On the optimal reachability problem
in weighted timed automata and games

Patricia Bouyer-Decitre

LSV, CNRS & ENS Cachan, France

1/96



Time-dependent systems

@ We are interested in timed systems
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Time-dependent systems

@ We are interested in timed systems

@ ... and in their analysis and control
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An example: The task graph scheduling problem

COmpUte DX (Cx(A+B))+(A+B)+(CxD) using two processors: A B c D
P, (fast): P, (slow): - -
time time c
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[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata
(Communication of the ACM).
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An example: The task graph scheduling problem

Compute Dx(Cx(A+B))+(A+B)+(CxD) using two processors:
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[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata
(Communication of the ACM).
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Timed automata

Outline

© Timed automata
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Timed automata

The model of timed automata
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Timed automata

The model of timed automata
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Timed automata

Modelling the task graph scheduling problem
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Timed automata

Modelling the task graph scheduling problem

@ Processors

Py x=2 x=3
d 5 d
(x<2) x:=0 x:=0 (x<3)
= =7
Py: y=5 Y

doney N doney

<5 o o (<7)
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Timed automata

Modelling the task graph scheduling problem

° Processors @ Tasks
Ta: __tint, —~ t ::i:
done; d| done; < :1 2 !
addy die multy add; S done;
(x<2) (x<3) _
5. —
o t3 ~ ts:=1
y=b y=7 add; J done; :

Py
doney . doney

<5 o o (<7)
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Timed automata

Modelling the task graph scheduling problem

° Processors @ Tasks
Ta: __tint, —~ t ::]Q:
done; done; ‘ :1 > !
add; multy add; S done;
x<2 (x<3 .
(x=2) ) T5.O £ ~ tS:Zb
add; S done;
donep donep
addp multy
(y<5) (y<7)

~ build the synchronized product of all these automata
(PullP) s (Ta | T2 [ -+ |l Te)
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Timed automata

Modelling the task graph scheduling problem

° Processors @ Tasks
Ta: __tint, —~ t ::]Q:
done; done; ‘ :1 > !
add; multy add; S done;
x<2 (x<3 .
(x=2) ) T5.O £ ~ ts:zlo
add; S done;
donep donep
addp multy
(y<5) (y<7)

~ build the synchronized product of all these automata

(PullP) s (Ta | T2 [ -+ |l Te)
A schedule: a path in the global system which reaches t; A--- A tg

Questions one can ask
@ Can the computation be made in no more than 10 time units?
@ Is there a scheduling along which no processor is ever idle?
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Timed automata

Analyzing timed automata

x<2, x:=0 X=0 A
O— O/—\ y>2
y:=0 ~ )C C
y>2, y:=0

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

@ Technical tool: region abstraction

[AD94] Alur, Dill. A Theory of Timed Automata (Theoretical Computer Science).
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Timed automata

Analyzing timed automata

x=0A
O—= O/—\ y>2
y:=0 ~ )C C
y>2, y:=0

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

@ Technical tool: region abstraction
o Efficient symbolic technics based on zones, implemented in tools

[AD94] Alur, Dill. A Theory of Timed Automata (Theoretical Computer Science).
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Timed automata

Technical tool: Region abstraction

clock y

clock x
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Timed automata

Technical tool: Region abstraction

clock y
only constraints: x ~ ¢ with ¢ € {0,1,2}
y ~ ¢ with c € {0,1,2}
2 ° °
1 ° °
0 clock x
0 1 2

@ “compatibility” between regions and constraints
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Timed automata

Technical tool: Region abstraction

clock y

The path O——Q——0O

clock x

- can be fired from ®
- cannot be fired from ®

@ “compatibility” between regions and constraints

@ “compatibility” between regions and time elapsing
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Timed automata

Technical tool: Region abstraction

clock y

Ndvd
ydvd

0 clock x
0 1 2

@ “compatibility” between regions and constraints
@ “compatibility” between regions and time elapsing
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Timed automata

Technical tool: Region abstraction

|
Vavd

clock x

@ “compatibility” between regions and constraints

@ “compatibility” between regions and time elapsing

~» This is a finite time-abstract bisimulation!
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Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:
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Time-abstract bisimulation

This is a relation between e and e such that:
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1 a 1
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Time-abstract bisimulation

