, that is, if X killed Y , then it must

be the case that X hates Y , and on the other hand that X is not richer than Y :

killer hates victim hates(X,Y) :– killed(X,Y)
killer no richer not richer(X,Y) :– killed(X,Y)

Next, “Charles hates noone that Agatha hates.” In other words, it is impossible that Charles and

Agatha hate the same person X:

charles hates noone agatha hates ⊥ :– hates(charles,X), hates(agatha,X)

To write “Agatha hates everybody except the butler.”, we just say that Agatha hates herself and

Charles:
Agatha hates herself hates(agatha, agatha)
Agatha hates charles hates(agatha, charles)

Now, “The butler hates everyone not richer than Aunt Agatha.”:

butler hates everyone not richer than agatha hates(butler,X) :– not richer(X, agatha)

Then, “The butler hates everyone whom Agatha hates.”:

butler hates everybody agatha hates hates(butler,X) :– hates(agatha,X)

Next, “Noone hates everyone.”, which we formulate as “noone hates Agatha, Charles, and the

butler”:

noone hates everyone ⊥ :– hates(X, agatha), hates(X, butler), hates(X, charles)

12

Finally, we explore who may have killed Aunt Agatha. To do this, we shall enumerate the potential

murderers, and use the C preprocessor cpp to replace the macro identifier WHO in the following

clause by each resident of Dreadsbury Mansion:

WHO killed agatha killed(WHO, agatha)

Let us test whether the butler killed Agatha. Run butler-puzzle.p through cpp with WHO

equal to butler, and feed the output to h1; h1 reads from standard input when given - as file

name:

cpp -P -DWHO=butler butler-puzzle.p | h1 -

You get the output:

∗∗∗ Der ived : n o o n e h a t e s e v e r y o n e ∗∗∗

In other words, the butler cannot have killed Agatha (contrarily to proper conventions in popular

whodunnit mysteries), because this would contradict the fact that noone hates everyone.

More information can be gotten from the trace file h1out.log.gz. (Running h1 on file

〈file〉.p produces a trace file 〈file〉.log.gz. If no input file is given, as here, the trace file is called

h1out.log.gz.) We shall explain how to use this trace file in Section 5. For now, just run

zcat h1out.log.gz | h1trace - >dummy

and open the file dummy. You’ll see that the first lines say:

. # f a l s e (n o o n e h a t e s e v e r y o n e) [n o o n e h a t e s e v e r y o n e] .

u s i n g a s s u m p t i o n # f a l s e (n o o n e h a t e s e v e r y o n e) :−
h a t e s (X1 , c h a r l e s) , h a t e s (X1 , b u t l e r) , h a t e s (X1 , a g a t h a) .

{X1= b u t l e r }

In other words, assuming the butler killed Agatha would involve that the butler hates everyone,

which is impossible. The rest of file dummy is a tree-like proof that indeed the butler hates every-

one, i.e., hates Agatha, Charles, and himself in this case.

So did Charles kill Agatha instead?

cpp -P -DWHO=charles butler-puzzle.p | h1 -

No, this would contradict the fact that Charles hates noone that Agatha hates. In this case, Charles

hates Agatha, and Agatha hates herself, whence the contradiction.

∗∗∗ Der ived : c h a r l e s h a t e s n o o n e a g a t h a h a t e s ∗∗∗

There is only one possibility remaining: that Agatha killed herself.

cpp -P -DWHO=agatha butler-puzzle.p | h1 -

and indeed, h1 does not complain: assuming Agatha killed herself leads to no contradiction. The

file h1out.model.pl describes the least model of this clause set.

This could have been found automatically by a simple sh script, listing all possible murderers

of Aunt Agatha.

13

for who in butler charles agatha

do

if (cpp -P -DWHO=$who butler-puzzle.p | h1 - 2>&1\

| grep -q Derived)

then echo $who did not kill agatha.

else echo $who may have killed agatha.

fi

done

Since somebody killed Agatha, it must be herself.

b u t l e r d i d n o t k i l l a g a t h a .

c h a r l e s d i d n o t k i l l a g a t h a .

a g a t h a may have k i l l e d a g a t h a .

The point of this example is that, first, the clauses are clearly not (alternating tree) automata

clauses; and second, that they are H1 clauses. Check this by running h1 with the -check-h1 2

option:

cpp -P -DWHO=agatha butler-puzzle.p | h1 -check-h1 2 -

This makes h1 run as above, except it would have failed if any of the input clauses where not in

H1. By default, h1 runs as h1 -check-h1 0, which does not check anything, but computes an

approximation, see Section 3.4.

That the clauses of butler-puzzle.p are in the H1 class may seem surprising. After all,

H1 clauses are required to use only unary predicates, i.e., all predicate letters P can only take one

argument. This is certainly not the case of the hates, killed, and not richer predicates above,

which are all binary!

The trick here is that, when h1 sees an n-ary predicate P (t1, . . . , tn) in its input, it converts it

first to P (fP (t1, . . . , tn)) for some fresh n-ary function symbol fP . (Different occurrences of P

correspond to the same symbol fP .) This makes P unary, and does not change the semantics of

clauses in any essential way. Under the hood, h1 typically builds fP by prepending a sharp sign

in front of the name of P , guaranteeing that no clash occurs with any function symbol you may

have used. Don’t count on it, though, as this may change in future releases. Also, the h1 tools try

to hide this kludge as much as they can, and will happily parse and print n-ary predicate symbols.

We shall return to this example in Section 3.3.8.

3.3 Computing with Tree Automata

Assume that we wish to compute the intersection of the languages L1 of all lists of even natural

numbers, and L2 of all trees with binary nodes labeled with cons, and whose leaves are either nil

or natural numbers of the form 3n + 2, n ∈ N.

We have already seen what an automaton recognizing L1 looked like, see Figure 1. In TPTP

format, this is file listeven.p:

14

i n p u t c l a u s e (o even , axiom ,

[++ even (o)]) .

i n p u t c l a u s e (s u c ev en o d d , axiom ,

[−−even (X) , ++odd (s (X))]) .

i n p u t c l a u s e (s u c o d d ev en , axiom ,

[−−odd (X) , ++ even (s (X))]) .

i n p u t c l a u s e (n i l e v e n l i s t , axiom ,

[++ l i s t e v e n (n i l)]) .

i n p u t c l a u s e (c o n s e v e n l i s t , axiom ,

[−−even (X) , −− l i s t e v e n (Y) ,

++ l i s t e v e n (cons (X,Y))]) .

The language L2 is described by the predicate (final state) tree 3n plus 2 . Look at file

tree3plus2.p:

i n p u t c l a u s e (o zero mod 3 , axiom ,

[++ zero mod 3 (o)]) .

i n p u t c l a u s e (s u c z e r o o n e m o d 3 , axiom ,

[−−zero mod 3 (X) , ++one mod 3 (s (X))]) .

i n p u t c l a u s e (suc one two mod 3 , axiom ,

[−−one mod 3 (X) , ++ two mod 3 (s (X))]) .

i n p u t c l a u s e (s u c tw o ze ro mo d 3 , axiom ,

[−−two mod 3 (X) , ++ zero mod 3 (s (X))]) .

i n p u t c l a u s e (n i l 3 n p l u s 2 t r e e , axiom ,

[++ t r e e 3 n p l u s 2 (n i l)]) .

i n p u t c l a u s e (t w o m o d 3 3 n p l u s 2 t r e e , axiom ,

[−−two mod 3 (X) , ++ t r e e 3 n p l u s 2 (X)]) .

i n p u t c l a u s e (c o n s 3 n p l u s 2 t r e e , axiom ,

[−− t r e e 3 n p l u s 2 (X) , −− t r e e 3 n p l u s 2 (Y) ,

++ t r e e 3 n p l u s 2 (cons (X,Y))]) .

By the way, we can convert any automaton in TPTP format into Prolog format by running h1

with the -no-trim option:

15

h1 -no-trim tree3plus2.p

Normally, h1’s default is to use the -trim option, which trims away all clauses that are obviously

not needed for deriving a contradiction. (See Section 4.1 for more information on -trim and

-no-trim.) In this case, trimming would just eliminate all clauses! Since we are not looking for

a contradiction, we just run h1 without trimming, and get a model in tree3plus2.model.pl:

one mod 3 (s (X)) :− zero mod 3 (X) .

t r e e 3 n p lu s 2 (n i l) .

t r e e 3 n p lu s 2 (s (X)) :− one mod 3 (X) .

t r e e 3 n p lu s 2 (cons (X1 , X2)) :− t r e e 3 n p lu s 2 (X1) , t r e e 3 n p lu s 2

(X2) .

two mod 3 (s (X)) :− one mod 3 (X) .

zero mod 3 (o) .

zero mod 3 (s (X)) :− two mod 3 (X) .

In other words, h1 can be used to convert any set of H1 clauses into an equivalent alternating

tree automaton by running it with the -no-trim option and looking into the generated model

file, ending in .model.pl.

3.3.1 Visualizing Tree Automata

Before we compute the intersection of L1 and L2, let us visualize the automaton defining L2. This

is accomplished using pl2gastex, see Figure 2. For more information on pl2gastex, and

how to read such pictures precisely, see Section 13.

Figure 2: Trees with leaves equal to nil or to 3n + 2, n ∈ N

two mod 3

one mod 3

zero mod 3

tree 3n plus 2

nil

cons

s

o

s

s

s

1
2

3.3.2 Computing Intersections of Tree Automata

Now compute the intersection. Build a file, say list even inter tree3plus2.p, by con-

catenating the clauses from listeven.p and from tree3plus2.p, and add the so-called

16

intersection clause

q(X) :– list even(X), tree 3n plus 2(X)

meaning that q holds of all terms that are both lists of even numbers, and trees as recognized at

tree 3n plus 2 . Just run the following commands:

OUT=list_even_inter_tree3plus2

cat listeven.p tree3plus2.p >$OUT.p

echo "input_clause ($OUT, axiom, \

[++q(X), --list_even(X),\

--tree_3n_plus_2(X)])" >>$OUT.p

Because of the intersection clause above, the resulting clause set is not an alternating tree automa-

ton as we have defined it. However, run h1 -no-trim on it:

h1 -no-trim list_even_inter_tree3plus2.p

and look at the generated alternating tree automaton. This is obtained, as usual, in a file named

list even inter tree3plus2.model.pl:

q (n i l) .

q (cons (X1 , X2)) :− t r e e 3 n p lu s 2 (X1) , even (X1) , t r e e 3 n p lu s 2 (X2

) , l i s t e v e n (X2) .

two mod 3 (s (X)) :− one mod 3 (X) .

odd (s (X)) :− even (X) .

zero mod 3 (o) .

zero mod 3 (s (X)) :− two mod 3 (X) .

one mod 3 (s (X)) :− zero mod 3 (X) .

t r e e 3 n p lu s 2 (n i l) .

t r e e 3 n p lu s 2 (s (X)) :− one mod 3 (X) .

t r e e 3 n p lu s 2 (cons (X1 , X2)) :− t r e e 3 n p lu s 2 (X1) , t r e e 3 n p lu s 2

(X2) .

l i s t e v e n (n i l) .

l i s t e v e n (cons (X1 , X2)) :− even (X1) , l i s t e v e n (X2) .

even (o) .

even (s (X)) :− odd (X) .

