
Software Engineering

Lecture 2

Methodology & Tools

David Baelde

ENS Paris-Saclay & MPRI

September 28, 2018

Introduction

Today we will (mostly) rediscover common developer tools. . .

I Compilers and their extensions, build automation software,
installers, dependency managers, versioning system, bug
tracker, documentation generator, etc.

. . . and articulate this with our mottos, in particular:

The competent programmer is fully aware of the strictly
limited size of his own skull; therefore he approaches the
programming task in full humility, and among other things
he avoids clever tricks like the plague. – E.W. Dijkstra

Hubris is the third great virtue of a programmer. — L. Wall

Laziness is the first. — L. Wall

Introduction

Today we will (mostly) rediscover common developer tools. . .

I Compilers and their extensions, build automation software,
installers, dependency managers, versioning system, bug
tracker, documentation generator, etc.

. . . and articulate this with our mottos, in particular:

The competent programmer is fully aware of the strictly
limited size of his own skull; therefore he approaches the
programming task in full humility, and among other things
he avoids clever tricks like the plague. – E.W. Dijkstra

Hubris is the third great virtue of a programmer. — L. Wall

Laziness is the first. — L. Wall

Introduction

Today we will (mostly) rediscover common developer tools. . .

I Compilers and their extensions, build automation software,
installers, dependency managers, versioning system, bug
tracker, documentation generator, etc.

. . . and articulate this with our mottos, in particular:

The competent programmer is fully aware of the strictly
limited size of his own skull; therefore he approaches the
programming task in full humility, and among other things
he avoids clever tricks like the plague. – E.W. Dijkstra

Hubris is the third great virtue of a programmer. — L. Wall

Laziness is the first. — L. Wall

Programming Language

The first line of defense

Choose a disciplined language

I Variable declarations: avoid typos

I Static typing: guarantee simple invariants
more types more expressible invariants
I Use enumerations rather than magic numbers
I More in Prog. 2 (L3)

Exploit your compiler as much as possible

I Even with a strong and statically typed language,
the compiler is not necessarily very constraining by default.

I OCaml, C/C++, Scala, etc.: activate options to obtain
more warnings, and treat them as errors.

I Demo in Scala

The first line of defense

Choose a disciplined language

I Variable declarations: avoid typos

I Static typing: guarantee simple invariants
more types more expressible invariants
I Use enumerations rather than magic numbers
I More in Prog. 2 (L3)

Exploit your compiler as much as possible

I Even with a strong and statically typed language,
the compiler is not necessarily very constraining by default.

I OCaml, C/C++, Scala, etc.: activate options to obtain
more warnings, and treat them as errors.

I Demo in Scala

Contracts and Assertions

Code contracts

A metaphore for Floyd-Hoare logic:
pre-conditions, post-conditions, invariants, etc.

A design methodology: design by contract

Support

I Native langage support: Eiffel, SpeC#

I Extension (comments): JML

Use

I Proof of programs

I Documentation generation

I Unit test generation

I Runtime verification

Assertions

It may be hard to prove the spec,
but it can often easily be executed.

I Detect anomalies earlier.

I A form of “active” comment.

The assert function(s)

Take a boolean and raise an error if it’s false.

let add ?(needs_check=true) x rules kb =

assert (needs_check || not (mem_equiv x kb)) ;

if not (needs_check && mem_equiv x kb) then

add (fresh_statement x) kb

Often part of the core language, with an erasing facility:
ocamlc -noassert ..., g++ -DNDEBUG ..., etc.

Assertions

It may be hard to prove the spec,
but it can often easily be executed.

I Detect anomalies earlier.

I A form of “active” comment.

The assert function(s)

Take a boolean and raise an error if it’s false.

let add ?(needs_check=true) x rules kb =

assert (needs_check || not (mem_equiv x kb)) ;

if not (needs_check && mem_equiv x kb) then

add (fresh_statement x) kb

Often part of the core language, with an erasing facility:
ocamlc -noassert ..., g++ -DNDEBUG ..., etc.

Using assertions

No-no

I If assert raises an exception, it should not be caught!
(At least not permanently.)

let main () =

try ... with _ -> eprintf "Oops!\n" ; main ()

I Erasing assertions should not change the behavior of the code!
(Could we systematically detect such problems?)

Grey zone

I When is an assertion too costly?
Beware premature optimization.
Consider multiple assertion levels.

