The h1 Tool Suite

Jean Goubault-Larrecq

LSV/UMR 8643, CNRS, ENS Cachan & INRIA Futurs projet SECSI
61 avenue du président-Wilson, F-94235 Cachan Cedex

goubault@lsv.ens—-cachan.fr

Phone: +33-147 40 75 68 Fax: +33-147 4075 21

December 6, 2005

Abstract

This describes the theoretical basis and practical usage of the h1 tool suite. This is a set
of tools that allow one to handle tree-regular languages in various formats, including deter-
ministic, non-deterministic, and alternating finite tree automata, but also various fairly general
clausal formats, the central one being the 7 class due to Nielson, Nielson, and Seidl. Alter-
natively, this can also be seen as a terminating automated theorem prover for the H; class; or
as an automated theorem prover for general clause sets, which however makes some controlled
mistakes in the spirit of abstract interpretation: this is notably useful in proofs of security pro-
tocols. Other aspects of the h1 tool suite include producing certain forms of automated proofs
by induction in the Coq proof assistant, deciding Presburger arithmetic, and displaying tree

automata.

Contents

1 Introduction

3 The h1 Tool

Tree Automata, Clauses

Suite through Examples

3.1 AToy, Introductory Example
3.2 The Dreadsbury Mansion Murder Mystery Example
3.3 Computing with Tree Automata,

3.3.1
332
3.3.3
334
335

Visualizing Tree Automata
Computing Intersections of Tree Automata
Checking Tree Automata for Emptiness, Testing Membership
Converting Alternating to Non-Deterministic Tree Automata
Purging Tree Automata

3.3.6 Determinizing Tree Automata 24

3.3.7 Computing Unions, Transitive Closures 29

3.3.8 Complete Deterministic Tree Automata, Taking Complements 35

3.4 The Needham-Schroeder Symmetric Key Protocol Example 39

4 The hl Prover 45
4.1 HowtoUsehl 45
4.2 Theoretical Background 50

43 Principleof Operation L e 50

5 Explaining and Checking Proofs: h1trace,hllogstrip 50
6 Model-Checking Clause Sets and Explaining the Absence of Proofs with h1mc 50
6.1 Theoretical Background L o 50

7 Determinizing Tree Automata with pldet 50

8 Converting XML Deterministic Tree Automata to Prolog Notation with auto2pl 50

9 Cleaning and Extracting Automata with plpurge 50
10 Converting Tree Automata and Prolog Programs to TPTP Files 50
11 Applying Morphisms to /; Clause Sets with tptpmorph 50
12 Solving Presburger Arithmetic Formulas with 1inauto 50
13 Displaying Automata with p12gastex 50
14 Log Files and hlgetlog 52
15 Bugs 52
Concept Index 54
Command Index 55

1 Introduction

The h1 tool suite is a toolchest for handling finite tree automata, in various forms. There are
basically three forms, from most constrained to least constrained:

1. as deterministic bottom-up tree automata;

2. as alternating tree automata;

3. as pure Prolog programs (sets of Horn clauses) in the H; class [Nielson et al., 2002].

The global architecture is given in the following figure. Some things are still missing from it,
and we will add them progressively later. The inner dashed box forms the core of the h1 tool suite.
The outer dashed box is the h1 tool suite itself.

Determmlstlc Tree Automata

| |
| |
| |
| |

I ! I
i ! ! !
! ! pldet auto2pl | !
| | | !

| |

| !

|

I
[Alternating Tree Automata [Pl

i < > pl2tptp i i
| Ik Pl

H1 Clause Sets

The main thing to understand is that the h1 tool suite includes tools to convert between all three
formats of tree automata, forming the core of the h1 tool suite. The tools h1, pldet, auto2pl,
pl2tptp are used to navigate between all three formats.

In the h1 tool suite, deterministic tree automata are represented in files in XML format.

Alternating tree automata are represented as Horn clauses, in Prolog notation; in particular,
you can run them in any Prolog implementation (whatever the use of this may be).

Finally, ‘H; clause sets are represented in TPTP format. TPTP (a Thousand Problems for
Theorem Provers) is a publicly available repository used to test automated theorem provers, due to
Suttner and Sutcliffe [2002]. The h1 tool suite handles TPTP input files that contain only clauses.
This allows you to use any automated, clausal theorem prover in place of the h1 prover if you so
wish. The h1 prover, one of the tools of the h1 tool suite, is an automated theorem prover. In
addition to searching for proofs, it is also able to produce counter-models and describe them as
alternating tree automata; h1 is described in Section 4.

Additional tools operate on such counter-models and proofs. They form the rest of the h1 tool
suite. As far as proofs are concerned, the h1 tool keeps a trace of all proof steps it did in a trace
log. This trace log is in a proprietary format that the hltrace and hllogstring tools can
work on. (Don’t assume anything on this format, it may change in the future.) This is pictured in
the following figure.

Determlnlstlc Tree Automata j

3 | pldet < > auto2pl | 3

Alternating Tree Automata

| | hllogstrip

H1 Clause Sets H1 trace logs |[.log]

I
I
hltrace i
I
I

E.
:r
=

[Coq proofs } [.v] [Human-readable proofs}
(of contradictions) (of contradictions)

The purpose of hltrace is to explain the proofs found by h1, both to humans, as a proof
in natural deduction in text format, and to machines, as a formal proof, in Coq notation. Coq is a
proof assistant developed in the LogiCal team at INRIA Futurs [Barras et al., 1999-2003]. Since
proof traces in . 1og format, as produced by h1 and read by hl1trace are huge, they are output
by h1l in gzip-compressed format. You may use the standard tool zcat in place of cat to read
such compressed files. More in Section 5.

The h1 tool is also able to work on general clause sets, not just in the H; format. In this case,
h1 will output a proof candidate, which however may fail to be a proof. In case this is a wrong
proof, hltrace will do its best to explain the wrong proof to humans. This can be used to design
a true proof.

In case a prover does not find a proof of some given query, you usually have no choice but
to trust it that there is indeed no proof. In case h1l does not find a proof of some given query, it
outputs a model. This model can be independently checked by the h1mc model-checking tool;
hlmc takes as input both a description of the model M, as an alternating tree automaton, and a
trace log obtained from some given clause set S, and checks whether the clauses in .S all hold in
the model M. This is a way of getting confident that there is indeed no proof of the initial query,
1.e., that your query is wrong. More useful is the fact that h1mc can give you an explanation, based
on M, why you query is wrong. As with hltrace, this explanation can be made for humans,
in text format, or in Coq format, to be checked independently by the Coq proof assistant. This is
important in security protocols for instance, where a proof of secrecy consists in showing that there
is no proof of the fact that the intruder can get hold of a given secret. This was shown by Selinger
[2001], see Goubault-Larrecq [2004]. Adding h1mc gives you the following picture of the h1 tool
suite.

[.xml] [Coq proofs } [v][Human-readable proofs}
Determlnlstlc Tree Automata j (of consistency) (of consistency)

3 1 pldet < > auto2pl

[Alternating Tree Automata

!
!
3 hl < > pl2tptp
‘
|

[H1 Clause Sets

hllogstrip

H1 trace logs |[.

I
I
hltrace i
I
I

[Coq proofs } [.v] [Human-readable proofs}
(of contradictions) (of contradictions)

The h1lmc tool is described in Section 6.

Additionally, various tools are provided. First, there are two conversion utilities, auto2pl,
which converts deterministic tree automata in XML format into Prolog format (Section 8); and
pl2tptp, which converts alternating tree automata in Prolog format into TPTP format (Sec-
tion 10). Since every deterministic tree automaton is a particular case of an alternating tree au-
tomaton, and every alternating tree automaton is a particular case of an H; clause set (see Sec-
tion 2), these two utilities entail no loss of information. In particular, to convert deterministic tree
automata into H; clause sets, just run auto2pl on the former, getting an intermediate file which
you then convert to H; clause sets using pl2tptp.

Then, there are miscellaneous utilities. The first, p1lpurge, extracts the part of a tree automa-
ton that is relevant to certain final states. In other words, it reads a tree automaton in Prolog format,
and eliminates all states and transitions that do not reach any final state. This cleaning step is use-
ful to help understand the structure of automata computed by h1, in particular as a preparation to
calling pl2gastex. The plpurge tool is described in Section 9. The second, tptpmorph,
applies certain kinds of morphisms to languages represented as 7 clause sets. This is described
in Section 11. The need for it should become apparent in conjunction with 1 inauto, which im-
plements Boudet and Comon [1996]’s algorithm for deciding quantifier-free Presburger formulae
by converting them to automata. While 1inauto only deals with quantifier-free formulae, ex-
istential quantification can be dealt with by using tptpmorph, and universal quantification can
be implemented using existential quantification and complementation. Complementation can be
implemented by determinization (using pldet) and using auto2pl with the —-negate option.
The 1inauto tool is described in Section 12.

Finally, p12gastex is a utility that converts alternating tree automata to a sequence of gasTEX
macros, which can then be used in conjunction with IIgX to display them on screen or include
them in documents. A former attempt of a tree automaton visualizer is provided with autodot.
The latter converts deterministic tree automata to files in dot format; dot can then be applied

to these files to display them graphically. This is only useful for relatively small automata, and is
far from perfect for tree automata that are not just word automata. Don’t expect too much from
pl2gastex and autodot on anything else but small automata. The autodot utility is obso-
lescent: basically, it never gives satisfying output. The pl2gastex utility is more satisfactory,
but not perfect. See Section 13.

At this point the picture of the h1 tool suite is complete—up to the fact that I did not talk about
some minor extensions yet, and that more extensions may be added in the future.

[Dottios o0 e |

autodot,
: [.xml] | Coq proofs [.v] Human-readable proofs
! Deterministic Tree Automata j ' |_(of consistency) (of consistency)

hllogstrip

tptpmorph

Coq proofs } [.v] [Human-readable proofs}
(of contradictions) (of contradictions)

2 Tree Automata, Clauses

Automata on finite words are a very classical data structure to represent sets of words—possibly
infinite sets. Not all sets of words can be described this way; such special sets are called reg-
ular languages. Regular languages are reasonably expressive, and all the basic operations are
computable on them: testing for membership, for vacuity, computing unions, intersections, com-
plements notably.

An example of automaton is shown below. This is just a directed graph. Vertices are tradition-
ally called states, and edges are called transitions. Two other components are needed. First, we
need an initial state: in the example, we assume this is ¢;,;;. Second, we need final states. The
convention is that final states are circled; here, the only final state is q;,;:-

Let us play a game. You start at the initial state ¢;,;;, then you must follow some transitions
(whichever you wish, you may even repeat the same transition as long as you wish), until you reach
a final state. While traveling around, collect the letters that label the transitions: this gives you a
sequence of letters, i.e., a word. (One exception, though: the e symbols means “no letter”, and you
should just go through the corresponding transition without collecting any letter at all.) The fact
that you reached the final state is how you decide that the automaton recognized the word.

For example, starting from g;,;;, you may go up the a transition, then come back along the
€ transition. Since you’ve reached a final state, namely g;,;; (which is both initial and final), the
word a is recognized by the automaton. Or you may have decided to start from ¢;,,;;, go up the
a transition, turn once inside the b loop, then come back through the e-transition: the word ab is
recognized. In fact, you might have looped as many times as you wished, so any word ab”, n € N,
is recognized, too.

There is no need to stop when you reach a final state. For example, we may travel along a,
then b twice, then along ¢, then again along a, then b three times, then €, showing that ab?ab? is
recognized. While we are at it, since ¢;,;; is already final, the empty word (with no letter) is also
recognized. We write € for the empty word, as is traditional.

To wrap up the example, the above automaton recognizes exactly the language (ab*)*, that is
the set of all words on the alphabet {a, b} which are concatenations of words ab™, n € N. It turns
out that this is just the set of words that, if non-empty, start with a.