Graphically, this is the alternating tree automaton of Figure 3.

Note the presence of new nodes labeled ∧ in Figure 3. They represent intersections of lan-

guages. Indeed, there are two ways one can construct an element of q. First, there is nil. Second,

there are terms of the form cons applied to two arguments X1 and X2, where X1 is recognized both

at tree 3n plus 2 and at even, and X2 is recognized both at tree 3n plus 2 and at list even .

The alternating tree automaton above recognizes (at q) the terms in the intersection of L1 and

L2. One should observe that computing intersections of two languages by concatenating the clause

sets defining each and adding an intersection clause is rather cavalier. It is only correct here because

17

Figure 3: Trees with leaves equal to nil or to 3n+ 2, which are lists of even natural numbers at the

same time

list even

∧

odd

∧

zero mod 3

two mod 3

tree 3n plus 2

even

q
one mod 3

cons

nil

s

s

cons

o

nils

s

s

cons

s

o
nil

1

2

1
2

1

2

18

the two files listeven.p and tree3plus2.p share no predicate symbol. In general, one

might allow shared predicate symbols, provided they have the same semantics in each file. For

example, it is legal for the two files to both use the predicate even provided it denotes the set of

even natural numbers in both. Otherwise, strange things may happen (an over-approximation will

be computed).

3.3.3 Checking Tree Automata for Emptiness, Testing Membership

It may not be completely obvious whether such an alternating tree automaton is empty or not. (To

say the least. The problem is DEXPTIME-complete.) Let us see whether the intersection state

q is empty or not. In general, given a satisfiable set S of Horn clauses (e.g., definite clauses, in

particular alternating tree automata clauses), the language of terms recognized at state P in S is

empty if and only if S plus the clause ⊥:–P (X) is satisfiable. Running:

(cat list_even_inter_tree3plus2.p;\

echo "input_clause(q_is_not_empty, conjecture, [--q(X)]).")\

| h1 -log-out - >list_even_inter_tree3plus2.log

yields

∗∗∗ Der ived : q i s n o t e m p t y ∗∗∗

meaning that there are indeed terms recognized at state q in the intersection.

We have kept a trace of the derivation in the log file list\ even\ inter\ tree3plus2.
log. We can then use h1trace to get a mostly readable proof of the fact that q is non-empty; in

particular, to have an example of a term recognized at q:

%-*-mode:outline;outline-regexp:"[0-9a-z.]+"-*-

. #false(q_is_not_empty).

using assumption #false(q_is_not_empty) :- q(X1).

{X1=nil}

1. q(nil).

using assumption q(X1) :- tree_3n_plus_2(X1), list_even(X1).

{X1=nil}

1.1. tree_3n_plus_2(nil) by assumption.

1.2. list_even(nil) by assumption.

In fact, the empty list nil is recognized at q ({X1=nil} at line 4 above). How to read such proofs

will be explained in Section 5.

Let us test membership of some ground term. Is the list cons(s(s(o)), nil) consisting of just the

natural number 2 in the intersection? In general, given S as above, a ground term t is recognized

at state P if and only if S plus the clause ⊥:–P (t) is satisfiable.

(cat list_even_inter_tree3plus2.p;\

echo "input_clause(q_rec_cons_2_nil, conjecture,\

[--q(cons(s(s(o)),nil))]).")\

| h1 -

19

yields

∗∗∗ Der ived : q r e c c o n s 2 n i l ∗∗∗

So cons(s(s(o)), nil) is in the intersection.

On the other hand, the list cons(s(s(s(s(o)))), nil) containing just the natural number 4 is not

in the intersection. Run

(cat list_even_inter_tree3plus2.p;\

echo "input_clause(q_rec_cons_4_nil, conjecture,\

[--q(cons(s(s(s(s(o)))),nil))]).")\

| h1 -

and you’ll get

(no message at all). Indeed, cons(s(s(s(s(o)))), nil) is a list of even natural numbers, but not a

tree whose numeric leaves are of the form 3n + 2, n ∈ N.

We can do more this way. Is there a term of the form cons(s(X), X), with the same X , in the

intersection? Run

(cat list_even_inter_tree3plus2.p;\

echo "input_clause(q_rec_cons_sX_X, conjecture,\

[--q(cons(s(X),X))])") \

| h1 -

and you’ll get

(no message at all). So there is none.

Is there a list whose first element is at least 3 in the intersection? Run

(cat list_even_inter_tree3plus2.p;\

echo "input_clause(q_rec_cons_sssX_Y, conjecture,\

[--q(cons(s(s(s(X))),Y))])") \

| h1 -

and you’ll get

∗∗∗ Der ived : q r e c c o n s s s s X Y ∗∗∗

So there is one. We don’t know which. However, we may use h1trace as above to have an idea

(left as an exercise!).

Another possibility to have an idea of which lists whose first element is at least 3 in the inter-

section is to build the automaton recognizing all solutions, by running

(cat list_even_inter_tree3plus2.p;\

echo "input_clause(what_q_rec_cons_sssX_Y, conjecture,\

[++r(X,Y), --q(cons(s(s(s(X))),Y))])") \

| h1 -no-trim -

mv h1out.model.pl rinter.model.pl

20

The resulting automaton, in file rinter.model.pl, is:

%[def] d e f 1 (Y,X) :− q (cons (s (s (s (X))) ,Y)) .

q (n i l) .

q (cons (X1 , X2)) :− even (X1) , t r e e 3 n p lu s 2 (X1) , l i s t e v e n (X2) ,

t r e e 3 n p lu s 2 (X2) .

r (X1 , X2) :− two mod 3 (X1) , odd (X1) , l i s t e v e n (X2) , t r e e 3 n p lu s 2

(X2) .

d e f 1 (X1 , X2) :− l i s t e v e n (X1) , t r e e 3 n p lu s 2 (X1) , two mod 3 (X2

) , odd (X2) .

even (o) .

even (s (X)) :− odd (X) .

l i s t e v e n (n i l) .

l i s t e v e n (cons (X1 , X2)) :− even (X1) , l i s t e v e n (X2) .

one mod 3 (s (X)) :− zero mod 3 (X) .

t r e e 3 n p lu s 2 (s (X)) :− one mod 3 (X) .

t r e e 3 n p lu s 2 (n i l) .

t r e e 3 n p lu s 2 (cons (X1 , X2)) :− t r e e 3 n p lu s 2 (X1) , t r e e 3 n p lu s 2

(X2) .

two mod 3 (s (X)) :− one mod 3 (X) .

odd (s (X)) :− even (X) .

zero mod 3 (o) .

zero mod 3 (s (X)) :− two mod 3 (X) .

And graphically, this is the automaton of Figure 4.

3.3.4 Converting Alternating to Non-Deterministic Tree Automata

All right, this starts being a tad intricate. In general, alternating tree automata are not that easy to

read. We may eliminate intersection nodes ∧, and get a non-deterministic tree automaton instead

by using the -no-alternation option to h1. Either use

h1 -no-trim -no-alternation

instead of h1 -no-trim (this will produce a non-deterministic, i.e., not an alternating tree au-

tomaton, in rinter.model.pl), or simply run

h1 -no-trim -model

on rinter.model.pl to eliminate intersection nodes. Just as

h1 -no-trim

can be used to conv ert an H1 clause set into an equivalent alternating tree automaton,

h1 -no-trim -no-alternation

21

Figure 4: Lists starting with a number at least 3 as recognized in state q of Figure 3

zero mod 3

one mod 3

even

tree 3n plus 2

∧

odd

a

two mod 3

q

r

∧

list even

∧

s

nil

nil

nil
s

cons

cons

o

cons

s

s

o

s

s

1
2

1
2 1

2
1

2

1
2

22

converts an H1 clause set, or an alternating tree automaton, into an equivalent non-deterministic

tree automaton. Run

pl2tptp rinter.model.pl >rinter_nd.p

h1 -no-trim -no-alternation rinter_nd.p

This yields the following automaton in file rinter nd.model.pl.

i n te r odd and two mod 3 (s (X)) :− i n te r even and one mod 3

(X) .

in te r odd and one mod 3 (s (X)) :−
i n te r even and ze ro mod 3 (X) .

q (n i l) .

q (cons (X1 , X2)) :− i n t e r e v e n a n d t r e e 3 n p l u s 2 (X1) ,

i n t e r l i s t e v e n a n d t r e e 3 n p l u s 2 (X2) .

in te r even and one mod 3 (s (X)) :−
i n te r odd and ze ro mod 3 (X) .

r (X1 , X2) :− i n te r odd and two mod 3 (X1) ,

i n t e r l i s t e v e n a n d t r e e 3 n p l u s 2 (X2) .

i n t e r e v e n a n d t r e e 3 n p l u s 2 (s (X)) :−
i n te r odd and one mod 3 (X) .

i n t e r l i s t e v e n a n d t r e e 3 n p l u s 2 (n i l) .

i n t e r l i s t e v e n a n d t r e e 3 n p l u s 2 (cons (X1 , X2)) :−
i n t e r e v e n a n d t r e e 3 n p l u s 2 (X1) ,

i n t e r l i s t e v e n a n d t r e e 3 n p l u s 2 (X2) .

l i s t e v e n (n i l) .

l i s t e v e n (cons (X1 , X2)) :− even (X1) , l i s t e v e n (X2) .

t r e e 3 n p lu s 2 (s (X)) :− one mod 3 (X) .

t r e e 3 n p lu s 2 (n i l) .

t r e e 3 n p lu s 2 (cons (X1 , X2)) :− t r e e 3 n p lu s 2 (X1) , t r e e 3 n p lu s 2

(X2) .

i n te r even and two mod 3 (s (X)) :− i n te r odd and one mod 3

(X) .

i n te r odd and ze ro mod 3 (s (X)) :−
i n te r even and two mod 3 (X) .

two mod 3 (s (X)) :− one mod 3 (X) .

one mod 3 (s (X)) :− zero mod 3 (X) .

d e f 1 (X1 , X2) :− i n t e r l i s t e v e n a n d t r e e 3 n p l u s 2 (X1) ,

i n te r odd and two mod 3 (X2) .

i n te r even and ze ro mod 3 (o) .

i n te r even and ze ro mod 3 (s (X)) :−
i n te r odd and two mod 3 (X) .

zero mod 3 (o) .

zero mod 3 (s (X)) :− two mod 3 (X) .