This is a relation between e and e such that:
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Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:
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Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:

a 5(d)
V @ — @ Vd >0 e ——— 0
L, s(d) !
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.. and vice-versa (swap e and e).
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Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:

a é(d)
V @ —m— @ VYd >0 @ —> 0
: 5 : Cooo(d)
1 @—m 0 3d’' >0 o——> 0
.. and vice-versa (swap e and e).
Consequence
di,a; dh,a, ds3,a3

Vo (b, v1) — (b2, vo) — ({3, v3) —
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Time-abstract bisimulation
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Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:
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Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:

a
V @ — @ vd >0 ()
| | |
1 a 1 1
i @— @ id’ >0 [

.. and vice-versa (swap e and e).

Consequence

di,a1 dy,a2 ds3,a3

Vo (b, v1) — (b2, vo) — ({3, v3) —

1

(01, Ry) —~ (L2, Ry) —=~ ({3, R3) —~

T

dl,al d2,32
Vvi € R 3 (€1, vi) — (b2, v3) — (63, v3) —

with v; € R;

with v/ € R;

v
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Timed automata

The region automaton

y=1,b x<1,c x<1,c

x>0,a
_>®_> x>1,d
y:=0

y<1l,a,y:=0
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The region automaton
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Timed automata

The region automaton

y=1,b x<1,c \ x<1,c
x>0,a
—>®—> x>1,d
y:=0

y<1l,a,y:=0 y
S0
—_—
x=y=0 [
, b b ——e
y i |/|
/ * : x
s1 s1 b s1 b s
0=y<x<1 l=y<x
C £
s3 d s3
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Weighted timed automata

Outline

© Weighted timed automata
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Modelling resources in timed systems

@ System resources might be relevant and even crucial information
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Weighted timed automata

Modelling resources in timed systems

@ System resources might be relevant and even crucial information

@ energy consumption, .
e price to pay,

memory usage,
° y & o bandwidth,

o ...
~» timed automata are not powerful enough!
@ A possible solution: use hybrid automata

a discrete control (the mode of the system)
+ continuous evolution of the variables within a mode
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Weighted timed automata

Modelling resources in timed systems

@ System resources might be relevant and even crucial information

@ energy consumption, .
e price to pay,

memory usage,
° y & o bandwidth,

~» timed automata are not powerful enough!

@ A possible solution: use hybrid automata

The thermostat example

T<19
Off On

T=—0.5T T=2.25—05T

(T>18) (T<22)
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Weighted timed automata

Modelling resources in timed systems

@ System resources might be relevant and even crucial information

e energy consumption, .
@ price to pay,

memory usage,
° y & o bandwidth,

~» timed automata are not powerful enough!

@ A possible solution: use hybrid automata

The thermostat example

T<19
Off On

T=—05T T=2.25—05T

(T>18) (T<22)
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Ok...

Weighted timed automata

Easy...
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Weighted timed automata

Ok... but?

constraint

/\
~—

constraint
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Weighted timed automata

Ok... but?

constraint

/\
~—

constraint

Hard!
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Weighted timed automata

Modelling resources in timed systems

@ System resources might be relevant and even crucial information

e energy consumption, .
@ price to pay,

@ memory usage,
y usag o bandwidth,

~ timed automata are not powerful enough!
@ A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata. Even for the
simplest, the so-called stopwatch automata (clocks can be stopped).

[HKPV05] Henzinger, Kopke, Puri, Varaiya. What's decidable wbout hybrid automata? (SToC'95).
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Weighted timed automata

Modelling resources in timed systems

@ System resources might be relevant and even crucial information

e energy consumption, .
@ price to pay,

@ memory usage,
y usag o bandwidth,

~ timed automata are not powerful enough!
@ A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata. Even for the
simplest, the so-called stopwatch automata (clocks can be stopped).

@ An alternative: weighted/priced timed automata [ALP01,BFH+01]
~ hybrid variables do not constrain the system
hybrid variables are observer variables

[HKPV05] Henzinger, Kopke, Puri, Varaiya. What's decidable wbout hybrid automata? (SToC'95).
[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).