Alternatively, we can describe this same set of words as a set of Horn clauses, i.e., as a very
simple Prolog program. To this end, create a fresh predicate symbol ¢ for each state q. The
meaning of ¢(t) is that the word ¢ should be recognized at g, i.e., there is a trip along the transitions
in the automaton, starting from the initial state, and ending exactly on the state ¢, along which the
letters collected form the word . We also encode words as terms: € will be a constant denoting
the empty word, and we add each letter ¢ at the end of word ¢ by writing the term ¢(¢); this means
in particular that each letter is now viewed as a unary function symbol. The automaton above then
gets described as a Prolog program with one clause for each transition, plus one to say that the
empty word is recognized at the initial state:

qz’m‘t(ﬁ) 1 (G(X))i—%‘m't (X)
q1(b(X)):=q:1(X) Ginit(X)i=q1 (X)

You may ask Prolog whether the word ab? is recognized at ¢;,,;; by submitting the query

?qinit(b(b(a(e))))

and it will answer “yes”. Prolog will also answer the query

?qinit (b(b(a(b(€)))))

by “no”, meaning that bab? is not in the language.

Prolog, as a notation, is fine, as we shall see. Prolog, as a tool to check properties, is ill-suited:
on the more complex clauses we shall encounter below, Prolog would loop infinitely in general;
h1 on the other hand is meant to return, always, on its input clauses.

7

The notion of automata, on words, can be generalized to automata on first-order terms, a.k.a.,
tree automata. These are very similar structures, except they recognize sets of ground terms. The
automaton of Figure 1, to take an example, recognizes the set of all lists of even natural numbers at
state qiist—even- 10 be precise, it recognizes the set of all terms cons(ty, cons(ty, ..., cons(t,,nil)
...)), where each t; is of the form S™i(0), n; even. Note that the transition O (up left) starts from
no state, while the transition cons(_, _) (middle) starts from a pair of states, geyen and Glist—even-

Figure 1: Recognizing the lists of even natural numbers

0 Qist—even
\ cons (_, [)_/

To define the semantics of tree automata, the simplest is just to describe their translation to
Horn clauses. Each transition again gives rise to exactly one clause:

Qeven(o) Qeven(S<X)):_QOdd (X> QOdd<S(X)):_Qeven<X)
Qlist—even (cons (X7 Y)) ‘—(Geven <X> y Qlist—even (Y) Qlist—even (ni 1)

There is no need to define initial states in tree automata; e.g., 0 is recognized at @eyen, Using the
transition geyen (0), of arity 0.
In general, a tree automaton is any finite set S of clauses of the form

P(f(X1,.... X)) == PuX1),...,P.(X,) (1)

where X, ..., X, are pairwise distinct variables. When n = 0, we retrieve initial clauses such
as Qeven(0). When n is restricted to be at most 1, tree automata are just ordinary, word automata
(without e-transitions).

A set of ground terms is called regular if and only if it is exactly the set of terms ¢ such that ¢ is
recognized at P in some tree automaton S (i.e., such that P(¢) follows logically from the clauses
in S).

The format of clauses (1) is very particular. First, clauses (1) are definite clauses. Formally,
definite clause are implications of the form

P(t):=Py(t1),. .., Pa(tn))

where P(t), Pi(t1), ..., P,(t,) is an unordered set of atoms. (An atom is just a predicate P applied
to some term t; read “P holds of ¢”, or “¢ is recognized at P”.) If n = 0, this is called a fact, and
is often written just P(t).

Any set S of definite clauses has a least Herbrand model. A Herbrand model is just a col-
lection of ground atoms P(t). The least Herbrand model H(S) of S can be described as follows.
First, it contains all ground instances of the facts in S. Then, while there is a ground instance
P(to):=Py(t10), ..., P,(t,o) of aclause P(t):—Py(t1), ..., Pu(t,) in S,and Py (t10), ..., P, (t,0)
are in H(.S), then add P(to) to H(.S). This procedure does not terminate in general, but enumer-
ates H(.S).

In particular, any tree automaton has a least Herbrand model. It turns out that the ground atom
P(t) is in the least Herbrand model H(S) if and only if ¢ is recognized at P in the tree automaton
S. Therefore, we may generalize the notion of a term ¢ being recognized at some predicate P in
any set of definite clauses, by requiring that P(¢) is in H(.S).

A goal clause is an implication of the form

J_Z—Pl(tl),...,Pn(tn) (3)

where L is meant to denote false. A Horn clause is a definite or a goal clause. We shall also write
P(t) instead of P(t):— whenn = 0, and L instead of L:—.

Not any set .S of Horn clauses has a model. If it has one, that is, if S'is satisfiable, then it again
has a least Herbrand model H(.S). Again, we say that ¢ is recognized at P in S if and only if P(t)
is in H(95).

Then it can be shown that the ground term ¢ is recognized at P in the set S of definite clauses
if and only if .S plus the goal clause L:—P(t) is unsatisfiable (i.e., not satisfiable); that P is empty
in S, i.e., that P recognizes no term in S, if and only if S plus the clause L:—P(X) is unsatisfiable,
where X is a variable. And there are automated means, called automated theorem provers, to check
the unsatisfiability of clause sets. Unfortunately, they do not always terminate. The h1 tool always
terminates, but only deals with so-called H; clauses [Nielson et al., 2002].

We have said above that tree automata clauses (1) were very particular, because they were
definite clauses, and in particular they always have a least Herbrand model. They are also particular
in that the head (the atom at the left of :-) is restricted to be of the form P(t) with ¢ itself of the
form f(X1,...,X,), where X1, ..., X,, must be distinct variables; and in that there is no function
symbol at all in the body (the set of atoms at the right of :—).

If you do not restrict the form of Horn clauses (2) and (3), then any prover that operates on
them is forced to relinquish either termination, soundness, or completeness. This is because the
satisfiability of Horn clauses is undecidable [Devienne et al., 1996]. Most automated theorem
provers in existence are sound, i.e., if they deduce a contradiction from S then S' is unsatisfiable,
and complete, i.e., if S is unsatisfiable then they can derive a contradiction from S. Therefore they
have to fail to terminate sometimes. On the other hand, h1 is complete and terminates, but is only
sound on the subset of so-called H;-clauses.

The H;-clauses are exactly the Horn clauses, except that definite clauses (1) are restricted to
have a head of the form P(X), where X is a variable, or P(f(X1,...,X,)), where X1, ..., X,
are distinct variables. While this is not the definition Nielson et al. [2002], this is equivalent to it,
see Goubault-Larrecq [2005].

On general Horn clauses, h1 applies an abstraction function which makes it still a terminating
and complete prover, but one which is unsound in general. So you might want to see hl as a

counter-model finder rather than a prover. In some cases, though, h1 produces unsound ‘“proofs”
that may be indicative of actual proofs.

Remember that h1 is sound, complete, and terminating on H; clauses. Note that automata
clauses are a special case of H; clauses. In fact, when h1 terminates, starting from a set .S of H;
clauses, there are two possible outcomes:

e a contradiction has been derived; then .S is unsatisfiable.
e no contradiction was derived; then S is satisfiable.

In the latter case, h1 also produces a model of S, in the form of an alternating tree automaton, i.e.,
a set of clauses of the form

P(f(Xy,..., X)) = Bi(X1),...,B.(X,) “)

where B;(X;) is a block, i.e., a list of atoms P;;(X;), ..., Py, (X;). Note that tree automata clauses
are a special case of alternating tree automata clauses (take n; = 1 for each), while alternating tree
automata clauses are special H; clauses (with no function symbol in the body, the head is of the
form P(f(Xy,...,X,))and not P(X), and every variable free in the body is among X, ..., X},).

From a theoretician’s perspective, this means that H; clauses are not more expressive than
alternating tree automata clauses. And it is well-known that alternating tree automata are not more
expressive than plain tree automata: the languages defined by satisfiable H; clause sets are just,
again, the regular tree languages. However, H; offers considerably more freedom in describing
such languages than just using tree automata, because of the general form of H; clauses.

The paper that introduced H; is Nielson et al. [2002]. For some background theory on the way
h1 works, deciding H; and converting H; clause sets to tree automata by resolution techniques,
and abstracting general clause sets to H; clause sets, see Goubault-Larrecq [2005].

3 The hl Tool Suite through Examples

The h1 prover is the core of the h1 tool suite, and we shall explain the tool suite by running h1
on several examples.

The h1 prover is invoked by calling h1 with a sequence of flags, ended by a file name. The file
name should contain a set of clauses in TPTP clause format. Such files conventionally end with
the . p extension—but there is no obligation. Also, giving a single dash — as file name forces h1
to read the input clause set from standard input.

3.1 A Toy, Introductory Example

Examples are given in the distribution package. Here is a very small one (file test1.p):

input_clause (clausel , conjecture ,
[++p(a)]).

10

input_clause (clause2, conjecture ,
[——p(X), ++p(f(X))]).
input_clause (clause3, conjecture ,

[——p(f(£(X)))]).

This contains three clauses. Each clause is introduced by the keyword input_clause. The first
argument, clausel, clause2, or clause3 above, is the name of the clause. Names are used in sundry
ways, mainly for explanation and documentation purposes. It is good practice to give each clause
a different name, but the tools of the h1 tool suite should work even when several clauses have the
same name.

The second argument can be the keyword conjecture or axiom; h1l just does not care: write
what you prefer here.

Finally, the third argument, enclosed between square brackets, is the clause itself. It is a list
of literals, separated by commas. Each literal starts with a sign, ++ for positive literals, —— for
negative literals. The clauses above are, in a more traditional notation:

p(a)
—p(X) V p(f(X))
—p(f(f(X)))

This example is in fact a set of Horn clauses, which would be written in Prolog notation:

p(a)
p(f(X)) = p(X)
L= p(f(f(X)))

Launch h1 on this file, test1.p, by typing
hl testl.p

You will get the answer
x+xx Derived: clause3 #xx

which means that a contradiction was found, using the clause named clause3 in the last step. In
other words, in the present example, it says that a fact of the form p(f(f(¢))), matching the body
of clause3, can be deduced from the definite clauses (here, clausel and clause?2)

So far, so good, this is typically the least you could expect from a theorem prover.

However, h1 also produced two more files, testl.log.gz and testl.model.pl. If
you’re curious, look at testl.log.gz, by running

zcat testl.log.gz

Oh well, it is long, but it is not meant to be read by a human reader! If you’re perspicuous
enough, you’ll find some meaning buried inside this. However, this is really meant as a log file,
from which h1ltrace can extract a (mostly) readable proof (Section 5), and which h1mc can use
to get some essential information it needs (Section 6).

11

3.2 The Dreadsbury Mansion Murder Mystery Example

Here is a more complicated example, due to Len Schubert. This is problem 55 of Pelletier [1986].

Someone in Dreadsbury Mansion killed Aunt Agatha. Agatha, the butler, and Charles
live in Dreadsbury Mansion, and are the only ones to live there. A killer always hates,
and is no richer than his victim. Charles hates noone that Agatha hates. Agatha hates
everybody except the butler. The butler hates everyone not richer than Aunt Agatha.
The butler hates everyone whom Agatha hates. Noone hates everyone. Who killed
Agatha?

The problem is formalized in file butler—-puzzle.p. The clauses are as follows. First,
“Agatha, the butler, and Charles live in Dreadsbury Mansion, and are the only ones to live there.”:

agatha in_mansion in mansion(agatha)
charles_in_mansion in mansion(charles)
butler_in_mansion in mansion(butler)

Then, “A killer always hates, and is no richer than his victim.”, that is, if X killed Y, then it must
be the case that X hates Y, and on the other hand that X is not richer than Y:

killer_hates_victim hates(X,Y) :— killed(X,Y)
killer_no _richer not richer(X,Y) :— killed(X,Y)

Next, “Charles hates noone that Agatha hates.” In other words, it is impossible that Charles and
Agatha hate the same person X:

charles_hates_noone_agatha_hates 1 :— hates(charles, X), hates(agatha, X)
To write “Agatha hates everybody except the butler.”, we just say that Agatha hates herself and

Charles:
Agatha hates_herself hates(agatha, agatha)

Agatha hates_charles hates(agatha, charles)

Now, “The butler hates everyone not richer than Aunt Agatha.”:
butler_hates_everyone_not_richer_than_agatha hates(butler, X) :— not richer(X, agatha)
Then, “The butler hates everyone whom Agatha hates.”:
butler_hates_everybody_agatha hates hates(butler, X) :— hates(agatha,X)

Next, “Noone hates everyone.”, which we formulate as “noone hates Agatha, Charles, and the
butler”:

noone_hates_everyone L :— hates(X,agatha), hates(X, butler), hates(X, charles)

12

Finally, we explore who may have killed Aunt Agatha. To do this, we shall enumerate the potential
murderers, and use the C preprocessor cpp to replace the macro identifier WHO in the following
clause by each resident of Dreadsbury Mansion:

WHO killed agatha killed(WHO, agatha)

Let us test whether the butler killed Agatha. Run butler-puzzle.p through cpp with WHO
equal to butler, and feed the output to h1; hl reads from standard input when given - as file
name:

cpp —-P -DWHO=butler butler-puzzle.p | hl -

You get the output:
x*xx Derived: noone_hates_everyone sxxx

In other words, the butler cannot have killed Agatha (contrarily to proper conventions in popular
whodunnit mysteries), because this would contradict the fact that noone hates everyone.