23

even (o) .

even (s (X)) :− odd (X) .

odd (s (X)) :− even (X) .

Using pl2gastex on the output rinter nd.model.pl, we arrive at the non-deterministic

tree automaton of Figure 5. This should be more readable. The final state is q. Note that the result

still contains two copies of the automata recognizing respectively all lists of even numbers, and all

trees with leaves of the form nil or 3n + 2, which are not needed any longer.

The automaton of Figure 5, i.e., in file rinter nd.model.pl, uses new states such as

__inter_even_and_one__mod__3 (which recognizes all terms which are both even num-

bers and numbers of the form 3n + 1). In general, these new states are named

__inter_P1_P2_ . . ._Pn

and are meant to recognize all terms that are recognized at P1 and at P2 and . . . and at Pn at the

same time. They appear as P1 ∩ P2 ∩ . . . ∩ Pn under pl2gastex.

3.3.5 Purging Tree Automata

Well, Figure 5 should be more readable. . . but there is some junk here. First, there are two

sub-automata, disconnected from the rest, defining the predicates zero_mod_3, one_mod_3,

two_mod_3, tree_3n_plus_2, and odd, even, list_even. They do not contribute at

all to the definition of the language of r. Second, there are also spurious states such as q, or

__aux_1 (drawn as a small state  or a). Use plpurge to purge the automaton of Figure 5

from all spurious states, by running

plpurge -final r rinter_nd.model.pl >rinter_nd.purged.pl

Hence we see that the relation r is simply the relation relating all numbers that are both odd

and equal to 2 modulo 3 (state odd ∩ two mod 3) to all objects that are both lists of even numbers

and trees of with leaves equal to nil or 3n + 2 (state list even ∩ tree 3n plus 2).

Looking a bit more in depth, the numbers that are both odd and equal to 2 modulo 3 are 5, 11,

17, . . . , in other words the numbers that are equal to 5 modulo 6. And the objects that are both lists

of even numbers and trees of with leaves equal to nil or 3n + 2 are just lists of numbers equal to 2
modulo 6.

3.3.6 Determinizing Tree Automata

Looking at Figure 6, we realize that taking the successor, i.e., applying the s function to a term

recognized at odd ∩ one mod 3, yields a term that is recognized both at even ∩ two mod 3 and at

even∩ tree 3n plus 2. This is a form of non-determinism: we may want to travel to either state,

not knowing which will eventually lead to acceptance.

To cater for this, we may determinize our tree automata. This produces an equivalent determin-

istic tree automaton, i.e., a set of Horn clauses of the form

P (f(X1, . . . , Xn)) :– P1(X1), . . . , Pn(Xn) (5)

24

Figure 5: Eliminating intersection nodes from Figure 4

even ∩ two mod 3

even

odd ∩ two mod 3

one mod 3

odd ∩ one mod 3

tree 3n plus 2

odd ∩ zero mod 3

list even

r

a

odd even ∩ zero mod 3

two mod 3

zero mod 3

q

even ∩ one mod 3

even ∩ tree 3n plus 2

list even ∩ tree 3n plus 2

s

o

s

cons

cons

s

nil
s

cons

s

s

s

s o

s

s

nil

o

nil

s

s

cons

nil

s 1

2

1

2

1
2

1

2

1
2

1
2

25

Figure 6: Purging the automaton of Figure 5

list even ∩ tree 3n plus 2

r

odd ∩ one mod 3even ∩ tree 3n plus 2

even ∩ two mod 3

even ∩ zero mod 3

odd ∩ two mod 3

even ∩ one mod 3

odd ∩ zero mod 3

nil

cons

s

s

s

s

s

s

o

s

1

2

1
2

where X1, . . . , Xn are pairwise distinct variables, and where there is at most one such clause

for each (n + 1)-tuple (f, P1, . . . , Pn). The automaton of Figure 6 is not deterministic because it

contains the two clauses

i n t e r e v e n a n d t r e e 3 n p l u s 2 (s (X)) :−
i n te r odd and one mod 3 (X) .

i n te r even and two mod 3 (s (X)) :− i n te r odd and one mod 3

(X) .

By definition, a deterministic tree automaton can also be seen as a partial function If from

tuples of predicates to predicates, one for each f . I.e., If (P1, . . . , Pn) = P if there is a, necessarily

unique, clause of the form (5).

To determinize the automaton rinter nd.purged.pl of Figure 6, run

pldet rinter_nd.purged.pl >rinter_d.xml

This produces a deterministic tree automaton in file rinter d.xml:

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>

<d e f i n i t i o n s>

< / d e f i n i t i o n s>

< s t a t e s>

< s t a t e name=” e x a c t l y o d d a n d t w o m o d 3 ”>

< s a t i s f i e s name=” i n t e r o d d a n d t w o m o d 3 ” />

26

< / s t a t e>

< s t a t e name=” e x a c t l y e v e n a n d t r e e 3 n p l u s 2 ”>

< s a t i s f i e s name=” i n t e r e v e n a n d t w o m o d 3 ” />

< s a t i s f i e s name=” i n t e r e v e n a n d t r e e 3 n p l u s 2 ” />

< / s t a t e>

< s t a t e name=” e x a c t l y l i s t e v e n a n d t r e e 3 n p l u s 2 ”>

< s a t i s f i e s name=” i n t e r l i s t e v e n a n d t r e e 3 n p l u s 2 ” />

< / s t a t e>

< s t a t e name=” e x a c t l y o d d a n d z e r o m o d 3 ”>

< s a t i s f i e s name=” i n t e r o d d a n d z e r o m o d 3 ” />

< / s t a t e>

< s t a t e name=” e x a c t l y o d d a n d o n e m o d 3 ”>

< s a t i s f i e s name=” i n t e r o d d a n d o n e m o d 3 ” />

< / s t a t e>

< s t a t e name=” e x a c t l y e v e n a n d o n e m o d 3 ”>

< s a t i s f i e s name=” i n t e r e v e n a n d o n e m o d 3 ” />

< / s t a t e>

< s t a t e name=” e x a c t l y e v e n a n d z e r o m o d 3 ”>

< s a t i s f i e s name=” i n t e r e v e n a n d z e r o m o d 3 ” />

< / s t a t e>

< s t a t e name=” b o t ” />

< / s t a t e s>

< t a b l e s>

< t a b l e name=” o ” a r i t y =” 0 ”>

<e n t r y r e s u l t =” e x a c t l y e v e n a n d z e r o m o d 3 ”>< / e n t r y>

< / t a b l e>

< t a b l e name=” s ” a r i t y =” 1 ”>

<e n t r y r e s u l t =” e x a c t l y e v e n a n d t r e e 3 n p l u s 2 ”><a r g name=”

e x a c t l y o d d a n d o n e m o d 3 ” />< / e n t r y>

<e n t r y r e s u l t =” e x a c t l y e v e n a n d o n e m o d 3 ”><a r g name=”

e x a c t l y o d d a n d z e r o m o d 3 ” />< / e n t r y>

<e n t r y r e s u l t =” e x a c t l y e v e n a n d z e r o m o d 3 ”><a r g name=”

e x a c t l y o d d a n d t w o m o d 3 ” />< / e n t r y>

<e n t r y r e s u l t =” e x a c t l y o d d a n d t w o m o d 3 ”><a r g name=”

e x a c t l y e v e n a n d o n e m o d 3 ” />< / e n t r y>

<e n t r y r e s u l t =” e x a c t l y o d d a n d z e r o m o d 3 ”><a r g name=”

e x a c t l y e v e n a n d t r e e 3 n p l u s 2 ” />< / e n t r y>

<e n t r y r e s u l t =” e x a c t l y o d d a n d o n e m o d 3 ”><a r g name=”

e x a c t l y e v e n a n d z e r o m o d 3 ” />< / e n t r y>

< / t a b l e>

< t a b l e name=” n i l ” a r i t y =” 0 ”>

<e n t r y r e s u l t =” e x a c t l y l i s t e v e n a n d t r e e 3 n p l u s 2 ”>< / e n t r y>

< / t a b l e>

< t a b l e name=” # r ” a r i t y =” 2 ”>

<e n t r y r e s u l t =” e x a c t l y r ”><a r g name=”

27

e x a c t l y o d d a n d t w o m o d 3 ” /><a r g name=”

e x a c t l y l i s t e v e n a n d t r e e 3 n p l u s 2 ” />< / e n t r y>

< / t a b l e>

< t a b l e name=” cons ” a r i t y =” 2 ”>

<e n t r y r e s u l t =” e x a c t l y l i s t e v e n a n d t r e e 3 n p l u s 2 ”><a r g

name=” e x a c t l y e v e n a n d t r e e 3 n p l u s 2 ” /><a r g name=”

e x a c t l y l i s t e v e n a n d t r e e 3 n p l u s 2 ” />< / e n t r y>

< / t a b l e>

< / t a b l e s>

The format will be explained in more detail in Section 7.

We can then convert this deterministic tree automaton into Prolog notation, since every deter-

ministic tree automaton is a particular case of a non-deterministic tree automaton (itself a particular

case of an alternating tree automaton). Use auto2pl this way:

auto2pl rinter_d.xml >rinter_d.pl

This produces a file rinter\ d.pl, which is probably slightly more readable than the XML

file above:

exac t l y even and zero mod 3 (o) .

exac t ly odd and two mod 3 (s (X1)) :−
exact ly even and one mod 3 (X1) .

exac t l y odd and zero mod 3 (s (X1)) :−
e x a c t l y e v e n a n d t r e e 3 n p l u s 2 (X1) .

exac t ly odd and one mod 3 (s (X1)) :−
exac t l y even and zero mod 3 (X1) .

exac t l y even and zero mod 3 (s (X1)) :−
exac t ly odd and two mod 3 (X1) .

exact ly even and one mod 3 (s (X1)) :−
exac t l y odd and zero mod 3 (X1) .

e x a c t l y e v e n a n d t r e e 3 n p l u s 2 (s (X1)) :−
exac t ly odd and one mod 3 (X1) .

e x a c t l y l i s t e v e n a n d t r e e 3 n p l u s 2 (n i l) .

e x a c t l y l i s t e v e n a n d t r e e 3 n p l u s 2 (cons (X1 , X2)) :−
e x a c t l y e v e n a n d t r e e 3 n p l u s 2 (X1) ,

e x a c t l y l i s t e v e n a n d t r e e 3 n p l u s 2 (X2) .

e x a c t l y r (X1 , X2) :− exac t ly odd and two mod 3 (X1) ,

e x a c t l y l i s t e v e n a n d t r e e 3 n p l u s 2 (X2) .