[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
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Weighted timed automata

Modelling the task graph scheduling problem

done;

° Processors @ Tasks
Ta: __tint, —~ t ::]Q:
done; done; ‘ :1 2 :
add; Idle multy add; S done;
(x<2) (x<3) Ts:
N 53
y:5 y:7 O add; \J O

P2.

doney @ doney
addy multy

v<5) oo a2
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Weighted timed automata

Modelling the task graph scheduling problem

@ Processors

P x=2 x=3
done; done;
add; multy
(x<2) -0 x=0 (x<3)
Py y=5 y=T
donep donep
addy multy
(y<5) yi=0 yi=0 (y<7)

@ Modelling energy

p,: x=2 x=3
1.
done; done;
add; multy
(x=2) x:=0 x:=0 (x<3)
=5 -7
P, y y
donep donep
addy multy
(y<5) 0 x:=0 (y<7)

o Tasks
OO0
add; S done;
T5:: t3 —~ t5:= :
add; S done;

A good schedule is a path in the
product automaton with a low cost J
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Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©

+5

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
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x<2,c,y:=0
~©
+5
6o o S on 5o 2L S O
x 0 13 13 1.3 2
0 13 0 0 0.7

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
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+5
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x 0 13 13 1.3 2
y 0 13 0 0 0.7
cost :

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
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Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
-0
+5
b B o6 o Mo 2 o S O
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7
cost : 6.5

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
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Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
-0
+5
b B o6 o Mo 2 o S O
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7
cost : 6.5 + 0

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
32/96



Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
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X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7
cost : 6.5 + 0 + 0

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
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y 0 1.3 0 0 0.7
cost : 6.5 + 0 + 0 + 0.7

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
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Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
-®
+5
b B o6 o Mo 2 o S O
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7
cost : 6.5 + 0 + 0 + 0.7 + 7

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
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Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©
+5
6o o S on 5o 2L S O
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7
cost : 6.5 + 0 + 0 + 0.7 + 7 = 142

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
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Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©

+5

Question: what is the optimal cost for reaching @?

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
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Question: what is the optimal cost for reaching @?

5t+10(2—t)+1

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
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Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©

+5

Question: what is the optimal cost for reaching @?

5t+10(2—t)+1,5t+(2—-t)+7

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
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Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©

+5

Question: what is the optimal cost for reaching @?

min (5t +10(2—t)+1,5t+(2—1t)+7)

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
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Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©

+5

Question: what is the optimal cost for reaching @?

Oéurp;z min (5t +102—¢t)+1, 5t+(2—-t)+7)=9

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
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Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©

+5

Question: what is the optimal cost for reaching @?

Oéurp;z min (5t +102—¢t)+1, 5t+(2—-t)+7)=9

~ strategy: leave immediately £y, go to /3, and wait there 2 t.u.
[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).

[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
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Weighted timed automata

Optimal-cost reachability

Theorem [ALP01,BFH+01,BBBR07]

In weighted timed automata, the optimal cost is an integer and can be
computed in PSPACE.

@ Technical tool: a refinement of the regions, the corner-point
abstraction

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).

[BFH-+-01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
[BBBRO7] Bouyer, Brihaye, Bruyére, Raskin. On the optimal reachability problem (Formal Methods in System Design).
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Optimal-cost reachability

Theorem [ALP01,BFH+01,BBBR07]

In weighted timed automata, the optimal cost is an integer and can be
computed in PSPACE.

@ Technical tool: a refinement of the regions, the corner-point
abstraction

@ Symbolic technics based on priced zones

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).

[BFH-+-01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
[BBBRO7] Bouyer, Brihaye, Bruyére, Raskin. On the optimal reachability problem (Formal Methods in System Design).
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Technical tool: the corner-point abstraction
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Weighted timed automata

Technical tool: the corner-point abstraction

Time elapsing '\
Discrete transition —
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Technical tool: the corner-point abstraction

Cost rate 3 \
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Weighted timed automata

Technical tool: the corner-point abstraction

Cost rate 3 \
Discrete cost 7 o

Optimal cost in the weighted graph
= optimal cost in the weighted timed automaton!
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Timed games

Modelling the task graph scheduling problem

° Processors @ Tasks
Ty —
add; multy add; S done;
(x<2) (x<3) Ts: ts o
O O—0
y=5 y=7 add; J done;

° Modelling energy

done; done;
add; multy

(x<2)

donep donep
addp multy
y<5 y<7
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Timed games

