The Notion of model

I. What we have seen last time

A theory = a set of axioms + a decidable and non confusing congruence (often defined with a reduction system)

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} \land \text{-intro}$$
$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash C} \land \text{-intro if } C \equiv A \land B$$

Proof reduction does not always terminate But all (1) purely computational theories where (2) proof reduction terminates have the witness property

Examples of theories

Prove termination of proof-reduction for some of these theories For this: the notion of model II. Models valued in $\{0,1\}$

The algebra $\{0,1\}$

$$\begin{split} \mathcal{B} &= \{0,1\} \\ \leq: \text{ natural order on this set} \\ \widetilde{\top} &= 1, \ \widetilde{\bot} &= 0 \\ \widetilde{\wedge}, \text{ function from } \{0,1\} \times \{0,1\} \text{ to } \{0,1\} \end{split}$$

Ñ	0	1
0	0	0
1	0	1

 $\[Vec{\nabla}\]$ and $\[eq]{\Rightarrow}\]$ similar $\[Vec{\nabla}\]$ and $\[eq]{\exists}\]$ functions from $\mathcal{P}^+(\{0,1\})$ to $\{0,1\}$

Models valued in $\{0, 1\}$

A model for a language ${\mathcal L}$ is formed with

- for each sort s, a non empty set \mathcal{M}_s
- ▶ for each function symbol f of arity (s₁,..., s_n, s'), a function f̂ from M_{s1} × ... × M_{sn} to M_{s'}
- ▶ for each predicate symbol P of arity (s₁,..., s_n), a function P̂ from M_{s1} × ... × M_{sn} to B

Interpretation in a model

[[]] maps every term t of sort s, to an element [[t]] of \mathcal{M}_s every proposition A to an element [[A]] of \mathcal{B} Morphism [[$f(t_1, ..., t_n)$]] = $\hat{f}([[t_1]], ..., [[t_n]])$ [$P(t_1, ..., t_n)$]] = $\hat{P}([[t_1]], ..., [[t_n]])$ [$A \land B$]] = [[A]] $\tilde{\land}$ [[B]], etc. Completely defined by its image on the variables

Valuations

Function ϕ of finite domain associating to the variables $x_1, ..., x_n$ of sorts $s_1, ..., s_n$ elements $a_1, ..., a_n$ of $\mathcal{M}_{s_1}, ..., \mathcal{M}_{s_n}$

Any valuation ϕ extends to a morphism $[\![]]_{\phi}$ between

- \blacktriangleright the terms and the propositions whose free variables are in the domain of ϕ
- \blacktriangleright and the model ${\cal M}$

$$\begin{split} & [\![x]\!]_{\phi} = \phi(x) \\ & [\![f(t_{1}, ..., t_{n})]\!]_{\phi} = \hat{f}([\![t_{1}]\!]_{\phi}, ..., [\![t_{n}]\!]_{\phi}) \\ & [\![P(t_{1}, ..., t_{n})]\!]_{\phi} = \hat{P}([\![t_{1}]\!]_{\phi}, ..., [\![t_{n}]\!]_{\phi}) \\ & [\![\top]\!]_{\phi} = \tilde{\top}, [\![\bot]\!]_{\phi} = \tilde{\bot} \\ & [\![A \land B]\!]_{\phi} = [\![A]\!]_{\phi} \tilde{\wedge} [\![B]\!]_{\phi}, [\![A \lor B]\!]_{\phi} = [\![A]\!]_{\phi} \tilde{\vee} [\![B]\!]_{\phi} \\ & [\![A \Rightarrow B]\!]_{\phi} = [\![A]\!]_{\phi} \tilde{\rightarrow} [\![B]\!]_{\phi} \\ & [\![A \Rightarrow B]\!]_{\phi} = \tilde{\forall} \{ [\![A]\!]_{\phi,x=a} \mid a \in \mathcal{M}_{s} \} \\ & [\![\exists x A]\!]_{\phi} = \tilde{\exists} \{ [\![A]\!]_{\phi,x=a} \mid a \in \mathcal{M}_{s} \} \end{split}$$