Now draw the resulting automaton in Figure 7, using pl2gastex:

pl2gastex rinter_d.pl >rinterd.tex

The automaton of Figure 7 is not too big. But beware: determinizing tree automata may pro-

duce automata that are exponentially larger in the general case. In fact, pldet may just take

forever on some alternating, or even non-deterministic tree automata.

28

Figure 7: Determinizing the automaton of Figure 6

{odd, zero mod 3}

{list even, tree 3n plus 2}

{r}

{odd, one mod 3}

{even, tree 3n plus 2}{even, one mod 3}

{odd, two mod 3}

{even, zero mod 3}
s

s

nil

o

s

s

cons

s

s

1
2

1

2

3.3.7 Computing Unions, Transitive Closures

We have seen how to compute intersections of tree automata in Section 3.3.2. Computing unions

is just as easy. Say that you want to compute the union of the sets of lists of even numbers

(listeven.p) and of the trees whose leaves are nil or 3n + 2, n ∈ N. That is, instead of

computing the intersection of the languages L1 and L2 introduced at the beginning of Section 3.3,

we compute their union. As before, build a file, say list even union tree3plus2.p, by

concatenating the clauses from listeven.p and from tree3plus2.p, but this time add the

two clauses

q(X) :– list even(X)

q(X) :– tree 3n plus 2(X)

so that the fresh state q recognizes the terms that are recognized by either the state list even or by

tree 3n plus 2 . Concretely, run the following commands:

OUT=list_even_union_tree3plus2

cat listeven.p tree3plus2.p >$OUT.p

echo "input_clause ("$OUT"_1, axiom, \

[++q(X), --list_even(X)])." >>$OUT.p

echo "input_clause ("$OUT"_2, axiom, \

[++q(X), --tree_3n_plus_2(X)])" >>$OUT.p

Now run h1 -no-trim as above:

29

h1 -no-trim list_even_union_tree3plus2.p

We get an equivalent alternating tree automaton in the file list even union tree3plus2.

model.pl:

q (n i l) .

q (s (X)) :− one mod 3 (X) .

q (cons (X1 , X2)) :− t r e e 3 n p lu s 2 (X1) , t r e e 3 n p lu s 2 (X2) .

q (cons (X1 , X2)) :− even (X1) , l i s t e v e n (X2) .

two mod 3 (s (X)) :− one mod 3 (X) .

odd (s (X)) :− even (X) .

zero mod 3 (o) .

zero mod 3 (s (X)) :− two mod 3 (X) .

one mod 3 (s (X)) :− zero mod 3 (X) .

t r e e 3 n p lu s 2 (n i l) .

t r e e 3 n p lu s 2 (s (X)) :− one mod 3 (X) .

t r e e 3 n p lu s 2 (cons (X1 , X2)) :− t r e e 3 n p lu s 2 (X1) , t r e e 3 n p lu s 2

(X2) .

l i s t e v e n (n i l) .

l i s t e v e n (cons (X1 , X2)) :− even (X1) , l i s t e v e n (X2) .

even (o) .

even (s (X)) :− odd (X) .

Graphically, this is the alternating tree automaton of Figure 8, again obtained using pl2gastex.

This can be determinized again. Run pldet and auto2pl :

pldet list_even_union_tree3plus2.model.pl \

| auto2pl - >list_even_union_tree3plus2_d.pl

and you get

i n t e r l i s t e v e n a n d t r e e 3 n p l u s 2 (n i l) .

i n te r even and ze ro mod 3 (o) .

i n te r even and ze ro mod 3 (s (X1)) :−
i n te r odd and two mod 3 (X1) .

i n te r odd and ze ro mod 3 (s (X1)) :−
i n te r even and two mod 3 (X1) .

in te r even and one mod 3 (s (X1)) :−
i n te r odd and ze ro mod 3 (X1) .

in te r odd and one mod 3 (s (X1)) :−
i n te r even and ze ro mod 3 (X1) .

i n te r even and two mod 3 (s (X1)) :−
i n te r odd and one mod 3 (X1) .

i n te r odd and two mod 3 (s (X1)) :−
i n te r even and one mod 3 (X1) .

30

Figure 8: Trees with leaves equal to nil or to 3n + 2, or which are lists of even natural numbers

odd

one mod 3

tree 3n plus 2

q

zero mod 3

two mod 3

even

list even

cons

s

nil

s

s

s

nil

o

s

nil

o

cons

cons

cons

s

s

1
2

1

2

1
2

1

2

31

t r e e 3 n p lu s 2 (cons (X1 , X2)) :−
i n t e r l i s t e v e n a n d t r e e 3 n p l u s 2 (X1) ,

i n t e r l i s t e v e n a n d t r e e 3 n p l u s 2 (X2) .

t r e e 3 n p lu s 2 (cons (X1 , X2)) :− t r e e 3 n p lu s 2 (X1) ,

i n t e r l i s t e v e n a n d t r e e 3 n p l u s 2 (X2) .

t r e e 3 n p lu s 2 (cons (X1 , X2)) :−
i n t e r l i s t e v e n a n d t r e e 3 n p l u s 2 (X1) , t r e e 3 n p lu s 2 (

X2) .

l i s t e v e n (cons (X1 , X2)) :− i n te r even and ze ro mod 3 (X1) ,

i n t e r l i s t e v e n a n d t r e e 3 n p l u s 2 (X2) .

i n t e r l i s t e v e n a n d t r e e 3 n p l u s 2 (cons (X1 , X2)) :−
i n te r even and two mod 3 (X1) ,

i n t e r l i s t e v e n a n d t r e e 3 n p l u s 2 (X2) .

t r e e 3 n p lu s 2 (cons (X1 , X2)) :− i n te r odd and two mod 3 (X1) ,

i n te r odd and two mod 3 (X2) .

l i s t e v e n (cons (X1 , X2)) :− i n te r even and ze ro mod 3 (X1) ,

l i s t e v e n (X2) .

t r e e 3 n p lu s 2 (cons (X1 , X2)) :−
i n t e r l i s t e v e n a n d t r e e 3 n p l u s 2 (X1) ,

i n te r even and two mod 3 (X2) .

l i s t e v e n (cons (X1 , X2)) :− i n te r even and two mod 3 (X1) ,

l i s t e v e n (X2) .

l i s t e v e n (cons (X1 , X2)) :− i n te r even and one mod 3 (X1) ,

l i s t e v e n (X2) .

t r e e 3 n p lu s 2 (cons (X1 , X2)) :− t r e e 3 n p lu s 2 (X1) , t r e e 3 n p lu s 2

(X2) .

t r e e 3 n p lu s 2 (cons (X1 , X2)) :− t r e e 3 n p lu s 2 (X1) ,

i n te r odd and two mod 3 (X2) .

t r e e 3 n p lu s 2 (cons (X1 , X2)) :− i n te r odd and two mod 3 (X1) ,

i n t e r l i s t e v e n a n d t r e e 3 n p l u s 2 (X2) .

t r e e 3 n p lu s 2 (cons (X1 , X2)) :− i n te r even and two mod 3 (X1) ,

i n te r odd and two mod 3 (X2) .

t r e e 3 n p lu s 2 (cons (X1 , X2)) :− i n te r odd and two mod 3 (X1) ,

i n te r even and two mod 3 (X2) .

t r e e 3 n p lu s 2 (cons (X1 , X2)) :−
i n t e r l i s t e v e n a n d t r e e 3 n p l u s 2 (X1) ,

i n te r odd and two mod 3 (X2) .

l i s t e v e n (cons (X1 , X2)) :− i n te r even and one mod 3 (X1) ,

i n t e r l i s t e v e n a n d t r e e 3 n p l u s 2 (X2) .

t r e e 3 n p lu s 2 (cons (X1 , X2)) :− i n te r even and two mod 3 (X1) ,

t r e e 3 n p lu s 2 (X2) .

32

t r e e 3 n p lu s 2 (cons (X1 , X2)) :− i n te r odd and two mod 3 (X1) ,

t r e e 3 n p lu s 2 (X2) .

t r e e 3 n p lu s 2 (cons (X1 , X2)) :− i n te r even and two mod 3 (X1) ,

i n te r even and two mod 3 (X2) .

t r e e 3 n p lu s 2 (cons (X1 , X2)) :− t r e e 3 n p lu s 2 (X1) ,

i n te r even and two mod 3 (X2) .

As you may see, the determinized automaton is much larger this time, and pl2gastex now

has real trouble trying to draw it. (See Figure 9.) We use twopi as graph layout engine here

instead of neato and run:

pl2gastex -v -layout twopi \

-overlap false \

list_even_union_tree3plus2_d.pl \

>list_even_union_tree3plus2_model_d.tex

The trick we have used to compute intersections and unions, namely concatenating files and

adding new clauses (provided the concatenated files agree on the semantics of predicates), can also

be used to compute other combinations of tree languages. A particularly interesting one is the

computation of transitive closures of relations defined by tree automata (or, more generally, by H1

clause sets).

For the purpose of illustration, imagine you want to compute the transitive closure of the binary

relation r defined in rinter d.pl (drawn in Figure 7, Section 3.3.6). Just create a fresh binary

predicate symbol r+, and add the clauses

r+(X,Y) :– r(X,Y)

r+(X,Z) :– r(X,Y), r(Y, Z)

Concretely, run

OUT=rinter_d_plus

pl2tptp rinter_d.pl >$OUT.p

echo "input_clause (r_plus_r, axiom, \

[++r_plus(X,Y), --r(X,Y)])." >>$OUT.p

echo "input_clause (r_plus_tc, axiom, \

[++r_plus(X,Z), --r_plus(X,Y), --r_plus(Y,Z)])" >>$OUT.p

Compute an equivalent non-deterministic tree automata by

h1 -no-trim -no-alternation rinter_d_plus.p

You get

e x a c t l y e v e n a n d t r e e 3 n p l u s 2 (s (X)) :−
exac t ly odd and one mod 3 (X) .

exact ly even and one mod 3 (s (X)) :−
exac t l y odd and zero mod 3 (X) .