More information can be gotten from the trace file hlout.log.gz. (Running hl on file
(file).p produces a trace file (file).log.gz. If no input file is given, as here, the trace file is called
hlout.log.gz.) We shall explain how to use this trace file in Section 5. For now, just run

zcat hlout.log.gz | hltrace - >dummy

and open the file dummy. You’ll see that the first lines say:

#false(noone_hates_everyone) [noone_hates_everyone].
using assumption #false(noone_hates_everyone) :—
hates (X1, charles), hates (X1, butler), hates(Xl,agatha).
{XI=butler}

In other words, assuming the butler killed Agatha would involve that the butler hates everyone,
which is impossible. The rest of file dummy is a tree-like proof that indeed the butler hates every-
one, i.e., hates Agatha, Charles, and himself in this case.

So did Charles kill Agatha instead?

cpp —-P -DWHO=charles butler-puzzle.p | hl -

No, this would contradict the fact that Charles hates noone that Agatha hates. In this case, Charles
hates Agatha, and Agatha hates herself, whence the contradiction.

x*xx Derived: charles_hates_noone_agatha_hates sxx*x

There is only one possibility remaining: that Agatha killed herself.
cpp —-P -DWHO=agatha butler-puzzle.p | hl -

and indeed, h1 does not complain: assuming Agatha killed herself leads to no contradiction. The
file hlout .model . pl describes the least model of this clause set.

This could have been found automatically by a simple sh script, listing all possible murderers
of Aunt Agatha.

13

for who in butler charles agatha
do
if (cpp -P -DWHO=S$who butler-puzzle.p | hl - 2>&1\
| grep —g Derived)
then echo S$who did not kill agatha.
else echo $who may have killed agatha.
fi
done

Since somebody killed Agatha, it must be herself.

butler did not kill agatha.
charles did not kill agatha.
agatha may have killed agatha.

The point of this example is that, first, the clauses are clearly not (alternating tree) automata
clauses; and second, that they are H; clauses. Check this by running h1 with the —-check-h1l 2
option:

cpp -P -DWHO=agatha butler-puzzle.p | hl -check-hl 2 -

This makes h1 run as above, except it would have failed if any of the input clauses where not in
‘H;. By default, h1 runs as hl —-check-h1l 0, which does not check anything, but computes an
approximation, see Section 3.4.

That the clauses of but ler—puzzle.p are in the H; class may seem surprising. After all,
'H; clauses are required to use only unary predicates, i.e., all predicate letters P can only take one
argument. This is certainly not the case of the hates, killed, and not _richer predicates above,
which are all binary!

The trick here is that, when h1 sees an n-ary predicate P(t1,...,t,) in its input, it converts it
first to P(fp(ty,...,t,)) for some fresh n-ary function symbol fp. (Different occurrences of P
correspond to the same symbol fp.) This makes P unary, and does not change the semantics of
clauses in any essential way. Under the hood, h1 typically builds fp by prepending a sharp sign
in front of the name of P, guaranteeing that no clash occurs with any function symbol you may
have used. Don’t count on it, though, as this may change in future releases. Also, the h1 tools try
to hide this kludge as much as they can, and will happily parse and print n-ary predicate symbols.

We shall return to this example in Section 3.3.8.

3.3 Computing with Tree Automata

Assume that we wish to compute the intersection of the languages £, of all lists of even natural
numbers, and £, of all trees with binary nodes labeled with cons, and whose leaves are either nil
or natural numbers of the form 3n + 2, n € N.

We have already seen what an automaton recognizing £; looked like, see Figure 1. In TPTP
format, this is file 1isteven.p:

14

input_clause(o_even, axiom,
[++even(0)]).

input_clause (suc_even_odd , axiom,
[——even(X), ++odd(s(X))]).

input_clause (suc_odd_even , axiom,
[-—odd(X), ++even(s(X))]).

input_clause(nil_even_list , axiom,
[++1list_even (nil)]).

input_clause(cons_even_list , axiom,
[-—even(X), —list_even(Y),
++list_even (cons(X,Y))]).

The language L, is described by the predicate (final state) tree 3n_plus 2. Look at file
tree3plus2.p:

input_clause(o_zero_mod_3, axiom,
[++zero_mod_3(0)]).

input_clause (suc_zero_one_mod_3 , axiom,
[-—zero_mod_3(X), ++one_mod_3(s(X))]).

input_clause (suc_one_two_mod_3, axiom,
[-—one_mod_3(X), ++two_mod_3(s(X))]).

input_clause (suc_two_zero_mod_3 , axiom,
[-—two_mod_3(X), ++zero_mod_3(s(X))]).

input_clause(nil_3n_plus_2 _tree , axiom,
[++tree_3n_plus_2(nil)]).

input_clause(two_mod_3_3n_plus_2_tree , axiom,
[-—two_mod_3(X), ++tree_3n_plus_2(X)]).

input_clause(cons_3n_plus_2 _tree , axiom,
[-——tree_3n_plus_2(X), —tree_3n_plus_2(Y),
++tree _3n_plus_2(cons(X,Y))]).

By the way, we can convert any automaton in TPTP format into Prolog format by running h1
with the -no-trim option:

15

hl —-no-trim tree3plus2.p

Normally, h1’s default is to use the —t r im option, which trims away all clauses that are obviously
not needed for deriving a contradiction. (See Section 4.1 for more information on —trim and
—no—trim.) In this case, trimming would just eliminate all clauses! Since we are not looking for
a contradiction, we just run h1 without trimming, and get a model in tree3plus2.model.pl:

one_mod_3(s(X)) :— zero_mod_3(X).
tree_3n_plus_2(nil).
tree_3n_plus_2(s(X)) :— one_mod_3(X).
tree_3n_plus_2(cons(X1,X2)) :— tree_3n_plus_2(X1), tree_3n_plus_2
(X2) .

two_mod_3(s (X)) :— one_mod_3(X).
zero_mod_3(0) .

s(X)) :— two_mod_3(X).

In other words, h1 can be used to convert any set of H; clauses into an equivalent alternating
tree automaton by running it with the —no—trim option and looking into the generated model
file, ending in .model.pl.

zero_mod_3(

3.3.1 Visualizing Tree Automata

Before we compute the intersection of £, and Lo, let us visualize the automaton defining £,. This
is accomplished using pl2gastex, see Figure 2. For more information on pl2gastex, and
how to read such pictures precisely, see Section 13.

Figure 2: Trees with leaves equal to nil orto 3n + 2, n € N

3.3.2 Computing Intersections of Tree Automata

Now compute the intersection. Build a file, say 1ist even_inter tree3plus?2.p, by con-
catenating the clauses from listeven.p and from tree3plus2.p, and add the so-called

16

intersection clause
q(X) = 1list even(X),tree 3n plus 2(X)

meaning that ¢ holds of all terms that are both lists of even numbers, and trees as recognized at
tree_3n_plus_2 . Just run the following commands:

OUT=1list_even_inter_tree3plus2

cat listeven.p tree3plus2.p >S$SOUT.p

echo "input_clause ($OUT, axiom, \
[++g(X), —--list_even(X),\
——tree_3n_plus_2(X)])" >>$0UT.p

Because of the intersection clause above, the resulting clause set is not an alternating tree automa-
ton as we have defined it. However, run hl -no-trimon it:

hl —-no-trim list_even_inter_tree3plus2.p

and look at the generated alternating tree automaton. This is obtained, as usual, in a file named
list_even_inter_tree3plus2.model.pl:

q(nil).

qg(cons(X1,X2)) :— tree_3n_plus_2(X1), even(X1), tree_3n_plus_2 (X2
), list_.even (X2).

two_mod_3(s (X)) :— one_mod_3(X).

odd(s (X)) :— even(X).

zero_mod_3(0) .

zero.mod_3(s(X)) :— two_mod_3(X).

one_.mod_3(s(X)) :— zero_mod_3(X).

tree_3n_plus_2(nil)

tree_3n_plus_2(s(X)) :— one_mod_3(X).

tree_3n_plus_2(cons(X1,X2)) :— tree_3n_plus_2(X1), tree_3n_plus_2
(X2).

list_even (nil).

list_even (cons(X1,X2)) :— even(X1), list_even (X2).

even (o).

even(s(X)) :— odd(X).

Graphically, this is the alternating tree automaton of Figure 3.

Note the presence of new nodes labeled A in Figure 3. They represent intersections of lan-
guages. Indeed, there are two ways one can construct an element of q. First, there is nil. Second,
there are terms of the form cons applied to two arguments X; and X5, where X, is recognized both
at tree_3n_plus_2 and at even, and X is recognized both at tree_3n_plus_2 and at list_even .

The alternating tree automaton above recognizes (at ¢) the terms in the intersection of £; and
L. One should observe that computing intersections of two languages by concatenating the clause
sets defining each and adding an intersection clause is rather cavalier. It is only correct here because

17

Figure 3: Trees with leaves equal to nil or to 3n + 2, which are lists of even natural numbers at the
same time

list_even

zero_mod_3

18

the two files 1isteven.p and tree3plus?2.p share no predicate symbol. In general, one
might allow shared predicate symbols, provided they have the same semantics in each file. For
example, it is legal for the two files to both use the predicate even provided it denotes the set of
even natural numbers in both. Otherwise, strange things may happen (an over-approximation will
be computed).

3.3.3 Checking Tree Automata for Emptiness, Testing Membership

It may not be completely obvious whether such an alternating tree automaton is empty or not. (To
say the least. The problem is DEXPTIME-complete.) Let us see whether the intersection state
q is empty or not. In general, given a satisfiable set S of Horn clauses (e.g., definite clauses, in
particular alternating tree automata clauses), the language of terms recognized at state P in S is
empty if and only if S plus the clause L:—P(.X) is satisfiable. Running:

(cat list_even_inter_tree3plus2.p;\
echo "input_clause(g_is_not_empty, conjecture, [-—-g(X)]).")\
| hl -log-out - >list_even_inter_tree3plus2.log

yields
| #%% Derived: q_is_not_empty sxx

meaning that there are indeed terms recognized at state ¢ in the intersection.

We have kept a trace of the derivation in the log file 1ist_even_inter_tree3plus2.
log. We can then use hltrace to get a mostly readable proof of the fact that ¢ is non-empty; in
particular, to have an example of a term recognized at g:

$—x—mode:outline;outline-regexp:"[0-9a-z.]+"—%—
#false(g_is_not_empty).
using assumption #false(g_is_not_empty) :— g(X1l).
{X1=nil}
1. g(nil).
using assumption g(X1) :— tree_3n_plus_2(X1l), list_even(X1l).
{X1=nil}

1.1. tree_3n_plus_2(nil) by assumption.
1.2. list_even(nil) by assumption.

In fact, the empty list nil is recognized at ¢ ({X1=nil} atline 4 above). How to read such proofs
will be explained in Section 5.

Let us test membership of some ground term. Is the list cons(s(s(0)), nil) consisting of just the
natural number 2 in the intersection? In general, given S as above, a ground term ¢ is recognized
at state P if and only if .S plus the clause L:—P(%) is satisfiable.

(cat list_even_inter_tree3plus2.p;\
echo "input_clause(g_rec_cons_2_nil, conjecture, \
[-—a(cons(s(s(0)),nil))]).")\
| hl -

yields
|#xx Derived: g_rec_cons_2_nil sxx

So cons(s(s(0)),nil) is in the intersection.
On the other hand, the list cons(s(s(s(s(0)))), nil) containing just the natural number 4 is not
in the intersection. Run

(cat list_even_inter_tree3plus2.p;\
echo "input_clause(g_rec_cons_4_nil, conjecture, \
[-—g(cons(s(s(s(s(o0)))),nil))]).")\
| hl -

and you’ll get

(no message at all). Indeed, cons(s(s(s(s(0)))),nil) is a list of even natural numbers, but not a
tree whose numeric leaves are of the form 3n + 2, n € N.