Validity

A valid in \mathcal{M} if for all ϕ , $\llbracket A \rrbracket_{\phi} \geq \tilde{\top}$ $A_1, ..., A_n \vdash B$ valid in \mathcal{M} if the proposition $(A_1 \land ... \land A_n) \Rightarrow B$ is \mathcal{T} valid in \mathcal{M} if all its axioms are

Soundness: If the proposition A has a classical proof in \mathcal{T} , then it is valid in all models of \mathcal{T} Completeness: If the proposition A is valid in all models of \mathcal{T} , then it has a classical proof in \mathcal{T}

Contrapositive of soundness

If a model ${\mathcal M}$ of ${\mathcal T}$ s.t. A not valid in ${\mathcal M},$ then A not provable in ${\mathcal T}$

Exercise: two proposition symbols P and QA single axiom PQ is not provable $\neg Q$ is not provable III. Many valued models

Four problems

Adapt the notion of model to prove indep. of Q with single model Adapt the notion of model to constructive provability Adapt the notion of model to Deduction modulo theory Adapt the notion of model to prove termination of proof-reduction

One solution: many valued models

Algebras

A set \mathcal{B}

a binary relation \leq on \mathcal{B}

two elements $\tilde{\top}$ and $\tilde{\bot}$ of \mathcal{B} three functions $\tilde{\wedge}$, $\tilde{\vee}$, and \Rightarrow from $\mathcal{B} \times \mathcal{B}$ to \mathcal{B} a subset \mathcal{A} of $\mathcal{P}^+(\mathcal{B})$, a function $\tilde{\forall}$ from \mathcal{A} to \mathcal{B} a subset \mathcal{E} of $\mathcal{P}^+(\mathcal{B})$, a function $\tilde{\exists}$ from \mathcal{E} to \mathcal{B}

Models

A model for a language ${\mathcal L}$ is formed with

- for each sort s, a non empty set \mathcal{M}_s
- ► an algebra $\mathcal{B} = \langle \mathcal{B}, \leq, \tilde{\top}, \tilde{\bot}, \tilde{\wedge}, \tilde{\vee}, \mathcal{A}, \tilde{\forall}, \mathcal{E}, \tilde{\exists}, \tilde{\Rightarrow} \rangle$,
- ▶ for each function symbol f of arity (s₁,..., s_n, s'), a function f̂ from M_{s1} × ... × M_{sn} to M_{s'}
- ▶ for each predicate symbol P of arity (s₁,..., s_n), a function P̂ from M_{s1} × ... × M_{sn} to B

valued in the algebra ${\mathcal B}$

Valuation (as above): a function ϕ of finite domain associating to the variables $x_1, ..., x_n$ of sorts $s_1, ..., s_n$ elements $a_1, ..., a_n$ of \mathcal{M}_{s_1} , ..., \mathcal{M}_{s_n}

Interpretation (as above):

$$\blacktriangleright \quad \llbracket x \rrbracket_{\phi} = \phi(x), \ \llbracket f(t_1, ..., t_n) \rrbracket_{\phi} = \hat{f}(\llbracket t_1 \rrbracket_{\phi}, ..., \llbracket t_n \rrbracket_{\phi})$$

•
$$\llbracket P(t_1,...,t_n) \rrbracket_{\phi} = \hat{P}(\llbracket t_1 \rrbracket_{\phi},...,\llbracket t_n \rrbracket_{\phi})$$

•
$$\llbracket A \land B \rrbracket_{\phi} = \llbracket A \rrbracket_{\phi} \tilde{\land} \llbracket B \rrbracket_{\phi}$$
, etc.

$$\blacktriangleright \ \llbracket \forall x \ A \rrbracket_{\phi} = \tilde{\forall} \ \{\llbracket A \rrbracket_{\phi, x=a} \ | \ a \in \mathcal{M}_s\}$$