Modelling the task graph scheduling problem

° Processors o Tasks
Ta: __tint, —~ t ::l:
done; done; ‘ :1 2 :
addy multy add; \J done;
(x<2) (x<3) Ts: e
O—0—-—-—"0
y=5b y=7 add; S done;
P,
donep donep
addy multy
=5 y—o y=0 (=7)
° Modelling energy ° Modelling uncertainty
done; done; &m—er Llonei
add; multy %1/ \miltl/;®
(x<2) (x<3)
donep donep - -
adds multy (loiie> donep
y<5 y<7 addp multy (X<3)
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Timed games

Modelling the task graph scheduling problem

A (good) schedule is a strategy in
the product game (with a low cost)

49/96



Timed games

An example of a timed game

Rule of the game
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An example of a timed game

Rule of the game
(x<2) @ Aim: avoid @ and reach ©

® ®

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

v

A (memoryless) winning strategy

e from (/p,0), play (0.5, ¢c1)
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An example of a timed game

Rule of the game
(XQ @ @ Aim: avoid @ and reach ©
, @ How do we play? According to a
) - strategy:
! xsl,a
1
! f : history — (delay, cont. transition)

. A (memoryless) winning strategy

e from (£, 0), play (0.5, c;)

~> can be preempted by >
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An example of a timed game

Rule of the game
(x<2) @ Aim: avoid @ and reach ©

@

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

©

A (memoryless) winning strategy
(&) e from (¢o,0), play (0.5, ¢c1)
~> can be preempted by >
& o from (¢2,%), play (1 — x, )
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Timed games

An example of a timed game

Rule of the game
(x<2) @ Aim: avoid @ and reach ©

@

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

©

A (memoryless) winning strategy
x<1,c5 e from (¢o,0), play (0.5, ¢c1)
~> can be preempted by >
o from ({2, %), play (1 —x, c)
e from (¢3,1), play (0, c3)
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Timed games

An example of a timed game

Rule of the game
(x<2) @ Aim: avoid @ and reach ©

@

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

x>2,¢

A (memoryless) winning strategy

e from (/p,0), play (0.5, ¢c1)

~> can be preempted by >

o from (¢2,%), play (1 — x, )
e from (¢3,1), play (0, c3)

e from (¢1,1), play (1, c1)
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strategy:

f : history — (delay, cont. transition)
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@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)
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Timed games

An example of a timed game

Rule of the game
o Aim: avoid & and reach ©

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

1
x<1,up,x:=01
1

XS].,C;; i
Problems to be considered

@ Does there exist a winning strategy?

o If yes, compute one (as simple as possible).

50/96



Timed games

Decidability of timed games

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and
EXPTIME-complete. Furthermore memoryless and ‘“region-based”
strategies are sufficient.

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (SSC'98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).
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Timed games

Decidability of timed games

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and
EXPTIME-complete. Furthermore memoryless and ‘“region-based”
strategies are sufficient.

~ classical regions are sufficient for solving such problems
a region-closed attractor can be computed

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.

[AM99] Asarin, Maler. As soon as possible: time optimal control for timed automata (HSCC’99).
[BHPRO7] Brihaye, Henzinger, Prabhu, Raskin. Minimum-time reachability in timed games (ICALP'07).
[JTO7] Jurdzifiski, Trivedi. Reachability-time games on timed automata (ICALP’07).
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Weighted timed games

A simple timed game
x<2,c,y:=0 ,”’
(y=0) °~.
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~© @

+5 (y=0) "~

Question: what is the optimal cost we can ensure while reaching @?
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Weighted timed games

A simple weighted timed game

x<2,c,y:=0 -
-® )

+5 (y=0) "~

Question: what is the optimal cost we can ensure while reaching @?

5t+102—t)+1,5t+(2—-t)+7
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Weighted timed games

A simple weighted timed game

x<2,c,y:=0 -
-® )

+5 (y=0) "~

Question: what is the optimal cost we can ensure while reaching @?

max (5t +10(2—t)+ 1,5t +(2—t)+7)
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Weighted timed games

A simple weighted timed game

x<2,c,y:=0 -
-® )

+5 (y=0) "~

Question: what is the optimal cost we can ensure while reaching @?