33

Figure 9: Determinizing the automaton of Figure 8

even ∩ two mod 3

tree 3n plus 2

odd ∩ one mod 3

odd ∩ two mod 3

even ∩ one mod 3

even ∩ zero mod 3

odd ∩ zero mod 3

list even ∩ tree 3n plus 2

list even

s

cons

nil

cons

s

cons

s

cons

cons

cons

cons

s

s

o

cons

cons

cons

cons

cons

cons

cons

cons

cons
cons

cons

cons

s

cons
cons

1

2

1
2

1

2

1

2

1

2

1

2

1

2

1 2

1

2

1

2

1

2

1
2

1

2

1

2

1

2

1

2

1

2

1
2

1

2
1

2

1

2

34

exac t ly odd and one mod 3 (s (X)) :−
exac t l y even and zero mod 3 (X) .

e x a c t l y l i s t e v e n a n d t r e e 3 n p l u s 2 (n i l) .

e x a c t l y l i s t e v e n a n d t r e e 3 n p l u s 2 (cons (X1 , X2)) :−
e x a c t l y e v e n a n d t r e e 3 n p l u s 2 (X1) ,

e x a c t l y l i s t e v e n a n d t r e e 3 n p l u s 2 (X2) .

exac t l y odd and zero mod 3 (s (X)) :−
e x a c t l y e v e n a n d t r e e 3 n p l u s 2 (X) .

exac t l y even and zero mod 3 (o) .

exac t l y even and zero mod 3 (s (X)) :−
exac t ly odd and two mod 3 (X) .

exac t ly odd and two mod 3 (s (X)) :−
exact ly even and one mod 3 (X) .

e x a c t l y r (X1 , X2) :− exac t ly odd and two mod 3 (X1) ,

e x a c t l y l i s t e v e n a n d t r e e 3 n p l u s 2 (X2) .

Since the clauses defining r+, i.e., r_plus, are the same as those defining r, the transitive

closure of r is r+ itself here: r was already transitive. (Exercise: why?)

3.3.8 Complete Deterministic Tree Automata, Taking Complements

We observed in Section 3.3.6 that a deterministic tree automaton could be seen as a partial function

If from tuples of predicates to predicates, one for each function symbol f .

A complete deterministic tree automaton is a set of Horn clauses of the form (5), i.e.,

P (f(X1, . . . , Xn)) :– P1(X1), . . . , Pn(Xn)

where X1, . . . , Xn are pairwise distinct variables, and where there is exactly one such clause for

each (n + 1)-tuple (f, P1, . . . , Pn) (instad of at most one such clause for incomplete automata).

Any deterministic tree automaton can be completed to a complete one, by adding a catch-all

state all (shown as ⊤ by pl2gastex), to which all missing transitions are directed. Precisely,

if there is an (n+1)-tuple (f, P1, . . . , Pn) such that there is not clause as above, then add the clause

all(f(X1, . . . , Xn)) :– P1(X1), . . . , Pn(Xn)

This must also be done whenever any one of P1, . . . , Pn is the catch-all state all.

The function If is then total. The collection of all such If defines a finite model, whose set of

values is that of all predicates. A value satisfies a predicate P if and only if it is P , seen as a value.

In fact, finite models and complete deterministic tree automata are exactly the same notion.

You might want to ponder this.

As an example, let us return to the Dreadsbury mansion murder mystery (Section 3.2). As we

have seen, the only to have possibly killed Aunt Agatha is Aunt Agatha herself. We have proved

this by showing that the set of clauses in butler-puzzle.p (and explained in Section 3.2) with

WHO defined as agatha was satisfiable.

Since this set is satisfiable, it has a model. Well, h1 computes such a model, in the guise of an

alternating tree automaton. Run

35

cpp -P -DWHO=agatha butler-puzzle.p >agatha.p

h1 -no-trim agatha.p

and you’ll get it in file agatha.model.pl (see Figure 10):

%[def] d e f 4 b u t l e r .

%[def] d e f 3 X :− n o t r i c h e r (X, agatha) .

%[def] d e f 1 agatha .

%[def] d e f 5 X :− hates (agatha ,X) .

%[def] d e f 2 char les .

%[def] d e f 6 b u t l e r .

d e f 4 (b u t l e r) .

d e f 3 (agatha) .

d e f 1 (agatha) .

d e f 5 (char les) .

d e f 5 (agatha) .

d e f 2 (char les) .

d e f 6 (b u t l e r) .

in mansion (char les) .

in mansion (b u t l e r) .

in mansion (agatha) .

hates (X1 , X2) :− d e f 1 (X1) , d e f 1 (X2) .

hates (X1 , X2) :− d e f 1 (X1) , d e f 2 (X2) .

hates (X1 , X2) :− d e f 6 (X1) , d e f 5 (X2) .

hates (X1 , X2) :− d e f 4 (X1) , d e f 3 (X2) .

n o t r i c h e r (X1 , X2) :− d e f 1 (X1) , d e f 1 (X2) .

k i l l e d (X1 , X2) :− d e f 1 (X1) , d e f 1 (X2) .

All right, this does not look like a model at all (much less an explanation!), but remember there

is a complete deterministic tree automaton that is equivalent to it. We know how to compute an

equivalent deterministic tree automaton, using pldet and auto2pl, viz.

pldet agatha.model.pl | auto2pl - >agatha_d.pl

pl2gastex -v agatha_d.pl >agathad.tex

Using pl2gastex, as usual, produces a visual representation of it, see Figure 11;

So Agatha killed herself, Agatha is the only one not to be richer than Agatha, Agatha hates

herself and Charles, the butler hates Agatha and Charles, and Charles hates noone.

Let us now produce the corresponding complete deterministic tree automaton. This can be

done using auto2pl, which we have already seen, using the -complete 1 option. Be warned,

though, that complete deterministic tree automata are large: with n states (included the catch-all

states), any function taking k arguments will contribute nk clauses, never less—and do not forget

that any k-ary predicate symbol P with k ≥ 2 creates an invisible function symbol fP , which will

contribute nk clauses as well. Anyway, run

pldet agatha.model.pl | auto2pl -complete 1 - | sort >agatha_c.pl

and you’ll get the resulting complete deterministic tree automaton in file agatha c.pl.

36

Figure 10: Why Agatha killed herself

c

hates

f

b

in mansion

d

e

a

not richer

killed

charles

butler

agatha

agatha

agatha

charles

butler

charles

agatha

butler

1

2

1

2

1
2 1

2

1

2

1

2

37

Figure 11: Why Agatha killed herself, deterministically

b

d

a

killed

c

f

e

not richer

hates

butler

charles

agatha

1

2

1

2

1
2

1

2

1

2

1

2

38

3.4 The Needham-Schroeder Symmetric Key Protocol Example

Try another example, nspriv.p, an encoding of the Needham-Schroeder symmetric key proto-

col, together with three queries. We do not mean that this is the only possible description of this

protocol, and only use this example as a motivation for using h1 with more complex clause sets.

Here are the clauses of nspriv.p, in Prolog notation. We have shown the name of the

clause on the left. First, we define a predicate knows that is meant to recognize all messages that

a malevolent intruder is able to build. The first clauses say that attackers can build any list of

messages provided it knows each message in the list, and conversely that it can build any message

that appears at any position in a list it knows:

intruder knows nil knows(nil)
intruder can take first components knows(M1) :– knows(cons(M1,M2))

intruder can take second components knows(M2) :– knows(cons(M1,M2))
intruder can build pairs knows(cons(M1,M2)) :– knows(M1), knows(M2)

Lists such as [M1,M2, . . . ,Mn] are encoded, very classically, as terms cons(M1, cons(M2, . . .

cons(Mn, nil) . . .)), whence the clauses above. Using a binary symbol crypt to denote encryption,

i.e., crypt(M,K) denotes the result of encrypting M using key K, we may also write the following

two important rules, stating that the intruder can always encrypt any message it knows using any

message it knows, used as a key; and conversely, that the intruder can always decrypt a message if

he has the right key.

intruder can encrypt knows(crypt(M,K)) :– knows(M), knows(K)
intruder can decrypt if has private key

knows(M) :– knows(crypt(M,key(pub,K))),
knows(key(prv,K))

intruder can decrypt if has public key

knows(M) :– knows(crypt(M,key(prv,K))),
knows(key(pub,K))

intruder can decrypt if has symmetric key

knows(M) :– knows(crypt(M,key(sym,X))),
knows(key(sym,X))

The last three clauses state how the intruder may decrypt a message of the form crypt(M,Z).
We assume that keys come into three varieties, public keys of the form key(pub,K) where K is

typically the name of the agent holding this public key; private keys of the form key(prv,K) where

K is the name of the agent holding this private key; and symmetric keys of the form key(sym,X),
where X is arbitrary. The last three clauses state that you may decrypt a message encrypted with a

public key key(pub,K) provided you know the corresponding private key key(prv,X); that you

may decrypt a message encrypted with a private key provided you know the corresponding public

key; and that you may decrypt a message encrypted with a symmetric key provided you know the

latter.

We also assume that there is an operation s that builds a new message s(M) from an old M ,

in bijection with M ; while we can compute s(M) from M and recover M from s(M), the point is

39

that M and s(M) always differ.

intruder can compute successors knows(s(M)) :– knows(M)
intruder can compute predecessors knows(M) :– knows(s(M))

In the Needham-Schroeder symmetric key protocol, Alice and Bob communicate with a trusted

server to get a common private key that only they know, not the intruder. Alice can always start a

session of the protocol and send the server a triple containing Alice’s identity alice, Bob’s identity

bob, and a nonce, that is, a fresh message for this session. Following Blanchet [2001], we encode

this nonce as a function symbol applied to all parameters currently known, say noncea(alice,

bob)—the function symbol noncea applied to Alice’s identity alice and Bob’s identity bob. Now

we assume a worst-case intruder model, where any communication can be diverted by the intruder.

The net effect is that, from a security viewpoint, what Alice does by sending a message consists

exactly in making it known to the intruder:

alice sends message 1 to server knows(cons(alice,

cons(bob,

cons(noncea(alice, bob),
nil))))

If the server ever receives such a message, i.e., a message of the form cons(A, cons(B, cons(Na,

nil))) for some arbitrary messages A, B, and Na (the server has no way of checking that Alice

indeed sent the right message, and can only check the message it receives contains three fields),

then it should send out (to Alice, but we have already seen this was irrelevant from a security point

of view) the message crypt([Na,B,Kab, crypt([Kab, A],Kbs)],Kas), where Kab is some fresh key

to be used by Alice and Bob, Kas is a long-term key shared between Alice and the server, and Kbs

is a long-term key shared between Bob and the server.

Just like sending a message consists exactly in making it known to the intruder, receiving

a message is modeled by stating that the intruder was able to build this message. We shall there-

fore write a clause saying that, if knows[A,B,Na] then knows crypt([Na,B,Kab, crypt([Kab, A],
Kbs)],Kas). Note that we are effectively saying that, from the angle of security, the actions of the

server amount to adding new capabilities to the intruder: if the intruder knows a message matching

what the server expects, it can build the message that the server will answer, even though it may

not know the long-term keys Kas and Kbs.