We can do more this way. Is there a term of the form cons(s(X), X), with the same X, in the
intersection? Run

(cat list_even_inter_tree3plus2.p;\
echo "input_clause(g_rec_cons_sX_X, conjecture, \
[-—g(cons(s(X),X))]1)") \
| hl -

and you’ll get

(no message at all). So there is none.
Is there a list whose first element is at least 3 in the intersection? Run

(cat list_even_inter_tree3plus2.p;\
echo "input_clause(g_rec_cons_sssX_Y, conjecture, \
[-—g(cons(s(s(s(X))),¥))])") \
| hl -

and you’ll get
‘*** Derived: q_-rec_cons_sssX_Y *xx

So there is one. We don’t know which. However, we may use hltrace as above to have an idea
(left as an exercise!).

Another possibility to have an idea of which lists whose first element is at least 3 in the inter-
section is to build the automaton recognizing all solutions, by running

(cat list_even_inter_tree3plus2.p;\
echo "input_clause (what_g rec_cons_sssX_Y, conjecture, \
[++r (X,Y), -—g(cons(s(s(s(X))),Y))]1)") \
| hl —no-trim -
mv hlout.model.pl rinter.model.pl

20

The resulting automaton, in file rinter .model.pl,is:

%[def] __def 1 (Y,X) :— q(cons(s(s(s(X))),Y)).

q(nil).

q(cons(X1,X2)) :— even(X1), tree_3n_plus_2(X1), list_even (X2),
tree_3n_plus_2(X2).

r(X1,X2) :— two_mod_3(X1), odd(X1), list_even(X2), tree_3n_plus_2

(X2) .
__def_1(X1,X2) :— list_.even(X1), tree_3n_plus_2(X1), two_mod_3(X2
), odd(X2).
even (o) .
even(s(X)) :— odd(X).
list_even (nil
list_even (cons(X1,X2)) :— even(X1), list_even (X2).
(X

one_mod_3(s

) -

s (

)) :— zero_mod_3(X).
tree_3n_plus_2(s (

2(n

2 (

) :— one_mod_3(X).
tree_3n_plus_
tree_3n_plus._
(X2) .

two_mod_3(s (X)) :— one_mod_3(X).
odd(s (X)) :— even(X).
zero_mod_3(0) .

zero_mod_3(s(X)) :— two_mod_3(X).

And graphically, this is the automaton of Figure 4.

)
i) .
cons(X1,X2)) :— tree_3n_plus_2(X1), tree_3n_plus_2

3.3.4 Converting Alternating to Non-Deterministic Tree Automata

All right, this starts being a tad intricate. In general, alternating tree automata are not that easy to
read. We may eliminate intersection nodes A, and get a non-deterministic tree automaton instead
by using the -no-alternation option to hl. Either use

hl —-no-trim —-no-alternation

instead of h1 —no-trim (this will produce a non-deterministic, i.e., not an alternating tree au-
tomaton, in rinter .model.pl), or simply run

hl -no-trim -model
onrinter.model.pl to eliminate intersection nodes. Just as
hl —no-trim
can be used to conv ert an H; clause set into an equivalent alternating tree automaton,

hl —-no-trim —-no-alternation

21

Figure 4: Lists starting with a number at least 3 as recognized in state ¢ of Figure 3

22

converts an H; clause set, or an alternating tree automaton, into an equivalent non-deterministic
tree automaton. Run

pl2tptp rinter.model.pl >rinter_nd.p
hl —-no-trim -no-alternation rinter_nd.p

This yields the following automaton in file rinter nd.model.pl.

__inter_odd_and_two__mod__3(s(X)) :— __inter_even_and_one__mod__3
(X) .

__inter_odd_and_one__mod__3(s(X)) :—
__inter_even_and_zero_._mod__3 (X).

q(nil).

q(cons(X1,X2)) :— __inter_even_and_tree__3n__plus__2(X1),
__inter_list__even_and_tree__3n__plus__2 (X2).

__inter_even_and_one__mod__3(s(X)) :—
__inter_odd_and_zero__mod__3 (X).

r(X1,X2) :— __inter_.odd_and_two__mod__3(X1),
__inter_list__even_and_tree__3n__plus__2(X2).

__inter_even_and_tree__3n__plus__2(s(X)) :—
__inter_odd_and_one__mod__3 (X).

__inter_list__even_and_tree__3n__plus__2(nil).

__inter_list__even_and_tree__3n__plus__2(cons(X1,X2)) :—
__inter_even_and_tree__3n__plus__2(X1),
__inter_list__even_and_tree__3n__plus__2 (X2).

list_even (nil

) -
list_even (cons(X1,X2)) :— even(X1), list_even (X2).
tree_3n_plus_2(s ()) :— one_mod_3(X).
tree_3n_plus_2(nil).
tree_3n_plus_2(cons(X1,X2)) :— tree_3n_plus_2(X1), tree_3n_plus_2
(X2) .
__inter_even_and_two__mod__3(s(X)) :— __inter_.odd_and_one__mod__3
(X) .

__inter_odd_and_zero__mod__3 (s(X))
__inter_even_and_two__mod__3 (X).

two_mod_3(s(X)) :— one_mod_3(X).

one_mod_3(s(X)) :— zero_mod_3(X).

__def_1(X1,X2) :— __inter_list__even_and_tree__3n__plus__2(X1),
__inter_odd_and_two__mod__3(X2).

__inter_even_and_zero__mod__3(0).

__inter_even_and_zero__mod__3(s(X)) :—
__inter_odd_and_two__mod__3 (X).

zero_mod_3(0) .

zero.mod_3(s(X)) :— two_mod_3(X).

23

even (o).
even(s(X)) :— odd(X).
odd(s(X)) :— even(X).

Usingpl2gastexontheoutputrinter nd.model.pl, we arrive at the non-deterministic
tree automaton of Figure 5. This should be more readable. The final state is q. Note that the result
still contains two copies of the automata recognizing respectively all lists of even numbers, and all
trees with leaves of the form nil or 3n + 2, which are not needed any longer.

The automaton of Figure 5, i.e., in file rinter nd.model.pl, uses new states such as
__inter_even_and_one__mod__ 3 (which recognizes all terms which are both even num-
bers and numbers of the form 3n + 1). In general, these new states are named

__inter_ PP ... _P,

and are meant to recognize all terms that are recognized at P, and at P and ... and at P, at the
same time. They appearas P, N P, N ... N P, under pl2gastex.

3.3.5 Purging Tree Automata

Well, Figure 5 should be more readable... but there is some junk here. First, there are two
sub-automata, disconnected from the rest, defining the predicates zero_mod_3, one_mod_3,
two_mod_3, tree_3n_plus_2, and odd, even, 1ist_even. They do not contribute at
all to the definition of the language of r. Second, there are also spurious states such as g, or
___aux_1 (drawn as a small state (Dor (@). Use plpurge to purge the automaton of Figure 5
from all spurious states, by running

plpurge —-final r rinter_nd.model.pl >rinter_nd.purged.pl

Hence we see that the relation r is simply the relation relating all numbers that are both odd
and equal to 2 modulo 3 (state odd N two_mod _3) to all objects that are both lists of even numbers
and trees of with leaves equal to nil or 3n + 2 (state list_even N tree_3n_plus_2).

Looking a bit more in depth, the numbers that are both odd and equal to 2 modulo 3 are 5, 11,
17, ..., in other words the numbers that are equal to 5 modulo 6. And the objects that are both lists
of even numbers and trees of with leaves equal to nil or 3n + 2 are just lists of numbers equal to 2
modulo 6.

3.3.6 Determinizing Tree Automata

Looking at Figure 6, we realize that taking the successor, i.e., applying the s function to a term
recognized at odd N one_mod_3, yields a term that is recognized both at even M two mod_3 and at
evenNtree_3n_plus_2. This is a form of non-determinism: we may want to travel to either state,
not knowing which will eventually lead to acceptance.

To cater for this, we may determinize our tree automata. This produces an equivalent determin-
istic tree automaton, i.e., a set of Horn clauses of the form

P(f(X1,..., X)) == PuX1),...,P.(X,) (5)

24

Figure 5: Eliminating intersection nodes from Figure 4

zero_mod_3

i

1

S

(o)
even N treeﬁ:mpl@
S H \ /n—il
. _.cons
let_even N tree_3n_p1us_9
odd M one_mod_3

@ven N zero_modd N two.mod@ E

]
odd N zero_mod_3 [S—

25

Figure 6: Purging the automaton of Figure 5

]’o

/.éven N zero.mod@

Qist,fven N tree,B&lo,dPiQsPé _mod_3>
nil

guns |

venji tree_3n_plus
g s

A@. dd N one_mod_3

even N two_mod_3
odd N zero_mod_§

where X, ..., X,, are pairwise distinct variables, and where there is at most one such clause
for each (n + 1)-tuple (f, Py, ..., P,). The automaton of Figure 6 is not deterministic because it

contains the two clauses

__inter_even_and_tree__3n__plus__2(s(X)) :—
__inter_odd_and_one__mod__3 (X).
__inter_even_and_two__mod__3(s(X)) :— __inter_.odd_and_one__mod__3
(X) .
By definition, a deterministic tree automaton can also be seen as a partial function /; from
tuples of predicates to predicates, one for each f. Le., I¢(P, ..., P,) = P if there is a, necessarily

unique, clause of the form (5).
To determinize the automaton rinter nd.purged.pl of Figure 6, run

pldet rinter_nd.purged.pl >rinter_d.xml

This produces a deterministic tree automaton in file rinter d.xml:

<?xml version="1.0" encoding="UTF-8"7>
<definitions>
</definitions>

<states>
<state name="__exactly_odd_and_two__mod__3">
<satisfies name="__inter_.odd_and_two__mod__3"/>

26

</state>

<state name="__exactly_even_and_tree__3n__plus__2">
<satisfies name="__inter_even_and_two__mod__3"/>
<satisfies name="__inter_even_and_tree__3n__plus__27"/>
</state>
<state name="__exactly_list__even_and_tree__3n__plus__2">
<satisfies name="__inter_list__even_and_tree__3n__plus__2"/>
</state>
<state name="__exactly_odd_and_zero__mod__3">
<satisfies name="__inter_odd_and_zero__mod__3"/>
</state>
<state name="__exactly_odd_and_one__mod__3">
<satisfies name="__inter_odd_and_one__mod__3"/>
</state>
<state name="__exactly even_and_one__mod__3">
<satisfies name="__inter_even_and_one__mod__3"/>
</state>
<state name="__exactly_even_and_zero__mod__3">
<satisfies name="__inter_even_and_zero__mod__3"/>
</state>
<state name="__bot”/>
</states>
<tables>
<table name="0" arity="0">
<entry result="__exactly_even_and_zero__mod__3"></entry>
</table>
<table name="s” arity="1">
<entry result="__exactly_even_and_tree__3n__plus__27"><arg name="
-_exactly_odd_and_one__mod__3”"/></entry>
<entry result="__exactly_even_and_one__mod__3”><arg name="
__exactly_odd_and_zero__mod__3"/></entry>
<entry result="__exactly_even_and_zero__mod__3"><arg name="
__exactly_odd_and_two__mod__37"/></entry>
<entry result="__exactly_odd_and_two__mod__3"><arg name="
__exactly_even_and_one__mod__3"/></entry>
<entry result="__exactly_odd_and_zero__mod__3”><arg name="
__exactly_even_and_tree__3n__plus__27/></entry>
<entry result="__exactly_odd_and_one__mod__3"><arg name="
__exactly_even_and_zero__mod__37/>/entry>
</table>
<table name="nil” arity="0">
<entry result="__exactly_list__even_and_tree__3n__plus__27"></entry>
</table>
<table name="#r" arity="2">
<entry result="__exactly_r”’><arg name="

27

__exactly_odd_and_two__mod__3”/><arg name="

__exactly_list__even_and_tree__3n__plus__27"/></entry>
</table>

<table name="cons” arity="2">
<entry result="__exactly_list__even_and_tree__3n__plus__2"7"><arg
name="__exactly_even_and_tree__3n__plus__2”/><arg name="

__exactly_list__even_and_tree__3n__plus__27/></entry>
</table>

</tables>

The format will be explained in more detail in Section 7.