Validity (as above): for all ϕ , $\llbracket A \rrbracket_{\phi} \geq \tilde{\top}$

Examples of algebras

 $\{0,1\}$

But also:

$$\mathcal{B} = \mathcal{P}(\{3,4\}) = \{\emptyset, \{3\}, \{4\}, \{3,4\}\}, \leq = \subseteq,$$

$$\tilde{\top} = \{3,4\}, \tilde{\bot} = \emptyset,$$

$$a \tilde{\land} b = a \cap b, a \tilde{\lor} b = a \cup b, a \tilde{\Rightarrow} b = (\{3,4\} \setminus a) \cup b,$$

$$\tilde{\forall} E = \bigcap_{x \in E} x, \tilde{\exists} E = \bigcup_{x \in E} x$$
Note $\tilde{\neg} a = a \tilde{\Rightarrow} \tilde{\bot} = \{3,4\} \setminus a$

$$\hat{P} = ilde{ op} = \{3,4\}$$

 $\hat{Q} = \{4\}$
Neither Q nor $\neg Q$ is valid

Aggregates two models in one $\mathcal{M}_3: \hat{P} = 1, \hat{Q} = 0$ $\mathcal{M}_4: \hat{P} = 1, \hat{Q} = 1$ $\mathcal{M}: \hat{A} = \{i \mid A \text{ valid in } \mathcal{M}_i\}$

From $\mathcal{P}(\{3,4\})$ to pre-Boolean algebras

Models where \mathcal{B} is a powerset

Generalize: models where \mathcal{B} is a Boolean algebra A set with, an order, greatest lowerbounds $(\tilde{\top}, \tilde{\wedge}, \tilde{\forall})$ and least upperbounds $(\tilde{\bot}, \tilde{\vee}, \tilde{\exists})$ and a relative complement $\tilde{\Rightarrow}$

Generalize further: order: reflexive, antisymmetric, transitive Antisymmetry useless and complicates proofs: drop it Intuition: $A \le B$ if $A \Rightarrow B$ provable: reflexive, transitive, not antisymmetric

Pre-Boolean algebras

Set \mathcal{B} , binary relation \leq , $\tilde{\top}$ and $\tilde{\perp}$ elements of \mathcal{B} , $\tilde{\wedge}$, $\tilde{\vee}$, and $\tilde{\Rightarrow}$ binary functions, $\tilde{\forall}$ function from a subset \mathcal{A} of $\mathcal{P}^+(\mathcal{B})$ to \mathcal{B} , and $\tilde{\exists}$ function from a subset \mathcal{E} of $\mathcal{P}^+(\mathcal{B})$ to \mathcal{B}

$$\begin{array}{l} a \leq a, \quad \text{if } a \leq b \text{ and } b \leq c \text{ then } a \leq c \\ a \ \tilde{\wedge} \ b \leq a, \quad a \ \tilde{\wedge} \ b \leq b, \quad \text{if } c \leq a \text{ and } c \leq b \text{ then } c \leq a \ \tilde{\wedge} \ b \\ \text{etc.} \\ a \leq b \ \tilde{\Rightarrow} \ c \text{ if and only if } a \ \tilde{\wedge} \ b \leq c \\ \tilde{\top} \leq (a \ \tilde{\vee} \ (a \ \tilde{\Rightarrow} \ b)) \end{array}$$

Examples of pre-Boolean algebras

```
\{0,1\} \mathcal{P}(\{3,4\}) but also \{0\} and any set equipped with the full relation and any operations
```

Soundness and completeness

Soundness: If the proposition A has a classical proof in ${\cal T},$ then it is valid in all models of ${\cal T}$

Completeness: If the proposition A is valid in all models of ${\cal T},$ then it has a classical proof in ${\cal T}$

