The Notion of model



I. What we have seen last time



A theory = a set of axioms + a decidable and non confusing
congruence (often defined with a reduction system)
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rEC A-introif C=AAB

Proof reduction does not always terminate
But all (1) purely computational theories where (2) proof reduction
terminates have the witness property



Next

Examples of theories

Prove termination of proof-reduction for some of these theories
For this: the notion of model



[I. Models valued in {0,1}



The algebra {0,1}

B={0,1}
<: natural order on this set
T=1, L=0

A, function from {0,1} x {0,1} to {0,1}
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V and = similar
V and 3 functions from P*({0,1}) to {0,1}
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Models valued in {0,1}

A model for a language L is formed with

» for each sort s, a non empty set M,

» for each function symbol f of arity (si, ..., s,,s’), a function f

from Mg x ... x Mg, to My

» for each predicate symbol P of arity (si, ..., s,), a function P
from Mg, X ... x Mg, to B



Interpretation in a model

[ ] maps every term t of sort s, to an element [t] of M,
every proposition A to an element [A] of B

Morphism A

[f(tr, . tn)] = F([ta], -, [ta])

[P(t1,...,ta)] = P([td], .-, [ta])

[AAB] =[A] A [B], etc.

Completely defined by its image on the variables



Valuations

Function ¢ of finite domain associating to the variables xi, ..., x, of
sorts sp, ..., Sp elements ay, ..., a, of My, ..., M

n

Any valuation ¢ extends to a morphism [ ]4 between

> the terms and the propositions whose free variables are in the
domain of ¢

» and the model M



> [x]y = o(x)

> [F(t1, o t)]o = F([t1lg, s [talls)

> [P(tr, s ta)lo = P([t]g: -, [tals)

> [Tle =T, [L]s =1

> [AABly = [Als A [Bls, [AV Bly = [Als V [Bls
» [A= B], = [Als = [Bly

> [Vx Al = ¥ {[Algpx=a | 2 € Ms}

> [B3x Al = 3 {[Alpx=a | 2 € Ms}



Validity

A valid in M if for all ¢, [Als > T
At, ..., An b B valid in M if the proposition (A1 A ... N A,) = Bis
T valid in M if all its axioms are

Soundness: If the proposition A has a classical proof in T, then it
is valid in all models of T

Completeness: If the proposition A is valid in all models of 7T, then
it has a classical proof in T



Contrapositive of soundness

If a model M of T s.t. A not valid in M, then A not provable in T

Exercise: two proposition symbols P and Q
A single axiom P

@ is not provable

—Q is not provable



I1l. Many valued models



Four problems

Adapt the notion of model to prove indep. of @ with single model
Adapt the notion of model to constructive provability

Adapt the notion of model to Deduction modulo theory

Adapt the notion of model to prove termination of proof-reduction

One solution: many valued models



Algebras

Aset B

a binary relation < on B

two elements T and 1 of B

three functions A, V, and = from B x B to B

a subset A of P*(B), a function ¥ from A to B
a subset £ of P*(B), a function 3 from & to B



Models

A model for a language L is formed with
» for each sort s, a non empty set M,
» analgebra B= (B, <, T, 1, AV, AV E3,=),
» for each function symbol f of arity (si, ..., s,,s’), a function f
from Mg, X ... x Ms, to My

» for each predicate symbol P of arity (si, ..., s,), a function P
from Mg, X ... x Mg, to B

valued in the algebra B



Valuation (as above): a function ¢ of finite domain associating to
the variables xi, ..., x, of sorts sy, ..., s, elements ay, ..., a, of Mg,
o M,

Interpretation (as above):
> [xls = 0(x), [F(t1, .. tn)ls = F([ta] g, - [t]0)

> [P(ta, .., tn)]]qb = 'B(Htlﬂqﬁ? s [[tn]]qﬁ)
> [AABls = [Als 7 [B]y, etc.
> [Vx Alp = ¥ {[Alpxcs | 2 € Ms)

Validity (as above): for all ¢, [A], > T



Examples of algebras

{0,1}

But also:

@ZP({374}~) = {67{3}7{4}7{374}}1 < =G,
T={3,4}, L=g,

aAb=anb,aVb=aUb, a= b= ({3,4}\a)Ub,
9E:m)<eEXv§|E:UerX

Note Za=a= 1 ={3,4}\a



P=T=1{34)
Q= {4}
Neither @ nor =@ is valid

Aggregates two models in one
M3 . IS = 1, é =0
My P=1,0=1
M:A={i|Avaldin M;}



From P({3,4}) to pre-Boolean algebras

Models where 3 is a powerset

Generalize: models where B is a Boolean algebra
A set with, an order, greatest lowerbounds (T, A, V) and least
upperbounds (L, ¥, 3) and a relative complement =

Generalize further: order: reflexive, antisymmetric, transitive
Antisymmetry useless and complicates proofs: drop it
Intuition: A < B if A= B provable: reflexive, transitive, not
antisymmetric