We can then convert this deterministic tree automaton into Prolog notation, since every deter-
ministic tree automaton is a particular case of a non-deterministic tree automaton (itself a particular
case of an alternating tree automaton). Use auto2pl this way:

auto2pl rinter_d.xml >rinter_d.pl

This produces a file rinter_d.pl, which is probably slightly more readable than the XML
file above:

__exactly_even_and_zero__mod__3(0).
__exactly_odd_and_two__mod__3(s(X1)) :—
__exactly_even_and_one__mod__3 (X1).
__exactly_odd_and_zero__mod__3(s(X1)) :—
__exactly_even_and_tree__3n__plus__2(X1).
__exactly_odd_and_one__mod__3(s(X1)) :—
__exactly_even_and_zero__mod__3(X1).
__exactly_even_and_zero_._.mod__3(s(X1)) :—
__exactly_odd_and_two__mod__3(X1).
__exactly _even_and_one__mod__3(s(X1)) :—
__exactly_odd_and_zero__mod__3 (X1).
__exactly_even_and_tree__3n__plus__2(s(X1)) :—
__exactly_odd_and_one__mod__3(X1).
__exactly_list__even_and_tree__3n__plus__2(nil).
__exactly_list__even_and_tree__3n__plus__2(cons(X1,X2)) :—
__exactly_even_and_tree__3n__plus__2(X1),
__exactly_list__even_and_tree__3n__plus__2(X2).
__exactly_r (X1,X2) :— __exactly_odd_and_two__mod__3(X1),
__exactly_list_._even_and_tree__3n__plus__2 (X2).

Now draw the resulting automaton in Figure 7, using pl12gastex:
pl2gastex rinter_d.pl >rinterd.tex

The automaton of Figure 7 is not too big. But beware: determinizing tree automata may pro-
duce automata that are exponentially larger in the general case. In fact, pldet may just take
forever on some alternating, or even non-deterministic tree automata.

28

Figure 7: Determinizing the automaton of Figure 6

{odd, zero_mod 3}

Qeven one mod_ 3> Ceven tree_3n plu§

{odd, one mod_3}

{odd, two_mqd
<:1iEEng§p)tr;;\gﬁjgiaseh ero_mod %})

I -

3.3.7 Computing Unions, Transitive Closures

We have seen how to compute intersections of tree automata in Section 3.3.2. Computing unions
is just as easy. Say that you want to compute the union of the sets of lists of even numbers
(listeven.p) and of the trees whose leaves are nil or 3n + 2, n € N. That is, instead of
computing the intersection of the languages £, and £, introduced at the beginning of Section 3.3,
we compute their union. As before, build a file, say 1ist even union_tree3plus2.p, by
concatenating the clauses from 1isteven.p and from tree3plus?2.p, but this time add the
two clauses

q(X) = list_even(X)
q¢(X) = tree3nplus2(X)

so that the fresh state g recognizes the terms that are recognized by either the state list_even or by
tree_3n_plus_2 . Concretely, run the following commands:

OUT=1list_even_union_tree3plus2
cat listeven.p tree3plus2.p >$OUT.p

echo "input_clause ("S$SOUT"_1, axiom, \
[++g(X), ——-list_even(X)])." >>SOUT.p
echo "input_clause ("SOUT"_2, axiom, \

[++g(X), ——tree_3n_plus_2(X)])" >>S0UT.p

Now run hl —-no-trim as above:

29

hl —-no-trim list_even_union_tree3plus2.p

We get an equivalent alternating tree automaton in the file 1ist _even union tree3plus2.
model.pl:

q(nil).

q(s(X)) :— one_mod_3(X).

qg(cons(X1,X2)) :— tree_3n_plus_2(X1), tree_3n_plus_2(X2).
q(cons(X1,X2)) :— even(X1), list_even(X2).
two_mod_3(s (X)) :— one_mod_3(X).

odd(s (X)) :— even(X).

zero_mod_3 (o
zero_mod_3 (s

) -
(X)) :— two_mod_3(X).
one_mod_3 (s (X)
2
2
2

)

) :— zero_mod_3(X).
tree_3n_plus_2 (nil
tree_3n_plus_2(s
tree_3n_plus_2(

(X2) .

list_even (nil).
list_even (cons(X1,X2)) :— even(X1), list_even (X2).
even(o).
even(s(X)) :— odd(X).

Graphically, this is the alternating tree automaton of Figure 8, again obtained using pl2gastex.
This can be determinized again. Run pldet and auto2pl :

) -
)) :— one_mod_3(X).
S

(X
cons(X1,X2)) :— tree_3n_plus_2(X1), tree_3n_plus_2

pldet list_even_union_tree3plus2.model.pl \
| auto2pl - >1list_even_union_tree3plus2_d.pl

and you get

__inter_list__even_and_tree__3n__plus__2 (nil).
__inter_even_and_zero__mod__3(0).
__inter_even_and_zero_._.mod__3(s(X1)) :—
__inter_odd_and_two__mod__3 (X1).
__inter_odd_and_zero__mod__3 (s(X1)
__inter_even_and_two__mod__3(X1
__inter_even_and_one__mod__3(s(X)
__inter_odd_and_ zero__mod__3(X1
__inter_odd_and_one__mod__3 (s(X))
(
1)
1).
) -

vvvv

__inter_even_and_zero__mod__3 X1)
__inter_even_and_two__mod__3(s(X1)) :—

__inter_odd_and_one__mod__3 (X
__inter_odd_and_two__mod__3(s(X

1)
__inter_even_and_one__mod__3 (X1)

30

Figure 8: Trees with leaves equal to n:l or to 3n + 2, or which are lists of even natural numbers

31

tree_3n_plus_2(cons(X1,X2)) :—
__inter_list__even_and_tree__3n__plus__2(X1),
__inter_list__even_and_tree__3n__plus__2(X2).

tree_3n_plus_2(cons(X1,X2)) :— tree_3n_plus_2(X1),
__inter_list__even_and_tree__3n__plus__2(X2).

tree_3n_plus_2(cons(X1,X2)) :—
__inter_list__even_and_tree__3n__plus__2(X1), tree_3n_plus_2(
X2) .

list_even (cons(X1,X2)) :— __inter_even_and_zero__mod__3(X1),
__inter_list__even_and_tree__3n__plus__2(X2).

__inter_list__even_and_tree__3n__plus__2 (cons(X1,X2)) :—
__inter_even_and_two__mod__3(X1),
__inter_list__even_and_tree__3n__plus__2(X2).

tree_3n_plus_2(cons(X1,X2)) :— __inter_.odd_and_two__mod__3(X1),
__inter_odd_and_two__mod__3 (X2).
list_even (cons(X1,X2)) :— __inter_even_and_zero__mod__3(X1),

list_even (X2).

tree_3n_plus_2(cons(X1,X2)) :—
__inter_list__even_and_tree__3n__plus__2(X1),
__inter_even_and_two__mod__3(X2).

list_even (cons(X1,X2)) :— __inter_even_and_two__mod__3 (X1),
list_even (X2).
list_even (cons(X1,X2)) :— __inter_even_and_one__mod__3 (X1),

list_even (X2).

tree_3n_plus_2(cons(X1,X2)) :— tree_3n_plus_2(X1), tree_3n_plus_2
(X2) .

tree_3n_plus_2(cons(X1,X2)) :— tree_3n_plus_2(X1),
__inter_odd_and_two__mod__3(X2).

tree_3n_plus_2(cons(X1,X2)) :— __inter_odd_and_two__mod__3(X1),
__inter_list__even_and_tree__3n__plus__2(X2).

tree_3n_plus_2(cons(X1,X2)) :— __inter_even_and_two__mod__3(X1),
__inter_odd_and_two__mod__3(X2).

tree_3n_plus_2(cons(X1,X2)) :— __inter_odd_and_two__mod__3(X1),

__inter_even_and_two__mod__3(X2).
tree_3n_plus_2(cons(X1,X2)) :—

__inter_list__even_and_tree__3n__plus__2(X1),

__inter_odd_and_two__mod__3 (X2).

list_even (cons(X1,X2)) :— __inter_even_and_one__mod__3 (X1),
__inter_list__even_and_tree__3n__plus__2(X2).
tree_3n_plus_2(cons(X1,X2)) :— __inter_even_and_two__mod__3(X1),

tree_3n_plus_2(X2).

32

tree_3n_plus_2(cons(X1,X2)) :— __inter_.odd_and_two__mod__3(X1),
tree_3n_plus_2(X2).

tree_3n_plus_2(cons(X1,X2)) :— __inter_even_and_two__mod__3(X1),
__inter_even_and_two__mod__3(X2).

tree_3n_plus_2(cons(X1,X2)) :— tree_3n_plus_2(X1),
__inter_even_and_two__mod__3(X2).

As you may see, the determinized automaton is much larger this time, and pl 2gastex now
has real trouble trying to draw it. (See Figure 9.) We use twopi as graph layout engine here
instead of neato and run:

pl2gastex -v —-layout twopi \
—overlap false \
list_even_union_tree3plus2_d.pl \
>list_even_union_tree3plus2_model_d.tex

The trick we have used to compute intersections and unions, namely concatenating files and
adding new clauses (provided the concatenated files agree on the semantics of predicates), can also
be used to compute other combinations of tree languages. A particularly interesting one is the
computation of transitive closures of relations defined by tree automata (or, more generally, by H;
clause sets).

For the purpose of illustration, imagine you want to compute the transitive closure of the binary
relation r defined in rinter _d.pl (drawn in Figure 7, Section 3.3.6). Just create a fresh binary
predicate symbol r*, and add the clauses

r'(X,Y) = r(X,Y)
r+(X,Z) — r(X,Y),r(Y,Z)
Concretely, run

OUT=rinter_d_plus
pl2tptp rinter_d.pl >$OUT.p
echo "input_clause (r_plus_r, axiom, \

[++r_plus(X,Y), ——r(X,Y)])." >>S0OUT.p
echo "input_clause (r_plus_tc, axiom, \
[++r_plus(X,Z2), ——r_plus(X,Y), ——-r_plus(Y,Z)])" >>SOUT.p

Compute an equivalent non-deterministic tree automata by
hl —-no-trim —-no-alternation rinter_d_plus.p

You get

__exactly_even_and_tree__3n__plus__2(s(X)) :—
__exactly_odd_and_one__mod__3 (X).

__exactly_even_and_one__mod__3(s(X)) :—
__exactly_odd_and_zero__mod__3 (X).

33

tree_3n_plus_2 s
—

__exactly_odd_and_one__mod__3(s(X)) :—
__exactly_even_and_zero__mod__3(X).
__exactly_list__even_and_tree__3n__plus__2 (nil).
__exactly_list__even_and_tree__3n__plus__2(cons(X1,X2)) :—
__exactly_even_and_tree__3n__plus__2(X1),
__exactly_list__even_and_tree__3n__plus__2(X2).
__exactly_odd_and_zero_._mod__3(s(X)) :—
__exactly_even_and_tree__3n__plus__2 (X).
__exactly_even_and_zero__mod__3(0)
__exactly_even_and_zero__mod__3 (s(
)
(

X)) -
__exactly_odd_and_two__mod__3 (X).

__exactly_odd_and_two__mod__3 (s (X))
__exactly_even_and_one__mod__3 (X).

__exactly_r(X1,X2) :— __exactly_odd_and_two__mod__3 (X1),
__exactly_list__even_and_tree__3n__plus__2(X2).

Since the clauses defining r', i.e., r_plus, are the same as those defining r, the transitive
closure of r is r itself here: r was already transitive. (Exercise: why?)

3.3.8 Complete Deterministic Tree Automata, Taking Complements

We observed in Section 3.3.6 that a deterministic tree automaton could be seen as a partial function
I+ from tuples of predicates to predicates, one for each function symbol f.
A complete deterministic tree automaton is a set of Horn clauses of the form (5), i.e.,

P(f(Xl,,Xn)> — Pl(Xl),,Pn(Xn)

where X3, ..., X,, are pairwise distinct variables, and where there is exactly one such clause for
each (n + 1)-tuple (f, Py, ..., P,) (instad of at most one such clause for incomplete automata).
Any deterministic tree automaton can be completed to a complete one, by adding a catch-all
state __all (shown as T by pl2gastex), to which all missing transitions are directed. Precisely,
if there is an (n+1)-tuple (f, Py, ..., P,) such that there is not clause as above, then add the clause

_all(f(X1,.. . X)) = PUXY),. ... Po(X)

This must also be done whenever any one of P4, ..., P, is the catch-all state __all.