Now we encode Kas as the term key(sym, cons(A, cons(server, nil))), and Kbs as the term

key(sym, cons(B, cons(server, nil))); note that A and B are variables here, representing the fact

that the server will find these keys by looking up tables by the identities of A, resp. B. In current

sessions, we encode Kab by the term key(sym, current session(A,B,Na)). The key Kab as gen-

erated during older sessions is encoded by the term key(sym, old session(A,B,Na)). Separating

40

current from old sessions means we have to write two clauses:

server answers A with encrypted packet

knows(crypt(cons(Na,

cons(B,

cons(key(sym, current session(A,B,Na)),
cons(crypt(cons(key(sym, current session(A,B,Na)),

cons(A, nil)),
key(sym, cons(B, cons(server, nil)))),

nil)))),
key(sym, cons(A, cons(server, nil)))))

:– knows(cons(A, cons(B, cons(Na, nil))))
intruder knows previous server messages

knows(crypt(cons(Na,

cons(B,

cons(key(sym, old session(A,B,Na)),
cons(crypt(cons(key(sym, old session(A,B,Na)),

cons(A, nil)),
key(sym, cons(B, cons(server, nil)))),

nil)))),
key(sym, cons(A, cons(server, nil)))))

:– knows(cons(A, cons(B, cons(Na, nil))))

All right, now, when Alice receives the message from the server, she should send the part en-

crypted with Kbs to Bob. The idea is that while Alice can decrypt the whole message, which is

encrypted with Kas, only Bob can decrypt the sub-message that is encrypted with Kbs. The mes-

sage that Alice receives from the server should be crypt([Na,B,Kab, crypt([Kab, A],Kbs)],Kas),
however she can only check that it is of the form crypt([Na,B,Kab,Msg) for some sub-messages

Kab and Msg (which may be totally unrelated to what the server actually sent). She can how-

ever check that Na is the nonce noncea(alice, bob) that she created earlier (see above, clause

alice sends message 1 to server), and that B really is Bob’s identity bob. So Alice expects a

message of the form crypt([noncea(alice, bob), bob,Kab,Msg],Kas). As we have said before, for

Alice to receive this message, the intruder must send it to Alice, so the intruder must be able to

build it. Once Alice receives this, it extract the sub-message Msg and forwards it to Bob—in fact

adding it to the set of messages known to the intruder:

alice gets server message and forwards submessage to bob

knows(Msg) :– knows(crypt(cons(noncea(alice, bob),
cons(bob,
cons(Kab,

cons(Msg, nil)))),
key(sym, cons(alice, cons(server, nil)))))

We use an auxiliary predicate alice key meant to recognize all possible values of Kab above.

41

This is the key as seen by Alice.

alice gets server message and stores current session key

alice key(Kab)
:– knows(crypt(cons(noncea(alice, bob),

cons(bob,
cons(Kab,

cons(Msg, nil)))),
key(sym, cons(alice, cons(server, nil)))))

Let’s see what Bob does in this protocol. First, Bob expects to receive the sub-message

Msg above. Cutting it short, Bob decrypts it, gets Kab, then sends a confirmation challenge

crypt(Nb,Kab), where Nb is a fresh nonce. As before, Nb is modeled as a function symbol nonceb

applied to all relevant variables.

agent B gets forwarded submessage and sends confirmation challenge

knows(crypt(nonceb(Kab,A,B),Kab) :– knows(crypt(cons(Kab, cons(A, nil)),
key(sym, cons(B, server, nil))))))

On receiving this challenge, Alice tries to decrypt it with its own version of the key Kab, and sends

back Nb + 1:

alice answers confirmation challenge

knows(crypt(s(Nb),Kab)) :– alice key(Kab), knows(crypt(Nb,Kab))

Bob then checks that it indeed gets the confirmation message above with the right value for Nb. If

so, we store the key Kab in the predicate bob key:

agent B checks confirmation from A

bob key(Kab) :– knows(crypt(s(nonceb(Kab,A,B)),Kab))

This terminates the description of the protocol. Let us now describe additional things the intruder

know. First, the intruder is assumed to know the identities of all agents. We also list who we think

are agents. Note that the intruder itself is considered an agent, and has its own identity intruder.

alice is an agent agent(alice)
bob is an agent agent(bob)
server is an agent agent(server)
intruder is an agent agent(intruder)
intruder knows all agents knows(X) :– agent(X)

We also posit that the intruder knows all public keys (. . . because this is what we mean for them to

be public!), and its own private key. We also assume that older sessions are so old that the intruder

eventually managed to crack all old sessions key. This is slightly pessimistic. But it is precisely

42

the purpose of changing session keys to prevent intruders from gaining anything from cracking old

session keys.

intruder knows every public key knows(key(pub,X))
intruder knows own private key knows(key(prv, intruder))
intruder knows all previous session keys knows(key(sym, old session(A,B,Na)))

This is all, at last.

Let us now ask a few queries. The first asks whether the intruder may know the key Kab as it

was generated by the server. The second asks whether the intruder may know any key that Alice

accepted as being a key Kab at the end of the protocol. The third asks whether the intruder may

know any key that Bob accepted as being Kab at the end of the protocol.

intruder knows session key generated by server

⊥ :– knows(key(sym, current session(alice, bob,Na)))
intruder knows session key as seen by alice

⊥ :– alice key(key(Mode, current session(X,Y,N))),
knows(key(Mode, current session(X,Y,N)))

intruder knows session key as seen by B

⊥ :– knows(crypt(s(nonceb(Kab,A,B)),Kab)), knows(Kab)

Now launch h1 on nspriv.p:

h1 nspriv.p

You should get

∗∗∗ Der ived : i n t r u d e r k n o w s s e s s i o n k e y a s s e e n b y B ∗∗∗

This means in short that h1 believes that this clause set is unsatisfiable; in terms of protocols, that

there is an attack. You cannot actually be sure that this is indeed an attack, i.e., that this clause set

is indeed unsatisfiable, because this clause set is not in the H1 format. (You should not conclude

from this that cryptographic protocols always produce clause sets outside H1, see Nielson et al.

[2002].)

In this case, and contrarily to the example of Section 3.2, h1 computes an approximation of the

input clause set S as a clause set S1, and reasons on S1 instead. Check it using the -check-h1

2 option:

h1 -check-h1 2 nspriv.p

and you’ll get the list of all clauses in nspriv.p that are not in H1:

Warning : c l a u s e s e r v e r a n s w e r s A w i t h e n c r y p t e d p a c k e t has

non− l i n e a r head , v a r i a b l e A o c c u r s r e p e a t e d l y .

Warning : c l a u s e i n t r u d e r k n o w s p r e v i o u s s e r v e r m e s s a g e s has

non− l i n e a r head , v a r i a b l e A o c c u r s r e p e a t e d l y .

Warning : c l a u s e a g e n t B g e t s f o r w a r d e d s u b m e s s a g e a n d \

43

\ s e n d s c o n f i r m a t i o n c h a l l e n g e

has non− l i n e a r head , v a r i a b l e Kab o c c u r s r e p e a t e d l y .

Warning : c l a u s e a l i c e a n s w e r s c o n f i r m a t i o n c h a l l e n g e has two

non−s i b l i n g v a r i a b l e s i n t h e head t h a t a r e c o n n e c t e d

i n t h e body , Nb and Kab .

S top .

Note also that h1 gives you an explanation of what’s going wrong. For further explanation of what

linear terms, sibling variables and connected variables are, see Nielson et al. [2002] or Goubault-

Larrecq [2005].

The -check-h1 1 option runs the same checks. However, it still proceeds with checking the

(un)satisfiability of the approximated clause set S1, even when the approximation is not exact, i.e.,

when the original clause set S is not in H1.

The approximated clause set S1 is always in the class H1, and always implies S logically. In

particular, if h1 does not find any contradiction, i.e., if S1 is satisfiable, then S is satisfiable, too.

In terms of cryptographic protocols, if h1 tells you that your protocol has no attack, then you can

be sure of it. (That is, up to the accuracy of your model, written as clauses.)

In our case, h1 found a purported attack, i.e., a purported contradiction. It turns out that

nspriv.p is indeed contradictory. In fact, in most cases where h1 thinks a clause set is contra-

dictory, it is indeed contradictory. (Although, as usual, your mileage may vary.)

We terminate this example by mentioning the -all option.

The answer

∗∗∗ Der ived : i n t r u d e r k n o w s s e s s i o n k e y a s s e e n b y B ∗∗∗

above means that h1 found a (purported) contradiction first, and second that, in order to derive

the empty clause ⊥, h1 required the clause intruder knows session key as seen by B . Is this

the only query that fails? Remember we have asked three queries. One way of checking this is to

remove the intruder knows session key as seen by B clause from nspriv.p and run h1 again.

There is a simpler option: run h1 with the -all option. Once a contradiction has been found,

instead of stopping just like any other prover, h1 -allwill continue, trying to find contradictions

using other queries.

On the example, running

h1 -all nspriv.p

you will get the same answer as above:

∗∗∗ Der ived : i n t r u d e r k n o w s s e s s i o n k e y a s s e e n b y B ∗∗∗

In other words, no other query fails. In terms of security, this means that while Bob’s key Kab is

not secure, those of Alice and the server definitely are. This may seem paradoxical, however the

attack that h1 just found is one where the intruder deceives Bob into accepted an old, cracked key

from an older session. This key is not the key that the server produced. It is also old, meaning that

it will be detected as not being new by Alice’s use of the nonce Na.

We have just proved that Alice and the server were in fact safe in this protocol, while Bob is

not.

44

The -no-resolve option can be used to disable the reasoning facilities of h1 altogether.

Then h1 -no-resolve will just compute an approximation of the input clause set, and store it

into the log file. For example,

h1 -no-resolve nspriv.p

runs without any output, and creates the log file nspriv.log.gz. As we have already said, it is

not really instructive to look at this file directly with zcat. However, you can extract from it the

approximated clause set by running:

zcat nspriv.log.gz | h1getlog processed | pl2tptp -

This will output the approximated clause set on stdout: h1getlog with the processed

option will extract the approximate clauses and print them in Prolog format. Then pl2tptp with

- argument (meaning stdin) will convert these from Prolog format to TPTP format.

All this can be done in a simpler way, by using the -log-out option to h1. Then h1 will

output its log file, uncompressed, to stdout. You can then pipe it to h1getlog and pl2tptp,

as follows.

h1 -log-out -no-resolve nspriv.p | h1getlog processed | pl2tptp -

4 The h1 Prover

Most of the features of h1 are explained in Section 3. We explain the structure of the h1 command

line in Section 4.1, then turn to the theoretical basis of h1 in Section 4.2. We refine this description

in Section 4.3, by stating the precise rules used by h1.