. 1
Oér:; max ( 5t +10(2 —¢t)+ 1, 5t+(2—t)+7)—14+§
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Weighted timed games

A simple weighted timed game

x<2,c,y:=0 -
~© @

+5 (y=0) "~

Question: what is the optimal cost we can ensure while reaching @?
1

i 10(2 — 1 2 — = =

Ogur:; max (5t +10(2—t)+1,5t+(2—t)+7) =14+ 3

~ strategy: wait in {o, and when t = 3, go to {;
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Weighted timed games

Optimal reachability in weighted timed games (1)

This topic has been fairly hot these last fifteen years...

[LMMO02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).

[ABMO4] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed games (ICALP'04).

[BCFLO4] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (FSTTCS'04).

[BBROS5] Brihaye, Bruyére, Raskin. On optimal timed strategies (FORMATS'05).

[BBMO6] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).

[BLMRO6] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS'06).

[Rut11] Rutkowski. Two-player reachability-price games on single-clock timed automata (QAPL'11).

[HIM13] Hansen, Ibsen-Jensen, Miltersen. A faster algorithm for solving one-clock priced timed games (CONCUR'13).

[BGK-+14] Brihaye, Geeraerts, Krishna, Manasa, Monmege, Trivedi. Adding Negative Prices to Priced Timed Games (CONCUR'14). y
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Optimal reachability in weighted timed games (1)

This topic has been fairly hot these last fifteen years...
[LMMO02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK-+14]

[LMMO2]
Tree-like weighted timed games can be solved in 2EXPTIME. J
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Weighted timed games

Optimal reachability in weighted timed games (1)

This topic has been fairly hot these last fifteen years...
[LMMO02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

[LMMO2]
Tree-like weighted timed games can be solved in 2EXPTIME.

[ABMO04,BCFL04|

Depth-k weighted timed games can be solved in EXPTIME. There is a
symbolic algorithm to solve weighted timed games with a strongly
non-Zeno cost. )

%
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Weighted timed games

Optimal reachability in weighted timed games (2)

[BBR05,BBM06,BJM15]

In weighted timed games, the optimal cost (and the value) cannot be
computed, as soon as games have three clocks or more.
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Weighted timed games

Optimal reachability in weighted timed games (2)

[BBR05,BBM06,BJM15]

In weighted timed games, the optimal cost (and the value) cannot be
computed, as soon as games have three clocks or more.

[BLMRO06,Rut11,HIM13,BGK+14]

Turn-based optimal timed games are decidable in EXPTIME (resp.
PTIME) when automata have a single clock (resp. with two rates). They
are PTIME-hard.

v
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Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x. )
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Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x. )
Add™* (x) Add™ (x)
y=1,y:=0 y=1,y:=0 y=L,y:= y=L,y:=0
z:=0 Q x=1,x:=0 Q z=1,z:=0 z:=0 Q x=1,x:=0 Q z=1,z:=0
U \J \J U
0 1 _. 1 0

The cost is increased by xy The cost is increased by 1—xg
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Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x. )

)

2
o O
Y=Yo ;‘

=0
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Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x. )

=0 'O_" Add " (x) ——— Add" (x) ——— Add" (y) —»@
x=x0 z.- e e ——— T +2
Y=Y [ ) ~‘~§A 2=0

¥=0 O—» Add ™ (x) ———> Add™ (x) ——> Add" (y) —1>©

° In@, cost =2xp + (1 — y) +2
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Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x. )

0 O Add (1) ——— Add () ——— ‘A'aa!(;;;_><+2 D)
- O O R ——» R —— RO —— @
° In@, cost = 2xp + (1 — yp) +2

In @ cost =2(1 —xp) +yo +1
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Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x. )

J e —
;=0 'O_> Add* (x) — > Add" (x) — > Add~(y) —>©
x=x0 z.- +2
Y=Y C ‘~~~A 2=0

<=0 O—» Add™ (x) =——> Add™ (x) > Add"(y) —1>©

° In@, cost = 2xp + (1 — yp) +2
In @ cost =2(1 —xp) +yo +1

o if yp < 2xp, player 2 chooses the first branch: cost > 3
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Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x. )

J e —
;=0 'O_> Add* (x) — > Add" (x) — > Add~(y) —>©
x=x0 z.- +2
Y=Y C ‘~\~L 2=0

<=0 O—» Add™ (x) =——> Add™ (x) > Add"(y) —1>©

° In@, cost = 2xp + (1 — yp) +2
In @ cost =2(1 —xp) +yo +1

o if yp < 2xp, player 2 chooses the first branch: cost > 3
if yo > 2xp, player 2 chooses the second branch: cost > 3
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Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x. J