The function I is then total. The collection of all such / defines a finite model, whose set of
values is that of all predicates. A value satisfies a predicate P if and only if it is P, seen as a value.

In fact, finite models and complete deterministic tree automata are exactly the same notion.
You might want to ponder this.

As an example, let us return to the Dreadsbury mansion murder mystery (Section 3.2). As we
have seen, the only to have possibly killed Aunt Agatha is Aunt Agatha herself. We have proved
this by showing that the set of clauses in but ler-puzzle.p (and explained in Section 3.2) with
WHO defined as agatha was satisfiable.

Since this set is satisfiable, it has a model. Well, h1 computes such a model, in the guise of an
alternating tree automaton. Run

35

cpp —-P -DWHO=agatha butler-puzzle.p >agatha.p
hl —-no-trim agatha.p

and you’ll get it in file agatha .model.pl (see Figure 10):

%[def] __def 4 butler.

%[def] __def -3 X :— not_richer (X,agatha).
%[def] __def_1 agatha.

%[def] __def -5 X :— hates (agatha,X).
%[def] __def 2 charles.

%[def] __def_6 butler.

__def_4 (butler).

__def_3(agatha).

__def_1(agatha) .

__def_5(charles).

__def_5(agatha) .

__def_2(charles).

__def_6(butler).

in_mansion(charles).
in_mansion(butler).

in_mansion (agatha) .

AN N N S S~

hates (X1,X2) :— __def_1(X1), __def_1(X2).
hates (X1,X2) :— __def_1(X1), __def_2(X2).
hates (X1,X2) :— __def_6(X1), _.def_5(X2).
hates (X1,X2) :— __def_4(X1), __def.3(X2).
not_richer (X1,X2) :— __def_1(X1), __def_1(X2).
killed (X1,X2) :— __def_1(X1), _.def_1(X2).

All right, this does not look like a model at all (much less an explanation!), but remember there
is a complete deterministic tree automaton that is equivalent to it. We know how to compute an
equivalent deterministic tree automaton, using pldet and auto2pl, viz.

pldet agatha.model.pl | auto2pl - >agatha_d.pl
pl2gastex -v agatha_d.pl >agathad.tex

Using pl2gastex, as usual, produces a visual representation of it, see Figure 11;

So Agatha killed herself, Agatha is the only one not to be richer than Agatha, Agatha hates
herself and Charles, the butler hates Agatha and Charles, and Charles hates noone.

Let us now produce the corresponding complete deterministic tree automaton. This can be
done using aut o2p1, which we have already seen, using the —complete 1 option. Be warned,
though, that complete deterministic tree automata are large: with n states (included the catch-all
states), any function taking k arguments will contribute n* clauses, never less—and do not forget
that any k-ary predicate symbol P with k£ > 2 creates an invisible function symbol fp, which will
contribute n* clauses as well. Anyway, run

pldet agatha.model.pl | auto2pl —-complete 1 - | sort >agatha_c.pl

and you’ll get the resulting complete deterministic tree automaton in file agatha._c.pl.

36

Figure 10: Why Agatha killed herself

charles

butler
in_mansion

agatha

not_richer

37

Figure 11: Why Agatha killed herself, deterministically

butler

not_richer

38

3.4 The Needham-Schroeder Symmetric Key Protocol Example

Try another example, nspriv.p, an encoding of the Needham-Schroeder symmetric key proto-
col, together with three queries. We do not mean that this is the only possible description of this
protocol, and only use this example as a motivation for using h1 with more complex clause sets.

Here are the clauses of nspriv.p, in Prolog notation. We have shown the name of the
clause on the left. First, we define a predicate knows that is meant to recognize all messages that
a malevolent intruder is able to build. The first clauses say that attackers can build any list of
messages provided it knows each message in the list, and conversely that it can build any message
that appears at any position in a list it knows:

intruder_knows_nil knows(nil)
intruder_can_take_first_components knows(M;) :— knows(cons(My, Ms))
intruder_can_take_second_components knows(M;) :— knows(cons(My, M;))
intruder_can_build_pairs knows(cons(Mi, My)) :— knows(M;), knows(My)

Lists such as [M;, M,, ..., M,] are encoded, very classically, as terms cons(Mji, cons(Ms, ...
cons(My,nil) ...)), whence the clauses above. Using a binary symbol crypt to denote encryption,
i.e., crypt(M, K') denotes the result of encrypting M using key K, we may also write the following
two important rules, stating that the intruder can always encrypt any message it knows using any
message it knows, used as a key; and conversely, that the intruder can always decrypt a message if
he has the right key.

intruder_can_encrypt knows(crypt(M, K)) :— knows(M),knows(K)
intruder_can_decrypt_if _has_private key
knows(M) :— knows(crypt(M, key(pub, K))),
knows(key(prv, K))
intruder_can_decrypt_if_has_public_key
knows(M) :— knows(crypt(M, key(prv, K))),
knows(key(pub, K))
intruder_can_decrypt_if_has_symmetric_key
knows(M) :— knows(crypt(M, key(sym, X))),
knows(key(sym, X))

The last three clauses state how the intruder may decrypt a message of the form crypt(M, 7).
We assume that keys come into three varieties, public keys of the form key(pub, K) where K is
typically the name of the agent holding this public key; private keys of the form key(prv, K') where
K is the name of the agent holding this private key; and symmetric keys of the form key(sym, X),
where X is arbitrary. The last three clauses state that you may decrypt a message encrypted with a
public key key(pub, K') provided you know the corresponding private key key(prv, X); that you
may decrypt a message encrypted with a private key provided you know the corresponding public
key; and that you may decrypt a message encrypted with a symmetric key provided you know the
latter.

We also assume that there is an operation s that builds a new message s()) from an old M,
in bijection with M ; while we can compute s(M) from M and recover M from s(M), the point is

39

that M and s(M) always differ.

intruder_can_compute_successors knows(s(M)) :— knows(M)
intruder_can_compute_predecessors knows(M) :— knows(s(M))

In the Needham-Schroeder symmetric key protocol, Alice and Bob communicate with a trusted
server to get a common private key that only they know, not the intruder. Alice can always start a
session of the protocol and send the server a triple containing Alice’s identity alice, Bob’s identity
bob, and a nonce, that is, a fresh message for this session. Following Blanchet [2001], we encode
this nonce as a function symbol applied to all parameters currently known, say noncea(alice,
bob)—the function symbol noncea applied to Alice’s identity alice and Bob’s identity bob. Now
we assume a worst-case intruder model, where any communication can be diverted by the intruder.
The net effect is that, from a security viewpoint, what Alice does by sending a message consists
exactly in making it known to the intruder:

alice_sends_message_1_to_server knows(cons(alice,
cons(bob,
cons(moncea(alice, bob),

nil))))

If the server ever receives such a message, i.e., a message of the form cons(A, cons(B, cons(Na,
nil))) for some arbitrary messages A, B, and Na (the server has no way of checking that Alice
indeed sent the right message, and can only check the message it receives contains three fields),
then it should send out (to Alice, but we have already seen this was irrelevant from a security point
of view) the message crypt([Na, B, K, crypt([K, A], Kps)], Kas), where K, is some fresh key
to be used by Alice and Bob, K, is a long-term key shared between Alice and the server, and K,
is a long-term key shared between Bob and the server.

Just like sending a message consists exactly in making it known to the intruder, receiving
a message is modeled by stating that the intruder was able to build this message. We shall there-
fore write a clause saying that, if knows[A, B, Na| then knows crypt([Na, B, K a, crypt([Ka, A],
Kys)], Kus)- Note that we are effectively saying that, from the angle of security, the actions of the
server amount to adding new capabilities to the intruder: if the intruder knows a message matching
what the server expects, it can build the message that the server will answer, even though it may
not know the long-term keys K, and /y;.

Now we encode K, as the term key(sym, cons(A, cons(server,nil))), and Kps as the term
key(sym, cons(B, cons(server,nil))); note that A and B are variables here, representing the fact
that the server will find these keys by looking up tables by the identities of A, resp. B. In current
sessions, we encode K, by the term key(sym, current_session(A, B, Na)). The key K as gen-
erated during older sessions is encoded by the term key(sym, old_session(A, B, Na)). Separating

40

current from old sessions means we have to write two clauses:

server_answers_A_with_encrypted_packet
knows(crypt(cons(Na,
cons(B,
cons(key(sym, current_session(A, B, Na)),
cons(crypt(cons(key(sym, current_session(A, B, Na)),
cons(A, nil)),
key(sym, cons(B, cons(server,nil)))),
nil)))),
key(sym,cons(A, cons(server,nil)))))
:— knows(cons(A, cons(B, cons(Na,nil))))
intruder_knows_previous_server_messages
knows(crypt(cons(Na,
cons(B,
cons(key(sym,old_session(A, B, Na)),
cons(crypt(cons(key(sym,old_session(A, B, Na)),
cons(A, nil)),
key(sym, cons(B, cons(server,nil)))),
nil)))),
key(sym,cons(A, cons(server,nil)))))
= knows(cons(A, cons(B, cons(Na,nil))))

All right, now, when Alice receives the message from the server, she should send the part en-
crypted with K, to Bob. The idea is that while Alice can decrypt the whole message, which is
encrypted with /(,,, only Bob can decrypt the sub-message that is encrypted with K;s. The mes-
sage that Alice receives from the server should be crypt([Na, B, K, crypt([Kap, A], Kps)|, Kas)s
however she can only check that it is of the form crypt([Na, B, K, M sg) for some sub-messages
Ky and Msg (which may be totally unrelated to what the server actually sent). She can how-
ever check that Na is the nonce noncea(alice, bob) that she created earlier (see above, clause

alice_sends_message_1_to_server), and that B really is Bob’s identity bob. So Alice expects a
message of the form crypt([noncea(alice, bob), bob, K4, M sg, K,s). As we have said before, for
Alice to receive this message, the intruder must send it to Alice, so the intruder must be able to
build it. Once Alice receives this, it extract the sub-message M sg and forwards it to Bob—in fact
adding it to the set of messages known to the intruder:

alice_gets_server_message_and_forwards_submessage to_bob
knows(Msg) :— knows(crypt(cons(noncea(alice,bob),
cons(bob,
cons(Kab,
cons(Msg,nil)))),
key(sym, cons(alice, cons(server,nil)))))

We use an auxiliary predicate alice key meant to recognize all possible values of Kab above.

41

This is the key as seen by Alice.

alice_gets_server_message_and_stores_current_session _key

alice key(Kab)
'~ knows(crypt(cons(noncea(alice, bob),
cons(bob,
cons(Kab,

cons(Msg,nil)))),
key(sym, cons(alice, cons(server,nil)))))

Let’s see what Bob does in this protocol. First, Bob expects to receive the sub-message
M sg above. Cutting it short, Bob decrypts it, gets K, then sends a confirmation challenge
crypt(Ny, Ku), where N, is a fresh nonce. As before, IV, is modeled as a function symbol nonceb
applied to all relevant variables.

agent_B_gets_forwarded_submessage_and_sends_confirmation_challenge
knows(crypt(nonceb(Kab, A, B), Kab) :— knows(crypt(cons(Kab, cons(A,nil)),
key(sym, cons(B, server,nil))))))

On receiving this challenge, Alice tries to decrypt it with its own version of the key K ., and sends
back N, + 1:

alice_answers_confirmation_challenge
knows(crypt(s(Nb), Kab)) :— alice key(Kab),knows(crypt(Nb, Kab))

Bob then checks that it indeed gets the confirmation message above with the right value for Nb. If
so, we store the key Kab in the predicate bob key:

agent_B_checks_confirmation_from_A
bob key(Kab) :— knows(crypt(s(nonceb(Kab, A, B)), Kab))

This terminates the description of the protocol. Let us now describe additional things the intruder
know. First, the intruder is assumed to know the identities of all agents. We also list who we think
are agents. Note that the intruder itself is considered an agent, and has its own identity intruder.

alice_is_an_agent agent(alice
bob_is_an_agent agent(bob)
server_is_an_agent agent(server)
intruder_is_an_agent agent(intruder)
intruder_knows_all_agents knows(X) :— agent(X)

We also posit that the intruder knows all public keys (... because this is what we mean for them to
be public!), and its own private key. We also assume that older sessions are so old that the intruder
eventually managed to crack all old sessions key. This is slightly pessimistic. But it is precisely

42

the purpose of changing session keys to prevent intruders from gaining anything from cracking old
session keys.

intruder_knows_every_public _key knows(key(pub, X))
intruder_knows_own _private key knows(key(prv, intruder))
intruder_knows _all_previous_session keys knows(key(sym, old_session(A, B, Na)))

This is all, at last.