4.1 How to Use h1

The h1 tool recognizes the following options. As in all Unix tools, options start with a minus sign

-. Some options are flags, which can be toggled between an active state and a deactivated state.

In this case, the convention used in h1 and other tools of the h1 suite is to have -〈option〉 activate

the option, while -no-〈option〉 deactivates it.

The options recognized by the h1 prover are:

• -h prints help. This is basically a terse summary of the current explanation.

• -v〈n〉 (with no space between -v and 〈n〉) sets the verbosity level to the integer n. Also,

-v sets the verbosity level to 1. The default is 0 (run silently).

While other tools of the h1 suite understand verbosity as a way of printing more or less

comments on stderr, the h1 prover itself prints these comments into the log file. That

is, into 〈filename〉.log.gz if run as 〈filename〉, into h1out.log.gz if run without a

file, i.e., as h1 -, and on stdout if the -log-out option is activated.

45

This can be useful to examine how h1 proceeds to derive new clauses and to remove redun-

dant clauses while it is reasoning.

At verbosity level 1, i.e., with -v1 or -v, h1 adds comments of the form % |- 〈clause〉
to say which clauses are being derived, and added to the queue of clauses waiting to be

processed. Normally, h1 only lists clauses it is currently processing. At verbosity level

1, h1 also signals which clauses are useless, in the sense that a simple reachability test on

predicate symbols showed that they could not participate in any derivation of the empty

clause.

At verbosity level 2, i.e., with -v2, h1 also gives information on its strategy for selecting

clauses to be processed, lists the clauses it removes, because they are redundant in some or

the other way.

In any case, run h1 -v1 nspriv.p or h1 -v2 nspriv.p, followed by the command

zcat nspriv.log.gz | less to see concrete examples of such comments.

The -v options are only active if some log file is output at all, that is, if -log or -log-out

is in effect. (By default, -log is active.)

• -check-h1 〈n〉 enables or disables H1 format checking. If n = 0, no check is done

at all (default). Clauses outside H1 are approximated as in Section 3.4, using a slightly

more clever variant of the approximation algorithm of Goubault-Larrecq [2005]. If n = 1,

warnings are printed as to which clauses are not in H1, and what the problem is, then h1

proceeds approximating all clauses. If n = 2, the same warnings are printed; however, if any

warning has been emitted, then h1 will stop and refuse to solve the given clause set.

• -first, -all: by default, h1 works as any prover, and stops on finding the first contra-

diction (-first). With the -all option, h1 will report all goal clauses through which a

contradiction can be found. See Section 3.4 for an example.

The way h1 does it is by replacing every goal clause ⊥:–P1(t1), . . . , Pn(tn), of name 〈name〉,
by a definite clause q〈name〉:–P1(t1), . . . , Pn(tn) for a special nullary predicate symbol q〈name〉,

called a signalling symbol. With the -first option, as soon as h1 derives a signalling

symbol, it prints its name inside *** Derived: and *** and stops. With the -all

option, h1 prints the names of all signalling symbols that can be derived.

• -log, -log-out, -no-log: by defaut, h1 outputs a trace of what it is doing into a log file

(-log). If h1was called on file 〈filename〉.p, then the trace will be in 〈filename〉.log.gz.

If h1 was given - as input file (i.e., if h1 reads from standard input), then this file will be

h1out.log.gz. If -log-out is given instead of -log, this trace is output, uncom-

pressed, on stdout. If -no-log is given, then no trace is produced at all.

The reason why the trace is compressed by default is because it may be huge. So huge in

fact that I’ve seen cases where it went above the 2 Gb file size limit on Unix files. To see a

rather extreme example, run

memtime h1 -progress Fabrice/alice_full1.p

46

This is a 459 clause example, generated automatically from the static analysis by the Csur

static analyzer [Goubault-Larrecq and Parrennes, 2005] of a small C implementation of the

Needham-Schroeder public-key protocol (not the same as the symmetric-key protocol of

Section 3.4). Beware that this will take quite some time, and some disk space! On the

machine I’m using to write this text (an 1.4 Ghz Pentium IV class machine running RedHat

Linux .6.9-1.6 FC2), it takes 33 minutes, and 264 Mb main memory.

Fabrice/alice\ full1.p is the largest example we can deal with. Note however that

the time and space used by h1 are more related to the structure than to the size of the

input problem; e.g., Fabrice/alice\ full3.p is about the same size (458 clauses)

and apparently very similar, but is shown satisfiable in a matter of seconds by h1.

You may want to run

watch h1mon h1.pgr

in parallel, to see how h1 progresses on Fabrice/alice\ full1.p. (See Section 4.3.)

To cut it short, Fabrice/alice\ full1.p will be detected as (possibly) unsatisfiable

by h1, and will generate the compressed log file Fabrice/alice\ full1.log.gz.

The latter is 94.5 Mb. This is not much compared to the uncompressed file, which is a bit

more than 40 million lines long, and 2.67 Gb long. These figures are obtained by running

zcat Fabrice/alice_full1.log.gz | wc -c -l

which itself runs in about 20 s.

• -model, -no-model: by default, h1 outputs a candidate model of the input clause set, as

a set of Horn clauses, into file 〈filename〉.model.pl, if h1 was called on file 〈filename〉.p,

or into h1out.model.pl if h1 expects its input from standard input.

The h1 prover is always able to output a candidate model, even if the input clause set is

unsatisfiable, and therefore has no model. It is just that, in this case, the candidate model is

no model: h1mcwill then complain, and state which clauses are not satisfied in the candidate

model. See Section 6.

To understand what this candidate model may be, especially in the case where there is no

model, see Section 4.2: the candidate model is just the subset of all alternating automaton

clauses, and universal clauses of the final, saturated clause set that h1 eventually computes.

• -progress, -no-progress: by default, this is deactivated (-no-progress). If ac-

tivated with -progress, a kludge is enabled that allows one to monitor h1’s progress: a

special file h1.pgr is created and written into as h1 goes forward. Each time h1 adds a

clause, subsumes a clause, or does anything of the kind, it adds a conventional character to

h1.pgr. Using h1mon h1.pgr at any time while h1 is running will give you instanta-

neous statistics about how many operations h1 has performed until now. See Section 4.3

for more explanations. Using watch in combination with h1mon, as in watch h1mon

h1.pgr, is particularly useful here.

47

• -resolve, -no-resolve. By default (-resolve), h1 computes an H1 approximation

of the given clause set, then saturates the latter by a form of resolution. The -no-resolve

disables the resolution engine, so that h1 -no-resolve merely produces the H1 approx-

imation into the log file (see -log option). This is useful to just see what the approximated

clauses actually are. To actually see these clauses, run h1getlog processed on the log

file. See 3.4 for an example.

• -trim, -no-trim. By default (-trim), h1 does a quick preprocessing phase (trimming)

to eliminate some clauses that are obviously not needed to derive a contradiction. This is

based on following dependencies between predicate symbols. E.g., if P (t):–P1(t1), . . . ,
Pn(tn) is an input clause, we say that P depends on P1, . . . , Pn. A predicate symbol P is

needed if and only if there is a goal clause of the form ⊥:– . . . , P (t), . . ., or if some needed

predicate symbol depends on P , inductively. By default, h1 removes all clauses headed by

unneeded predicate symbols.

This is useful to avoid h1 being clogged by useless clauses. Consider any set of definite

clauses (i.e., without any goal clause). While this set of clauses is (obviously!) satisfiable, h1

may lose quite some time saturating it by resolution. Trimming will just eliminate all clauses,

and h1 will conclude right away that the set of clauses is (obviously, indeed) satisfiable.

This may seem an extreme example. However, this is also an example of why disabling

trimming might be the desired option instead. If you use h1 as a tree automaton tool, as in

Section 3.3, you will probably want precisely to feed h1 with just definite clauses, no goal

clause, and expect h1 to output some compiled alternating tree automaton computing the

same languages. To obtain this result, use -no-trim.

• -path-refine 〈n〉. Another trick that h1 uses to speed resolution up is to precompute

a rather crude over-approximation of the least Herbrand model of the input clause set. See

Section 4.2. This consists essentially in computing the sets of paths through atoms in the

least Herbrand model, truncated to some fixed length. The -path-refine option allows

one to specify what the cutoff length should be. By default, it is 3.

• -alternation, -no-alternation. By default (-alternation), h1 produces

an alternating tree automaton as model in the model file (see -model option). With the

-no-alternation option, h1 produces a non-deterministic tree automaton. This is in

general bigger than the corresponding alternating tree automaton, so that h1 may take more

time saturating clauses with the -alternation option. See Section 3.3.4.

• -deep-abbrv, -no-deep-abbrv. By default (-deep-abbrv), h1 uses a rule called

abbreviation of deep terms, which accelerates resolution, sometimes spectacularly. This rule

has the following effect. Given some clause H ⇐ P1(t1), . . . , Pn(tn) such that, say, ti
is deep, i.e., ti is neither a variable nor a function applied to variables. Then list the free

variables of ti, say X1, . . . , Xk, create a fresh predicate symbol Q, and replace the above

clause by

H ⇐ P1(t1), . . . , Pi−1(ti−1), Q(X1, . . . , Xk), Pi+1(ti+1), . . . , Pn(tn)

48

Q(X1, . . . , Xk) ⇐ Pi(ti)

In fact, Q needs not be fresh: if we apply the same rule on the same Pi and the same ti, we

generate the same Q. Using -no-deep-abbrv disables this rule. The only use we know

of disabling it is measuring how much proof search is sped up by the deep abbreviation rule.

• -sort-simplify, -no-sort-simplify. By default (-sort-simplify), h1 uses

a rule called sort simplification, which originates from the SPASS prover. This is moderately

useful in general, but does not seem to be really costly. The idea is as follows. Assume

the current set of clauses is S. Amongst these, let Sa be the set of alternating automata

clauses. These can be seen as sort declarations. E.g., the alternating automaton clause

P (f(X1, X2, X3)) ⇐ P1(X1), P2(X1), P3(X2) can be read as a rule stating that, if X1 has

sort P1 and also sort P2, if X2 has sort P3, and even if X3 has no sort, then f(X1, X2, X3)
has sort P . Given any clause H ⇐ P1(t1), . . . , Pn(tn), extract a sort environment ρ: for each

i such that ti is a variable X , ρ states that X has sort Pi. Then, for any j such that tj is not

a variable, if we can deduce that tj has sort Pj using the sort environment ρ and the current

sort declarations, then remove Pj(tj) from the clause. In principle, this is just a form of

resolution, coupled with backward subsumption of the parent clause. However, this variant

takes polynomial time, while simulating this by ordinary resolution can take exponential

time in the worst case.