=0 - . o . .
=0 'O_> Add (x) ———> Add" (x) ——— Add~(y) —»@
X=Xp C: Ze-" ’ ’ E y +2
Y=o MDY z=0 4 ; "

=<0 Y Add™ (x) —— Add~ (x) Add* (y) - ©

° In@, cost = 2xp + (1 — yp) +2
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Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x. J

=0 - . o . .
=0 'O_> Add (x) ———> Add" (x) ——— Add~(y) —»@
X=Xp C: Ze-" ’ ’ E y +2
Y=o MDY z=0 4 ; "

=<0 Y Add™ (x) —— Add~ (x) Add* (y) - ©

° In@, cost = 2xp + (1 — yp) +2
In @ cost =2(1 —xp) +y+1

o if yp < 2xp, player 2 chooses the first branch: cost > 3
if yo > 2xp, player 2 chooses the second branch: cost > 3
if yo = 2xp, in both branches, cost =3

~» player 2 can enforce cost 3 + |yo — 2xo|
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Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x. J

z=0 =~ . ; 5 F
L0 'O_’ Add* (x) ———> Add" (x) —— Add~ (y) —(2)
X=Xp C: Ze-" ’ : ’ E y +2
Y=o PREISS z=0 4 ; "
“0(C Y——> Add™ (x) ——> Add~ (x) Add* (y) - ©

° In@, cost = 2xp + (1 — yp) +2
In @ cost =2(1 —xp) +y+1

o if yp < 2xp, player 2 chooses the first branch: cost > 3
if yo > 2xp, player 2 chooses the second branch: cost > 3
if yo = 2xp, in both branches, cost =3

~» player 2 can enforce cost 3 + |yo — 2xo|

@ Player 1 has a winning strategy with cost < 3 iff yp = 2xg
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Weighted timed games

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
X =— and Y=5a
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Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
X =— and Y=5a

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3. J

Globally, (x<1,y<1,u<1)

x=1,x:=0 x=1,x:=0 )
V y=1,y:=0 V y=1,y:=0 Test, (x=2z)

i :
u:=0 Q 2:=0 Q u=1,u:=0 , (u=0)
J J O
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Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
X =— and Y=

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

x=1,x:=0 x=1,x:=0
V y=1,y:=0 VvV y=1,y:=0 Test, (x=2z)
A
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Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
X =— and Y=

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

x=1,x:=0 x=1,x:=0

V y=1,y:=0 V y=1,y:=0 Test, (x=2z)
A
u=0 Q 2=0 Q u=1,u:=0 | (u=0)
U J O
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y:z% y:2%2+oz
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Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
X =— and Y=

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

x=1,x:=0 x=1,x:=0

VvV y=1l,y:=0 V y=1,y:=0 Test, (x=2z)
u:=0 Q 2:=0 Q u=1,u:=0 (u=0)
O O O
X:2%1 Xzz%l-i-a x:z%1
y= E%Ef y= ngy—F(y y= 5%5

z=x% z=0 z=q
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Weighted timed games

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:

@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:
1

and Y=

The two-counter machine has a halting computation iff player 1 has a J

winning strategy to ensure a cost no more than 3.

x=1,x:=0 x=1,x:=0
V y=1,y:=0 VvV y=1,y:=0 Test, (x=2z)
u:=0 Q z:=0 Q u=1,u:=0 (u=0)
O O O
x_z%l x:z%l+a x:z%l
y=55 y=55+a y=55
z=0 z:zcllA1

Z=%
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Are we done?
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Weighted timed games

Are we done? No!

Optimal cost is computable...
. when cost is strongly non-zeno. [AMO04,BCFL04]

There is kK > 0 s.t. for every region cycle C, for every real run p read on C,

cost(o) > K

Optimal cost is not computable...

. when cost is almost-strongly non-zeno.

There is kK > 0 s.t. for every region cycle C, for every real run g read on C,

cost(g) > Kk or cost(p) =0
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Weighted timed games

Are we done? No!

Optimal cost is computable...
. when cost is strongly non-zeno. [AMO04,BCFL04]

There is k > 0 s.t. for every region cycle C, for every real run g read on C,

cost(o) > K

Optimal cost is not computable... but is approximable!