Let us now ask a few queries. The first asks whether the intruder may know the key K, as it
was generated by the server. The second asks whether the intruder may know any key that Alice
accepted as being a key K, at the end of the protocol. The third asks whether the intruder may
know any key that Bob accepted as being K, at the end of the protocol.

intruder_knows_session_key_generated_by server
1 :— knows(key(sym, current_session(alice,bob, Na)))
intruder_knows_session_key_as_seen_by alice
1 :— alicekey(key(Mode,current_session(X,Y,N))),
knows(key(Mode, current_session(X,Y, N)))
intruder_knows_session _key_as_seen_by B
1 :— knows(crypt(s(nonceb(Kab, A, B)), Kab)), knows (K ab)

Now launch h1 on nspriv.p:
hl nspriv.p

You should get
x+%x Derived: intruder_knows_session_key_as_seen_by_B xxx

This means in short that h1 believes that this clause set is unsatisfiable; in terms of protocols, that
there is an attack. You cannot actually be sure that this is indeed an attack, i.e., that this clause set
is indeed unsatisfiable, because this clause set is not in the H; format. (You should not conclude
from this that cryptographic protocols always produce clause sets outside H;, see Nielson et al.
[2002].)

In this case, and contrarily to the example of Section 3.2, h1 computes an approximation of the
input clause set S as a clause set 51, and reasons on S; instead. Check it using the —check-h1
2 option:

hl -check-hl 2 nspriv.p

and you’ll get the list of all clauses in nspriv.p that are not in H:

Warning: clause server_answers_A _with_encrypted_packet has
non—linear head, variable A occurs repeatedly.

Warning: clause intruder_knows_previous_server_messages has
non—linear head, variable A occurs repeatedly.

Warning: clause agent_B_gets_forwarded_submessage_and_\

43

\sends_confirmation_challenge
has non—linear head, variable Kab occurs repeatedly.
Warning: clause alice_answers_confirmation_challenge has two
non—sibling variables in the head that are connected
in the body, Nb and Kab.
Stop .

Note also that h1 gives you an explanation of what’s going wrong. For further explanation of what
linear terms, sibling variables and connected variables are, see Nielson et al. [2002] or Goubault-
Larrecq [2005].

The —check-h1 1 option runs the same checks. However, it still proceeds with checking the
(un)satisfiability of the approximated clause set S, even when the approximation is not exact, i.e.,
when the original clause set .S is not in H;.

The approximated clause set .S; is always in the class H;, and always implies S logically. In
particular, if h1 does not find any contradiction, i.e., if S is satisfiable, then .S is satisfiable, too.
In terms of cryptographic protocols, if h1 tells you that your protocol has no attack, then you can
be sure of it. (That is, up to the accuracy of your model, written as clauses.)

In our case, h1 found a purported attack, i.e., a purported contradiction. It turns out that
nspriv.p is indeed contradictory. In fact, in most cases where h1 thinks a clause set is contra-
dictory, it is indeed contradictory. (Although, as usual, your mileage may vary.)

We terminate this example by mentioning the —a1l option.

The answer

‘*** Derived: intruder_knows_session_key_as_seen_by_B xxx

above means that h1 found a (purported) contradiction first, and second that, in order to derive
the empty clause 1, h1 required the clause intruder_knows_ session _key_as_seen by B . Is this
the only query that fails? Remember we have asked three queries. One way of checking this is to
remove the intruder_knows_session_key_as_seen_by B clause from nspriv.pandrunhl again.
There is a simpler option: run h1l with the —al1l option. Once a contradiction has been found,
instead of stopping just like any other prover, h1 —all will continue, trying to find contradictions
using other queries.
On the example, running

hl -all nspriv.p

you will get the same answer as above:
x+*x Derived: intruder_knows_session_key_as_seen_by_B xxx

In other words, no other query fails. In terms of security, this means that while Bob’s key K, is
not secure, those of Alice and the server definitely are. This may seem paradoxical, however the
attack that h1 just found is one where the intruder deceives Bob into accepted an old, cracked key
from an older session. This key is not the key that the server produced. It is also old, meaning that
it will be detected as not being new by Alice’s use of the nonce /V,.

We have just proved that Alice and the server were in fact safe in this protocol, while Bob is
not.

44

The —-no—-resolve option can be used to disable the reasoning facilities of h1 altogether.
Then hl -no-resolve will just compute an approximation of the input clause set, and store it
into the log file. For example,

hl -no-resolve nspriv.p

runs without any output, and creates the log file nspriv.log.gz. As we have already said, it is
not really instructive to look at this file directly with zcat. However, you can extract from it the
approximated clause set by running:

zcat nspriv.log.gz | hlgetlog processed | pl2tptp -

This will output the approximated clause set on stdout: hlgetlog with the processed
option will extract the approximate clauses and print them in Prolog format. Then p12tptp with
— argument (meaning stdin) will convert these from Prolog format to TPTP format.

All this can be done in a simpler way, by using the ~1og—-out option to hl. Then h1 will
output its log file, uncompressed, to stdout. You can then pipe itto hlgetlogand pl2tptp,
as follows.

hl -log-out —-no-resolve nspriv.p | hlgetlog processed | pl2tptp -

4 The h1 Prover

Most of the features of h1 are explained in Section 3. We explain the structure of the h1 command
line in Section 4.1, then turn to the theoretical basis of h1 in Section 4.2. We refine this description
in Section 4.3, by stating the precise rules used by h1.

4.1 How to Use hl

The h1 tool recognizes the following options. As in all Unix tools, options start with a minus sign
—. Some options are flags, which can be toggled between an active state and a deactivated state.
In this case, the convention used in h1 and other tools of the h1 suite is to have —(option) activate
the option, while —no—(option) deactivates it.

The options recognized by the h1 prover are:

e —h prints help. This is basically a terse summary of the current explanation.
e —v(n) (with no space between —v and (n)) sets the verbosity level to the integer n. Also,

—v sets the verbosity level to 1. The default is O (run silently).

While other tools of the h1 suite understand verbosity as a way of printing more or less
comments on stderr, the hl prover itself prints these comments into the log file. That
is, into (filename) . Log.gz if run as (filename), into hlout.log.gz if run without a
file,i.e.,ashl —, and on stdout if the -1og—out option is activated.

45

This can be useful to examine how h1 proceeds to derive new clauses and to remove redun-
dant clauses while it is reasoning.

At verbosity level 1, i.e., with —v1 or —v, h1l adds comments of the form & |- (clause)
to say which clauses are being derived, and added to the queue of clauses waiting to be
processed. Normally, h1 only lists clauses it is currently processing. At verbosity level
1, h1 also signals which clauses are useless, in the sense that a simple reachability test on
predicate symbols showed that they could not participate in any derivation of the empty
clause.

At verbosity level 2, i.e., with —v2, h1 also gives information on its strategy for selecting
clauses to be processed, lists the clauses it removes, because they are redundant in some or
the other way.

Inany case,runhl -v1 nspriv.porhl -v2 nspriv.p, followed by the command
zcat nspriv.log.gz | less to see concrete examples of such comments.

The —v options are only active if some log file is output at all, that is, if -1og or -1log-out
is in effect. (By default, —1og is active.)

—check-hl (n) enables or disables H; format checking. If n = 0, no check is done
at all (default). Clauses outside H; are approximated as in Section 3.4, using a slightly
more clever variant of the approximation algorithm of Goubault-Larrecq [2005]. If n = 1,
warnings are printed as to which clauses are not in H;, and what the problem is, then h1
proceeds approximating all clauses. If n = 2, the same warnings are printed; however, if any
warning has been emitted, then h1 will stop and refuse to solve the given clause set.

-first, —all: by default, h1 works as any prover, and stops on finding the first contra-
diction (-first). With the —all option, h1 will report all goal clauses through which a
contradiction can be found. See Section 3.4 for an example.

The way h1 does it is by replacing every goal clause L:—Py (1), ..., P,(t,), of name (name),
by a definite clause ¢mame):—Fi(t1), - - - , P, (t,) for a special nullary predicate symbol ¢ (name),
called a signalling symbol. With the —first option, as soon as hl derives a signalling
symbol, it prints its name inside *x* Derived: and *x* and stops. With the —all
option, h1 prints the names of all signalling symbols that can be derived.

-log, -log-out, —no—-1log: by defaut, h1 outputs a trace of what it is doing into a log file
(-1og). If h1 was called on file (filename) . p, then the trace will be in (filename) . 1og. gz.
If h1 was given — as input file (i.e., if h1 reads from standard input), then this file will be
hlout.log.gz. If —log—-out is given instead of —1og, this trace is output, uncom-
pressed, on stdout. If —-no-1og is given, then no trace is produced at all.

The reason why the trace is compressed by default is because it may be huge. So huge in
fact that I’ve seen cases where it went above the 2 Gb file size limit on Unix files. To see a
rather extreme example, run

memtime hl —-progress Fabrice/alice_fulll.p

46

This is a 459 clause example, generated automatically from the static analysis by the Csur
static analyzer [Goubault-Larrecq and Parrennes, 2005] of a small C implementation of the
Needham-Schroeder public-key protocol (not the same as the symmetric-key protocol of
Section 3.4). Beware that this will take quite some time, and some disk space! On the
machine I’m using to write this text (an 1.4 Ghz Pentium IV class machine running RedHat
Linux .6.9-1.6_FC2), it takes 33 minutes, and 264 Mb main memory.

Fabrice/alice_fulll.p is the largest example we can deal with. Note however that
the time and space used by h1l are more related to the structure than to the size of the
input problem; e.g., Fabrice/alice\ full3.p is about the same size (458 clauses)
and apparently very similar, but is shown satisfiable in a matter of seconds by h1.

You may want to run
watch hlmon hl.pgr

in parallel, to see how h1 progresses on Fabrice/alice_fulll.p. (See Section 4.3.)

To cut it short, Fabrice/alice_fulll.p will be detected as (possibly) unsatisfiable
by h1, and will generate the compressed log file Fabrice/alice\ fulll.log.gz.
The latter is 94.5 Mb. This is not much compared to the uncompressed file, which is a bit
more than 40 million lines long, and 2.67 Gb long. These figures are obtained by running

zcat Fabrice/alice_fulll.log.gz | wc -c -1

which itself runs in about 20 s.

-model, -no-model: by default, h1 outputs a candidate model of the input clause set, as
a set of Horn clauses, into file (filename) .model.pl, if h1 was called on file (filename).p,
orinto hlout .model.pl if h1l expects its input from standard input.

The h1 prover is always able to output a candidate model, even if the input clause set is
unsatisfiable, and therefore has no model. It is just that, in this case, the candidate model is
no model: h1mc will then complain, and state which clauses are not satisfied in the candidate
model. See Section 6.

To understand what this candidate model may be, especially in the case where there is no
model, see Section 4.2: the candidate model is just the subset of all alternating automaton
clauses, and universal clauses of the final, saturated clause set that h1 eventually computes.

-progress, —-no-progress: by default, this is deactivated (—-no-progress). If ac-
tivated with -progress, a kludge is enabled that allows one to monitor h1’s progress: a
special file hl.pgr is created and written into as h1 goes forward. Each time h1 adds a
clause, subsumes a clause, or does anything of the kind, it adds a conventional character to
hl.pgr. Using hlmon hl.pgr at any time while h1 is running will give you instanta-
neous statistics about how many operations h1 has performed until now. See Section 4.3
for more explanations. Using watch in combination with hlmon, as in watch hlmon
hl.pgr, is particularly useful here.