Pre-Boolean algebras

Set B, binary reIaEion <, T and L elements of B, A, V, and =
binary functions, V function from a subset A of 73+( ) to B, and 3
function from a subset £ of PT(B) to B

a<a ifa<band b<cthena<c

aAb<a aAb<b ifc<aandc<bthenc<aAb
etc.

fandonlylfa/\b<c

(a = b))

a~§b:”>
T<(aV



Examples of pre-Boolean algebras

{01}

P({3,4})

but also {0}

and any set equipped with the full relation and any operations



Soundness and completeness

Soundness: If the proposition A has a classical proof in T, then it
is valid in all models of T

Completeness: If the proposition A is valid in all models of 7, then
it has a classical proof in T

More models: soundness stronger, completeness weaker



IV. Models and constructive proofs



The validity of the excluded-middle

Models valued in {0,1} are all models of the excluded-middle
[AV Al = [Als V =[Als = max([As, 1 = [Als) = 1
Models valued in P(E) also
[AV =A]y = [Als V =[Als = [Als U (E\ [Aly) = E
Models valued in a (pre-)Boolean algebra also

T<(a¥(a= b))

Valid in all models but no constructive proof



From pre-Boolean algebra to pre-Heyting algebras

Just drop the condition

T<(aV(a= b))

pre-Heyting algebra



A pre-Heyting algebra that is not a pre-Boolean algebra

Instead of P(R), the open sets only
Pre-order C (antisymmetric in this case)

Everything works (open sets stable by unions, finite intersections)
except infinite intersections and complement
In this case take the interior

N

73\7; P = (-00,0)U(0,+00) =R\ {0}



Another pre-Heyting algebra that is not pre-Boolean

{0,1/2,1}
natural order

T=11=0aAk b=glb(a,b), a¥ b= lub(a,b),
VA=

A = glbycax, JE= lubycgx
a=b=~>bif a> b, and 1 otherwise

a< (b= c)ifandonlyif (a A b) < c (three cases: b<c, b>c
and a< ¢, and b> cand a > ¢)

127 (1/220)=1/270=1/2



Soundness

If the proposition A has a constructive proof in T, then it is valid
in all models of T

Lemma: If T+ A has a constructive proof, then it is valid in all
pre-Heyting models (By induction over proof structure)



Completeness

If the proposition A is valid in all models of T, then it has a
constructive proof in T

Weak

A simple proof: build a single model where valid propositions are
exactly those that have a constructive proof in T



The Lindenbaum model

Idea: Interpret each term (resp. proposition) by itself
M = set of terms (of sort s), B = set of propositions

Closed terms and prop. of LU S, S infinite set of constants

A < B if A= B has a constructive proof in T
The operations T, 1, A, V, and =, are T, L, A, V, and =



A = & set of subsets of B of the form {(t/x)A | t € M} for some
A

A unique
Y {(t/x)A| t € M} = (Vx A)
J{(t/x)A| t € Ms} = (3x A)

function mapping t1, ..., t, to f(t1, ..., ts)

:
P: function mapping t1, ..., t, to P(t1, ..., tn)



Algebra of Lindenbaum model of 7 a pre-Heyting algebra

Lindenbaum model of 7: model of T

A valid in the Lindenbaum model of 7 then A has a constructive
proof in T



V. Models and Deduction modulo theory



Validity of a theory in Deduction modulo theory

= valid in M if for all A and B such that A= B, for all ¢
[Als = [B]

T,= valid in M if all axioms of T and = are valid in M



Soundness

If the proposition A has a constructive proof in T, then it is valid
in all models of T

Lemma: If T = A has a constructive proof, then it is valid in all
pre-Heyting models

(By induction over proof structure using the fact that the model is
a model of the congruence to justify the replacement of a
proposition by a congruent one in each rule)



Completeness

Lindenbaum model:

Replace terms by classes of terms modulo =

Replace propositions by classes of propositions modulo ~

Only difficulty ~ not =: {(t/x)A | t € M} does not uniquely
define A



A reason to drop antisymmetry

If A< B provable in T, =,
for all ¢, [Aly < [Bly and [B]s < [Alg
If A= B, then for all ¢, [A]s = [B]s

With antisymmetry: same notion

Without

4 =4 and 2 + 2 = 4 same interpretation

Fermat’s little theorem and Fermat’s last theorem different <>
interpretations



Consistency

If 7 has a model if and only if 7 consistent

Here: even non consistent theories have models

But: A pre-Heyting algebra is trivial if a < b always
A theory T, = is consistent if and only if it has a model whose
pre-Heyting algebra is non trivial



VI. Super-consistency



An exercise

A model valued in {0, 1} of the congruence defined with the
reduction rule

P— (Q= Q)

That is: find P and Q such that =(Q= Q)
Asolution: Q=1land P=(1=31)=1



But ...

No property of the algebra {0, 1} really used

—

=T and IS:(—T—:">

£

) works in any pre-Heyting algebra B

Thus, the congruence = has a model valued in {0,1} and also in
any algebra B



Super-consistency

A theory is super-consistent if it has a model valued in any (full,
ordered, and complete) pre-Heyting algebra

Why do we care: as we shall see super-consistency implies
termination of proof-reduction, hence the witness property



Next time

Arithmetic