. when cost is almost-strongly non-zeno. [BIJM15]

There is k > 0 s.t. for every region cycle C, for every real run p read on C,

cost(p) > Kk or cost(p) =0

@ Almost-optimality in practice should be sufficient

@ Even when we know how to compute the value, we are only able to
synthesize almost-optimal strategies...

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games (CONCUR'15).
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|dea of the proof: Semi-unfolding

Only cost 0
Kernel

Hypothesis:

cost > 0 implies cost > &
Only cost 0
Kernel K
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Weighted timed games

Idea of the proof: Semi-unfolding

Only cost 0
Kernel KC

Hypothesis:

cost > 0 implies cost > &
Only cost 0
Kernel

Conclusion: we can stop unfolding the game after finitely many steps
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Tools

Tools for (weighted) timed automata and games

@ Many tools and prototypes everywhere on earth...
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Tools

Tools for (weighted) timed automata and games

@ Many tools and prototypes everywhere on earth...

@ Tool-suite Uppaal, developed in Aalborg (Denmark) and originally
Uppsala (Sweden) since 1995
o Uppaal for timed automata
o Uppaal-TiGa for timed games
o Uppaal-Cora for weighted timed automata

Uppaal url: http://www.uppaal.org
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Tools

Tools for (weighted) timed automata and games

@ Many tools and prototypes everywhere on earth...

@ Tool-suite Uppaal, developed in Aalborg (Denmark) and originally
Uppsala (Sweden) since 1995

@ Our new tool TiAMo, developed by Maximilien Colange (LSV),
using code by Ocan Sankur (IRISA)

TiAMo = Timed Automata
Model-checker J

Uppaal url: http://www.uppaal.org
TiAMo url: https://git.1lsv.fr/colange/tiamo
[BCM16] Bouyer, Colange, Markey. Symbolic optimal reachability in weighted timed automata (CAV'16).
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Tools

Tools for (weighted) timed automata and games

@ Many tools and prototypes everywhere on earth...

@ Tool-suite Uppaal, developed in Aalborg (Denmark) and originally
Uppsala (Sweden) since 1995

@ Our new tool TiAMo, developed by Maximilien Colange (LSV),
using code by Ocan Sankur (IRISA)

TiAMo = Timed Automata
Model-checker J

o Timed automata:
(time-optimal) reachability

o Weighted timed automata:
optimal rechability

Uppaal url: http://www.uppaal.org
TiAMo url: https://git.1lsv.fr/colange/tiamo
[BCM16] Bouyer, Colange, Markey. Symbolic optimal reachability in weighted timed automata (CAV'16).
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Tools

Tools for (weighted) timed automata and games

@ Many tools and prototypes everywhere on earth...

@ Tool-suite Uppaal, developed in Aalborg (Denmark) and originally
Uppsala (Sweden) since 1995

@ Our new tool TiAMo, developed by Maximilien Colange (LSV),
using code by Ocan Sankur (IRISA)

TiAMo = Timed Automata
Model-checker J

o Timed automata: e Aims at being a platform for
(time-optimal) reachability experiments (open source!)

o Weighted timed automata: o Aims at asserting and
optimal rechability comparing algorithms

Uppaal url: http://www.uppaal.org
TiAMo url: https://git.1lsv.fr/colange/tiamo
[BCM16] Bouyer, Colange, Markey. Symbolic optimal reachability in weighted timed automata (CAV'16).
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© Towards applying all this theory to robotic systems
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Towards further applications

Example problem, objective and approach

storage 1 storage 2
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ik

@ @
S
o
o
-+
N

controller
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5] Bouyer, Markey, Perrin, aissier. tomata Abstraction of Switche: namical Systems Using Control Funnels
BMPS15] B Markey, Perrin, Schlehuber-Caissier. Timed-A Ab: i f Switched Dy ical S Using C | Fi |
(FORMATS'15).
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Towards further applications

Example problem, objective and approach

storage 1 storage 2

X
@ |
L]

conveyor belt

ik

@ @
S
o
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controller

~

@ Infinitely many configurations
@ Complex behaviour

@ Mechanical constraints

[BMPS15] Bouyer, Markey, Perrin, Schlehuber-Caissier. Timed-Automata Abstraction of Switched Dynamical Systems Using Control Funnels
(FORMATS'15).
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Towards further applications

Example problem, objective and approach

storage 1 storage 2

conveyor belt

i

robot 2

!

controlle

A«]. \\\\:E:ES
@ @

@ Infinitely many configurations
@ Complex behaviour

@ Mechanical constraints

[BMPS15] Bouyer, Markey, Perrin, Schlehuber-Caissier. Timed-Aut
(FORMATS'15).