More models: soundness stronger, completeness weaker

IV. Models and constructive proofs

The validity of the excluded-middle

Models valued in $\{0,1\}$ are all models of the excluded-middle

$$\llbracket A \vee \neg A \rrbracket_{\phi} = \llbracket A \rrbracket_{\phi} \ \tilde{\vee} \ \tilde{\neg} \llbracket A \rrbracket_{\phi} = max(\llbracket A \rrbracket_{\phi}, 1 - \llbracket A \rrbracket_{\phi}) = 1$$

Models valued in $\mathcal{P}(E)$ also

$$\llbracket A \vee \neg A \rrbracket_{\phi} = \llbracket A \rrbracket_{\phi} \tilde{\vee} \tilde{\neg} \llbracket A \rrbracket_{\phi} = \llbracket A \rrbracket_{\phi} \cup (E \setminus \llbracket A \rrbracket_{\phi}) = E$$

Models valued in a (pre-)Boolean algebra also

$$\tilde{\top} \leq (a \; \tilde{\lor} \; (a \; \tilde{\Rightarrow} \; b))$$

Valid in all models but no constructive proof

From pre-Boolean algebra to pre-Heyting algebras

Just drop the condition

$$ilde{\top} \leq (a \; ilde{\lor} \; (a \; ilde{\Rightarrow} \; b))$$

pre-Heyting algebra

A pre-Heyting algebra that is not a pre-Boolean algebra

Instead of $\mathcal{P}(\mathbb{R})$, the open sets only

Pre-order \subseteq (antisymmetric in this case)

Everything works (open sets stable by unions, finite intersections) except infinite intersections and complement In this case take the interior $\hat{P} = (-\infty, 0)$ $\neg \hat{P} = [0, +\infty) = (0, +\infty)$ $\hat{P} \lor \neg \hat{P} = (-\infty, 0) \cup (0, +\infty) = \mathbb{R} \setminus \{0\}$ Another pre-Heyting algebra that is not pre-Boolean

 $\{0, 1/2, 1\}$

natural order

$$\tilde{\top} = 1, \ \tilde{\perp} = 0, \ a \ \tilde{\wedge} \ b = glb(a, b), \ a \ \tilde{\vee} \ b = lub(a, b), \ \tilde{\forall} \ A = glb_{x \in A}x, \ \tilde{\exists} \ E = lub_{x \in E}x$$

 $a \stackrel{\sim}{\Rightarrow} b = b$ if a > b, and 1 otherwise

 $a \le (b \stackrel{\sim}{\Rightarrow} c)$ if and only if $(a \stackrel{\sim}{\wedge} b) \le c$ (three cases: $b \le c$, b > cand $a \le c$, and b > c and a > c)

 $1/2 \ \tilde{\lor} \ (1/2 \ \Rightarrow \ 0) = 1/2 \ \tilde{\lor} \ 0 = 1/2$

If the proposition A has a constructive proof in ${\mathcal T},$ then it is valid in all models of ${\mathcal T}$

Lemma: If $\Gamma \vdash A$ has a constructive proof, then it is valid in all pre-Heyting models (By induction over proof structure)

Completeness

If the proposition A is valid in all models of ${\cal T},$ then it has a constructive proof in ${\cal T}$

Weak

A simple proof: build a single model where valid propositions are exactly those that have a constructive proof in ${\cal T}$

The Lindenbaum model

Idea: Interpret each term (resp. proposition) by itself M_s = set of terms (of sort *s*), B = set of propositions

Closed terms and prop. of $\mathcal{L} \cup S$, S infinite set of constants

 $A \leq B$ if $A \Rightarrow B$ has a constructive proof in \mathcal{T} The operations $\tilde{\top}$, $\tilde{\perp}$, $\tilde{\wedge}$, $\tilde{\vee}$, and $\tilde{\Rightarrow}$, are \top , \perp , \wedge , \vee , and \Rightarrow $\mathcal{A} = \mathcal{E}$ set of subsets of \mathcal{B} of the form $\{(t/x)A \mid t \in \mathcal{M}_s\}$ for some AA unique