47

e —resolve,—no-resolve. By default (-resolve), hl computes an H; approximation
of the given clause set, then saturates the latter by a form of resolution. The -no-resolve
disables the resolution engine, so that hl -no-resolve merely produces the H; approx-
imation into the log file (see —1og option). This is useful to just see what the approximated
clauses actually are. To actually see these clauses, run hlgetlog processed on the log
file. See 3.4 for an example.

e —trim, —no-trim. By default (-trim), h1 does a quick preprocessing phase (trimming)
to eliminate some clauses that are obviously not needed to derive a contradiction. This is
based on following dependencies between predicate symbols. E.g., if P(t):—=Py(t1),...,
P,(t,) is an input clause, we say that P depends on Py, ..., P,. A predicate symbol P is
needed if and only if there is a goal clause of the form L:—... P(¢),..., or if some needed
predicate symbol depends on P, inductively. By default, h1 removes all clauses headed by
unneeded predicate symbols.

This is useful to avoid h1 being clogged by useless clauses. Consider any set of definite
clauses (i.e., without any goal clause). While this set of clauses is (obviously!) satisfiable, h1
may lose quite some time saturating it by resolution. Trimming will just eliminate all clauses,
and h1 will conclude right away that the set of clauses is (obviously, indeed) satisfiable.

This may seem an extreme example. However, this is also an example of why disabling
trimming might be the desired option instead. If you use h1 as a tree automaton tool, as in
Section 3.3, you will probably want precisely to feed h1 with just definite clauses, no goal
clause, and expect h1 to output some compiled alternating tree automaton computing the
same languages. To obtain this result, use -no—-trim.

e —path-refine (n). Another trick that h1 uses to speed resolution up is to precompute
a rather crude over-approximation of the least Herbrand model of the input clause set. See
Section 4.2. This consists essentially in computing the sets of paths through atoms in the
least Herbrand model, truncated to some fixed length. The —-path-ref ine option allows
one to specify what the cutoff length should be. By default, it is 3.

e —alternation, —-no-alternation. By default (—-alternation), hl produces
an alternating tree automaton as model in the model file (see -model option). With the
-no—alternation option, hl produces a non-deterministic tree automaton. This is in
general bigger than the corresponding alternating tree automaton, so that h1 may take more
time saturating clauses with the —alternation option. See Section 3.3.4.

e —deep-abbrv, -no-deep-abbrv. By default (-deep-abbrv), h1 uses a rule called
abbreviation of deep terms, which accelerates resolution, sometimes spectacularly. This rule
has the following effect. Given some clause H < Pi(t1),..., P,(t,) such that, say,
is deep, i.e., t; is neither a variable nor a function applied to variables. Then list the free
variables of ¢;, say Xj, ..., Xy, create a fresh predicate symbol (), and replace the above
clause by

H ~ Pl(tl)a ey Pifl(tifl)a Q(Xla s 7Xk:)a Pi+1(ti+1)7 s 7Pn(tn)

48

In fact, () needs not be fresh: if we apply the same rule on the same P; and the same %;, we
generate the same (). Using -no-deep—-abbrv disables this rule. The only use we know
of disabling it is measuring how much proof search is sped up by the deep abbreviation rule.

-sort—-simplify,-no-sort-simplify. Bydefault (-sort-simplify),hl uses
arule called sort simplification, which originates from the SPASS prover. This is moderately
useful in general, but does not seem to be really costly. The idea is as follows. Assume
the current set of clauses is S. Amongst these, let S, be the set of alternating automata
clauses. These can be seen as sort declarations. E.g., the alternating automaton clause
P(f(X1, X2, X3)) < Pi(X1), Px(X1), P3(X3) can be read as a rule stating that, if X has
sort P; and also sort P, if X5 has sort Ps, and even if X3 has no sort, then f(X;, X5, X3)
has sort P. Given any clause H < Py(t1),. .., P,(t,), extract a sort environment p: for each
¢ such that ¢; is a variable X, p states that X has sort ;. Then, for any j such that ¢, is not
a variable, if we can deduce that ¢; has sort P; using the sort environment p and the current
sort declarations, then remove P;(¢;) from the clause. In principle, this is just a form of
resolution, coupled with backward subsumption of the parent clause. However, this variant
takes polynomial time, while simulating this by ordinary resolution can take exponential
time in the worst case.

-monadic-proxy, —standard-approx. By default (-standard-approx), the
approximation h1 uses (see Section 3.4) is a slight refinement of that of Goubault-Larrecq
[2005]. This keeps more information, i.e., it is more precise in general, than the probably
more intuitive approximation of Frithwirth et al. [1991], which tries to capture the so-called
types of variables in each input clause. The —-monadic—proxy option forces h1l to use the
latter, less precise approximation. The idea is that, by using a less precise approximation,
h1 could run faster. Experience until now has shown, on the contrary, that the less precise
approximation is also slower: h1l generates many spurious clauses that just could not be
generated with the more precise approximation.

In other words, -monadic-proxy is a false good idea. This option is therefore obsoles-
cent.

~body-chop (n). Yet another false good idea. Forces h1 to keep only at most n atoms of
depth at least 1 in bodies of clauses generated by resolution. In other words, if h1 ever tries
to generate a clause with m > n atoms of depth at least 1, i.e., of the form P(f(ty,...,tx)),
it will savagely remove m — n of them. Resolution then becomes unsound, but will remain
complete. That is, if h1 concludes that the input clause set is satisfiable, it will still be right
in saying so. It seems that this in fact does not speed things up at all. This option is therefore
obsolescent.

49

4.2 Theoretical Background

The essentials of the algorithmic underpinnings of h1 are described, rather tersely, in Goubault-
Larrecq [2005]: h1 implements a form of ordered resolution with selection

4.3 Principle of Operation
5 Explaining and Checking Proofs: hitrace,hllogstrip

6 Model-Checking Clause Sets and Explaining the Absence of
Proofs with himc

6.1 Theoretical Background

7 Determinizing Tree Automata with pldet

8 Converting XML Deterministic Tree Automata to Prolog No-
tation with auto2pl

9 C(leaning and Extracting Automata with plpurge

10 Converting Tree Automata and Prolog Programs to TPTP
Files

11 Applying Morphisms to H; Clause Sets with t pt pmorph
12 Solving Presburger Arithmetic Formulas with 1 inauto

13 Displaying Automata with p12gastex

Sometimes, pl2gastex gives pretty good results.

il
et

50

On some more complex examples, pl2gastex gives pretty awful results.

intruder

51

14 Log Files and hlgetlog

15 Bugs

There is no DTD for deterministic tree automata in XML format.

Yes, I know. Sorry. I don’t know how to write DTDs. If anybody wants to volunteer, the format
should be clear from examples produced by h1. Anyone?

Doing h1 —-no-resolve nspriv.p; zcat nspriv.log.gz fails.

Typically, zcat complains of nspriv.log.gz: unexpected end of file. This is
because h1l spawns a gzip —-c >nspriv.log.gz subprocess to compress the log file as it
builds it. The gzip process can only terminate once h1l has finished working, but then needs
some more time to complete compression. Meanwhile, zcat starts decompresssing the file, and
fails. I currently know of no way to make h1 close the stream to its subprocess then wait until its
subprocess has completed.

If you want to use the log file produced by h1 in a script file, better use the —1og-out option,
and read it from stdout. Thatis, use hl —-no-resolve -log-out nspriv.p instead of
hl -no-resolve nspriv.p; zcat nspriv.log.gz.

Clause names are lost in converting clauses to Prolog format.

Yes, this is unfortunate. A few cases have been corrected, by using special comments. But more
has to be done.

References

B. Barras, S. Boutin, C. Cornes, J. Courant, J.-C. Filliatre, E. Giménez, H. Herbelin, G. Huet,
C. Muiioz, C. Murthy, C. Parent, C. Paulin-Mohring, A. Saibi, and B. Werner. The Coq proof
assistant reference manual: Version 7.4. Rapport technique, INRIA, France, 1999-2003. http:
//coqg.inria.fr/doc/main.html.

B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In /4th IEEE
Computer Security Foundations Workshop (CSFW-14), pages 82-96. IEEE Computer Society
Press, 2001.

A. Boudet and H. Comon. Diophantine equations, Presburger arithmetic and finite automata. In
H. Kirchner, editor, Colloquium on Trees in Algebra and Programming (CAAP’96), pages 30—
43. Springer Verlag LNCS 1059, 1996.

52

P. Devienne, P. Lebegue, A. Parrain, J.-C. Routier, and J. Wiirtz. Smallest Horn clause pro-
grams. Journal of Logic Programming, 27(3):227-267, 1996. URL citeseer.nj.nec.
com/devienne94smallest.html.

T. Frithwirth, E. Shapiro, M. Y. Vardi, and E. Yardeni. Logic programs as types for logic programs.
In Proc. 6th Symp Logic in Computer Science, pages 300-309, 1991.

J. Goubault-Larrecq. Deciding H; by resolution. Information Processing Letters, 95(3):401—
408, Aug. 2005. URL http://www.lsv.ens—cachan.fr/Publis/PAPERS/PDF/
Goubault-hl.pdf.

J. Goubault-Larrecq. Une fois qu’on n’a pas trouvé de preuve, comment le faire compren-
dre a un assistant de preuve ? In Actes 15émes journées francophones sur les langages
applicatifs (JFLA’04), Sainte-Marie-de-Ré, France, Jan. 2004, pages 1-20. INRIA, collec-
tion didactique, 2004. URL http://www.lsv.ens—cachan.fr/Publis/PAPERS/
JGL-JFLA2004 .ps.

J. Goubault-Larrecq and F. Parrennes. Cryptographic protocol analysis on real C code. In
R. Cousot, editor, Proceedings of the 6th International Conference on Verification, Model
Checking and Abstract Interpretation (VMCAI’05), volume 3385 of Lecture Notes in Computer
Science, Paris, France, Jan. 2005. Springer. URL http://www.lsv.ens—-cachan.fr/
Publis/PAPERS/PDF/GouPar-VMCAI2005.pdf. To appear.

F. Nielson, H. R. Nielson, and H. Seidl. Normalizable Horn clauses, strongly recognizable relations
and Spi. In 9th Static Analysis Symposium (SAS). Springer Verlag LNCS 2477, 2002.

F. J. Pelletier. Seventy-five problems for testing automatic theorem provers. Journal of Automated
Reasoning, 2:191-216, 1986.

P. Selinger. Models for an adversary-centric protocol logic. Electronic Notes in Theoretical Com-
puter Science, 55(1):73-87, 2001. Proceedings of the 1st Workshop on Logical Aspects of
Cryptographic Protocol Verification (LACPV’01), J. Goubault-Larrecq, ed.

C. B. Suttner and G. Sutcliffe. The TPTP problem library v2.5.0,2002. URL http://www.cs.
miami.edu/~tptp/TPTP/TR/TPTPTR.shtml.

53

Concept Index

54

Command Index

—all 44, 46
Al 35
—alternation...........coiiiin... 48
-no-alternation........ 21, 23, 33,48
auto2pl. 36
auto2pl .. 28, 30, 36
—body-chop.....covviiiiiiiiiin. .. 49
—check-hl................ 14, 43, 44, 46
—complete ... 36
CPP et ettt e 13, 14
—deep-abbrv.........iiiii, 48
—no-deep-abbrv................... 48
—first . . 46
o ot =Y o 13
N 45
hl . Pgr e 47
hlmon.. ..o 47
hltraceccooiiiiiiiiiinin.. 13,19
-log-out.............. 19, 45, 46, 46, 52
—lOg . 46, 46
—NO=10g et e 46
—model .. 21,47, 48
—no—model ... 47
—monadicC—ProXyoveiieneennn.. 49
—-path-refine...................... 48
pl2gastex 16, 24, 28, 35, 36
PL2EPED e 23,33
pldet ..o 26, 30, 36
PlPUrgE et 24
—NO—PLOJLESS tteeeeeeeeannnnnnnnns 47
YOG S S t ettt 47, 47
—NO-resolve ..., 45, 48
—reSOlVEe i 48

55

SO L ittt 36
—-no-sort-simplify............... 49
—sort-simplify........ccoovoinn. 49
—standard-approX.......oeeeeenn.. 49
LSO see __all
-no-trim....15--17, 20, 21, 23,
29, 33, 36, 48, 48
i 1 ¢ 16, 48
EWOP L te ettt i ittt eeeeaaennn 33
Y2 45
watch ..o iiiiiiii i 477
A = 11, 47