Goal: Synthesize a controller:
@ Which robot handles an object
@ How to avoid collision
@ Don't miss any object

ta Abstraction of Switched Dynamical Systems Using Control Funnels
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Towards further applications

Example problem, objective and approach

storage 1 storage 2
oo conveyor belt XX Goal: Synthesize a controller:
@0 | ® | @ Which robot handles an object
[) @ How to avoid collision
robot 2 e Don't miss any object
e
@ Approach:

!

controlle

L~ L @ Discretization of the behaviour

via a fixed set of continuous
controllers

o Infini i i .
Infinitely many configurations @ Create an abstraction and use

o Complex behaviour previous results

@ Mechanical constraints

5] Bouyer, Markey, Perrin, aissier. tomata Abstraction of Switched Dynamical Systems Using Control Funnels
BMPS15] B Markey, Perrin, Schlehuber-Caissier. Timed-A Ab: ion of Switched Dynamical S Using Control Funnel
(FORMATS'15).
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Our approach
Simplistic idea: fixed set of reference trajectories + property

start target

obstacle
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Towards further applications

Our approach

More realistic idea: fixed set of funnels for control law + property

ui(, 1) start target
T .;tl 9
7 \o% e
~ o /‘\ tl t*\ S
j \
(@, ) obstacle

Corresponding timed automaton:

l ap <t < bp
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Towards further applications

Control funnels

System with continuous dynamics x = f(x, t)

X1

X2
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Towards further applications

Control funnels

System with continuous dynamics x = f(x, t)

X2

A (control) funnel is a trajectory F(t) of a set in the state space such
that, for any trajectory x(t) of the dynamical system:

Vo € R, x(tp) € F(to) = Vt > to, x(t) € F(t)
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Control funnels

System with continuous dynamics x = f(x, t)

X2

A (control) funnel is a trajectory F(t) of a set in the state space such
that, for any trajectory x(t) of the dynamical system:

Vo € R, x(tp) € F(to) = Vt > to, x(t) € F(t)

X2
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Towards further applications

Example

¢:: positional clock; cp: local clock

a1<c <Py m ch>A /_\ a2<c:<B2
/'_'1 Fl F2 /‘_'1
1 e e 2 . 2 4, — 3
ce:=71; cp:=0 cp:=0 cri="2, cp:=0

(ce€l}) (ce€ly) (ce€3) (ce€ly)
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Towards further applications

~>  (huge) timed automata/games
(with weights), with few clocks

— winning (optimal) strategy
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Summary

storage 1

storage 2

conveyor belt

@
@ %‘

(XX
@ ]
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robot 2

controller

safe (good) controller

Towards further applications

~>  (huge) timed automata/games
(with weights), with few clocks

— winning (optimal) strategy
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Towards further applications

A pick-and-place example

1d point mass
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Towards further applications

nd-place example

1d point mass Funnel system
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2
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lane
1 2| 3|
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Towards further applications

Current challenges

For control people
e Handle more non-linear systems (automatically build control funnels)J
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Towards further applications

Current challenges

For control people J

e Handle more non-linear systems (automatically build control funnels)

For us
@ Does not scale up very well so far (huge timed automata models)
o Build the model on-demand?
But, can we give guarantees (optimality) when only part of the
model has been built?
o Develop specific algorithms for the special timed automata we
construct?

o Implement efficient approx. algorithm for weighted timed games
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Conclusion

Summary of the talk

@ Overview of results concerning the optimal reachability problem in
weighted timed automata and games

@ Our new tool TiAMo
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Future work

@ Various theoretical issues

o Apply further the idea of approximation
o Robustness issues
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Conclusion

Conclusion

Summary of the talk

@ Overview of results concerning the optimal reachability problem in
weighted timed automata and games

@ Our new tool TiAMo

Future work

@ Various theoretical issues
o Apply further the idea of approximation
o Robustness issues

@ Continue working on TiAMo

o Implementation of (weighted) timed games (good data structures,
abstractions, etc.)
o More applications with specific challenges (e.g. robotic problems)
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