• -monadic-proxy, -standard-approx. By default (-standard-approx), the

approximation h1 uses (see Section 3.4) is a slight refinement of that of Goubault-Larrecq

[2005]. This keeps more information, i.e., it is more precise in general, than the probably

more intuitive approximation of Frühwirth et al. [1991], which tries to capture the so-called

types of variables in each input clause. The -monadic-proxy option forces h1 to use the

latter, less precise approximation. The idea is that, by using a less precise approximation,

h1 could run faster. Experience until now has shown, on the contrary, that the less precise

approximation is also slower: h1 generates many spurious clauses that just could not be

generated with the more precise approximation.

In other words, -monadic-proxy is a false good idea. This option is therefore obsoles-

cent.

• -body-chop 〈n〉. Yet another false good idea. Forces h1 to keep only at most n atoms of

depth at least 1 in bodies of clauses generated by resolution. In other words, if h1 ever tries

to generate a clause with m > n atoms of depth at least 1, i.e., of the form P (f(t1, . . . , tk)),
it will savagely remove m − n of them. Resolution then becomes unsound, but will remain

complete. That is, if h1 concludes that the input clause set is satisfiable, it will still be right

in saying so. It seems that this in fact does not speed things up at all. This option is therefore

obsolescent.

49

4.2 Theoretical Background

The essentials of the algorithmic underpinnings of h1 are described, rather tersely, in Goubault-

Larrecq [2005]: h1 implements a form of ordered resolution with selection

4.3 Principle of Operation

5 Explaining and Checking Proofs: h1trace, h1logstrip

6 Model-Checking Clause Sets and Explaining the Absence of

Proofs with h1mc

6.1 Theoretical Background

7 Determinizing Tree Automata with pldet

8 Converting XML Deterministic Tree Automata to Prolog No-

tation with auto2pl

9 Cleaning and Extracting Automata with plpurge

10 Converting Tree Automata and Prolog Programs to TPTP

Files

11 Applying Morphisms to H1 Clause Sets with tptpmorph

12 Solving Presburger Arithmetic Formulas with linauto

13 Displaying Automata with pl2gastex

Sometimes, pl2gastex gives pretty good results.

list even

even

odd
s

cons

o

s

nil

1
2

50

On some more complex examples, pl2gastex gives pretty awful results.

au

knows

v

ad

r f

ag

s

e

av

t



a

m

w

x

ap

ai

agent

aa

ak

ah

alice key

q

d

ao

ar

z



n

as



at

am

u

b

p



an

aj

ac

af
k
i

o

ab ae



l j


g

h

yal

bob key

∗

s

nonceb

intruder

alice

key

alice

nonceb

intruder

key

bob
server

key

crypt
crypt

nil

consnil

nonceb

key

cons

intruder

pub

key

nonceb

cons

nil

alice

cons

bob

server

key

server

server

crypt

s

cons

s

key

bob

intruder

cons

bob
alice

nil

cons

key

old session

key
key old sessionconscurrent sessioncons

cons

key
current session

cons

prv

cons

old session

conskey

current session

cons

cons

s

crypt

old session

crypt

alice

noncea

cons

noncea

current session

cons

cons

old session

cons

sym

conscons

key

noncea

intruder

key

nil
cons

cons

nonceb

bob

crypt

cons

nonceb

crypt

cons

s

crypt

cons

crypt

key
key

crypt
s

s

alice

s

bob

cons

scrypt

key

server

cons

noncea

key

s

crypt

cons

crypt

crypt

intruder

nil

crypt
crypt

intruder

key

noncea

nonceb

crypt

key

s

sym

server

crypt
noncebcons

crypt
crypt

crypt

nonceb

s
crypt

nonceb

old session

cons s

crypt

crypt
crypt

key

crypt

key

s

crypt

crypt

cons

s
crypt

crypt1
2

123

1
2

123

12

1
2

12
12

1
2

12
3

123

1
2

12

1
2

123

1
2

1
212

12

1
2

1
2

1
2

1
2

12

1
2

1
2

1
2

123

12
3

1
2

12
3

1
2

12
3

1
2

12

1
2

1
2

1
2

1
2

1
2

12

123

1
2

1
2

1
2

1
2

1231
2

1
2

1
2

12
3

1
2

1
2

1
2

1
2

1
2

123

1
21

2

123

1
2

123

1
2

1
2

1
2

12 123

1
2

1
2

1
2

12
3

12

1
2

1
2

1
2

1
2

123

1
2

1
2

1
2

1
2

123

1
2

123

1
2

12

12 123

1
2

1
2

123
1

2

1
2

1
2

1
2

1
2

1
2

12

12

123

12

1
2

1
2

1
2

12

1
2

1
2

1
2

123

1
2

1
2

12

12

12
3

1
2

1
2

1
2

1
2

1
2 1

2

123

1
2

1
2

1
2

1
2

1
2

1
2

1
2

51

14 Log Files and h1getlog

15 Bugs

There is no DTD for deterministic tree automata in XML format.

Yes, I know. Sorry. I don’t know how to write DTDs. If anybody wants to volunteer, the format

should be clear from examples produced by h1. Anyone?

Doing h1 -no-resolve nspriv.p; zcat nspriv.log.gz fails.

Typically, zcat complains of nspriv.log.gz: unexpected end of file. This is

because h1 spawns a gzip -c >nspriv.log.gz subprocess to compress the log file as it

builds it. The gzip process can only terminate once h1 has finished working, but then needs

some more time to complete compression. Meanwhile, zcat starts decompresssing the file, and

fails. I currently know of no way to make h1 close the stream to its subprocess then wait until its

subprocess has completed.

If you want to use the log file produced by h1 in a script file, better use the -log-out option,

and read it from stdout. That is, use h1 -no-resolve -log-out nspriv.p instead of

h1 -no-resolve nspriv.p; zcat nspriv.log.gz.

Clause names are lost in converting clauses to Prolog format.

Yes, this is unfortunate. A few cases have been corrected, by using special comments. But more

has to be done.

References

B. Barras, S. Boutin, C. Cornes, J. Courant, J.-C. Filliâtre, E. Giménez, H. Herbelin, G. Huet,

C. Muñoz, C. Murthy, C. Parent, C. Paulin-Mohring, A. Saibi, and B. Werner. The Coq proof

assistant reference manual: Version 7.4. Rapport technique, INRIA, France, 1999–2003. http:

//coq.inria.fr/doc/main.html.

B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In 14th IEEE

Computer Security Foundations Workshop (CSFW-14), pages 82–96. IEEE Computer Society

Press, 2001.

A. Boudet and H. Comon. Diophantine equations, Presburger arithmetic and finite automata. In

H. Kirchner, editor, Colloquium on Trees in Algebra and Programming (CAAP’96), pages 30–

43. Springer Verlag LNCS 1059, 1996.

52

P. Devienne, P. Lebègue, A. Parrain, J.-C. Routier, and J. Würtz. Smallest Horn clause pro-

grams. Journal of Logic Programming, 27(3):227–267, 1996. URL citeseer.nj.nec.

com/devienne94smallest.html.

T. Frühwirth, E. Shapiro, M. Y. Vardi, and E. Yardeni. Logic programs as types for logic programs.

In Proc. 6th Symp Logic in Computer Science, pages 300–309, 1991.

J. Goubault-Larrecq. Deciding H1 by resolution. Information Processing Letters, 95(3):401–

408, Aug. 2005. URL http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/

Goubault-h1.pdf.

J. Goubault-Larrecq. Une fois qu’on n’a pas trouvé de preuve, comment le faire compren-

dre à un assistant de preuve ? In Actes 15èmes journées francophones sur les langages

applicatifs (JFLA’04), Sainte-Marie-de-Ré, France, Jan. 2004, pages 1–20. INRIA, collec-

tion didactique, 2004. URL http://www.lsv.ens-cachan.fr/Publis/PAPERS/

JGL-JFLA2004.ps.

J. Goubault-Larrecq and F. Parrennes. Cryptographic protocol analysis on real C code. In

R. Cousot, editor, Proceedings of the 6th International Conference on Verification, Model

Checking and Abstract Interpretation (VMCAI’05), volume 3385 of Lecture Notes in Computer

Science, Paris, France, Jan. 2005. Springer. URL http://www.lsv.ens-cachan.fr/

Publis/PAPERS/PDF/GouPar-VMCAI2005.pdf. To appear.

F. Nielson, H. R. Nielson, and H. Seidl. Normalizable Horn clauses, strongly recognizable relations

and Spi. In 9th Static Analysis Symposium (SAS). Springer Verlag LNCS 2477, 2002.

F. J. Pelletier. Seventy-five problems for testing automatic theorem provers. Journal of Automated

Reasoning, 2:191–216, 1986.

P. Selinger. Models for an adversary-centric protocol logic. Electronic Notes in Theoretical Com-

puter Science, 55(1):73–87, 2001. Proceedings of the 1st Workshop on Logical Aspects of

Cryptographic Protocol Verification (LACPV’01), J. Goubault-Larrecq, ed.

C. B. Suttner and G. Sutcliffe. The TPTP problem library v2.5.0, 2002. URL http://www.cs.

miami.edu/∼tptp/TPTP/TR/TPTPTR.shtml.

53

Concept Index

54

Command Index

-all .44, 46

all . 35

-alternation . 48

-no-alternation 21, 23, 33, 48

auto2pl .36

auto2pl . 28, 30, 36

-body-chop . 49

-check-h1 14, 43, 44, 46

-complete . 36

cpp . 13, 14

-deep-abbrv . 48

-no-deep-abbrv 48

-first . 46

grep . 13

-h . 45

h1.pgr . 47

h1mon .47

h1trace . 13, 19

-log-out 19, 45, 46, 46, 52

-log .46, 46

-no-log . 46

-model . 21, 47, 48

-no-model . 47

-monadic-proxy 49

-path-refine . 48

pl2gastex 16, 24, 28, 35, 36

pl2tptp . 23, 33

pldet . 26, 30, 36

plpurge . 24

-no-progress . 47

-progress . 47, 47

-no-resolve . 45, 48

-resolve . 48

sort . 36

-no-sort-simplify 49

-sort-simplify 49

-standard-approx49

⊤ . see all

-no-trim....15--17, 20, 21, 23,

29, 33, 36, 48, 48

-trim..........................16, 48

twopi...............................33

-v...................................45

watch...............................47

zcat...........................11, 47

55