 $\vec{\forall} \{ (t/x)A \mid t \in \mathcal{M}_s \} = (\forall x \ A)$ $\vec{\exists} \{ (t/x)A \mid t \in \mathcal{M}_s \} = (\exists x \ A)$

 \hat{f} : function mapping $t_1, ..., t_n$ to $f(t_1, ..., t_n)$ \hat{P} : function mapping $t_1, ..., t_n$ to $P(t_1, ..., t_n)$ Algebra of Lindenbaum model of \mathcal{T} : a pre-Heyting algebra

Lindenbaum model of $\mathcal{T} :$ model of \mathcal{T}

A valid in the Lindenbaum model of ${\mathcal T}$ then A has a constructive proof in ${\mathcal T}$

V. Models and Deduction modulo theory

Validity of a theory in Deduction modulo theory

 \equiv valid in \mathcal{M} if for all A and B such that $A \equiv B$, for all ϕ $\llbracket A \rrbracket_{\phi} = \llbracket B \rrbracket_{\phi}$

 \mathcal{T},\equiv valid in \mathcal{M} if all axioms of \mathcal{T} and \equiv are valid in \mathcal{M}

Soundness

If the proposition A has a constructive proof in $\mathcal{T},$ then it is valid in all models of \mathcal{T}

Lemma: If $\Gamma \vdash A$ has a constructive proof, then it is valid in all pre-Heyting models (By induction over proof structure using the fact that the model is a model of the congruence to justify the replacement of a proposition by a congruent one in each rule)

Completeness

Lindenbaum model:

Replace terms by classes of terms modulo \equiv Replace propositions by classes of propositions modulo \sim Only difficulty \sim not \equiv : { $(t/x)A \mid t \in \mathcal{M}_s$ } does not uniquely define A

A reason to drop antisymmetry

If
$$A \Leftrightarrow B$$
 provable in \mathcal{T}, \equiv ,
for all ϕ , $\llbracket A \rrbracket_{\phi} \leq \llbracket B \rrbracket_{\phi}$ and $\llbracket B \rrbracket_{\phi} \leq \llbracket A \rrbracket_{\phi}$
If $A \equiv B$, then for all ϕ , $\llbracket A \rrbracket_{\phi} = \llbracket B \rrbracket_{\phi}$

With antisymmetry: same notion Without 4 = 4 and 2 + 2 = 4 same interpretation Fermat's little theorem and Fermat's last theorem different $\leq \geq$ interpretations

Consistency

If ${\mathcal T}$ has a model if and only if ${\mathcal T}$ consistent

Here: even non consistent theories have models

But: A pre-Heyting algebra is trivial if $a \le b$ always A theory \mathcal{T}, \equiv is consistent if and only if it has a model whose pre-Heyting algebra is non trivial VI. Super-consistency

An exercise

A model valued in $\{0,1\}$ of the congruence defined with the reduction rule

 $P \longrightarrow (Q \Rightarrow Q)$

That is: find \hat{P} and \hat{Q} such that $\hat{P} = (\hat{Q} \stackrel{\sim}{\Rightarrow} \hat{Q})$ A solution: $\hat{Q} = 1$ and $\hat{P} = (1 \stackrel{\sim}{\Rightarrow} 1) = 1$

No property of the algebra $\{0,1\}$ really used

$$\hat{Q}= ilde{ op}$$
 and $\hat{P}=(ilde{ op} ilde{ op})$ works in any pre-Heyting algebra ${\cal B}$

Thus, the congruence \equiv has a model valued in $\{0,1\}$ and also in any algebra ${\cal B}$

Super-consistency

A theory is super-consistent if it has a model valued in any (full, ordered, and complete) pre-Heyting algebra

Why do we care: as we shall see super-consistency implies termination of proof-reduction, hence the witness property

Next time

Arithmetic