I Should we release software with assertions enabled?
Rather not, so as to benefit from precise errors.
Consider changing them into BIG warnings.

Using assertions

No-no

I If assert raises an exception, it should not be caught!
(At least not permanently.)

let main () =

try ... with _ -> eprintf "Oops!\n" ; main ()

I Erasing assertions should not change the behavior of the code!
(Could we systematically detect such problems?)

Grey zone

I When is an assertion too costly?

Beware premature optimization.
Consider multiple assertion levels.

I Should we release software with assertions enabled?
Rather not, so as to benefit from precise errors.
Consider changing them into BIG warnings.

Using assertions

No-no

I If assert raises an exception, it should not be caught!
(At least not permanently.)

let main () =

try ... with _ -> eprintf "Oops!\n" ; main ()

I Erasing assertions should not change the behavior of the code!
(Could we systematically detect such problems?)

Grey zone

I When is an assertion too costly?
Beware premature optimization.
Consider multiple assertion levels.

I Should we release software with assertions enabled?
Rather not, so as to benefit from precise errors.
Consider changing them into BIG warnings.

Using assertions

No-no

I If assert raises an exception, it should not be caught!
(At least not permanently.)

let main () =

try ... with _ -> eprintf "Oops!\n" ; main ()

I Erasing assertions should not change the behavior of the code!
(Could we systematically detect such problems?)

Grey zone

I When is an assertion too costly?
Beware premature optimization.
Consider multiple assertion levels.

I Should we release software with assertions enabled?

Rather not, so as to benefit from precise errors.
Consider changing them into BIG warnings.

Using assertions

No-no

I If assert raises an exception, it should not be caught!
(At least not permanently.)

let main () =

try ... with _ -> eprintf "Oops!\n" ; main ()

I Erasing assertions should not change the behavior of the code!
(Could we systematically detect such problems?)

Grey zone

I When is an assertion too costly?
Beware premature optimization.
Consider multiple assertion levels.

I Should we release software with assertions enabled?
Rather not, so as to benefit from precise errors.
Consider changing them into BIG warnings.

Automation

Build automation

We keep changing and rebuilding software ⇒ automate it !

Requirements

I Automatically build software from latest source code.

I Avoid useless recompilations.

I Get the dependencies right, handle subdirectories, multiple
languages and targets, code generators, etc.

I Perhaps automatically fetch dependencies, etc.

I All developers should understand its use, and actually use it.

Focus on make, but the key concepts are the same for other tools.

Build automation

We keep changing and rebuilding software ⇒ automate it !

Requirements

I Automatically build software from latest source code.

I Avoid useless recompilations.

I Get the dependencies right, handle subdirectories, multiple
languages and targets, code generators, etc.

I Perhaps automatically fetch dependencies, etc.

I All developers should understand its use, and actually use it.

Focus on make, but the key concepts are the same for other tools.

Usual make targets

GNU Coding Standards, The Release Process, Standard
Targets, R. M. Stallman et al., 2016.

make all
Compile the entire program. Should be the default.
GNU says “By default, should compile -g.” Why?

make test or make check
Test the software, or parts of it.
Meant to be used before installation.

make doc
Generate documentation from source code,
relevant only for developpers.

Usual make targets

make install
Install applications, libraries, documentation.
Create directories if needed, set the right permissions. . .
better use utilities such as install.

make clean
Delete intermediary files built by make.

make distclean
Cleans all automatically generated files.

make dist
Create a tarball for distribution to end users.

Adaptability

Use variables for programs and options that could change.

Compilation
CC = gcc
CFLAGS = −g
. c . o :

$ (CC) $ (CFLAGS) −c $<

Installation, ready for alternative paths and sandboxing
p r e f i x = / u s r / l o c a l
b i n d i r = $ (e x e c p r e f i x)/ b i n
l i b d i r = $ (p r e f i x)/ l i b
i n s t a l l : a l l

$ (INSTALL PROGRAM) foo $ (DESTDIR) $ (b i n d i r)/ foo
$ (INSTALL DATA) l i b f o o . a $ (DESTDIR) $ (l i b d i r)/ l i b f o o . a

These examples use standard variables names: why is it useful?

Adaptability

Use variables for programs and options that could change.

Compilation
CC = gcc
CFLAGS = −g
. c . o :

$ (CC) $ (CFLAGS) −c $<

Installation, ready for alternative paths and sandboxing
p r e f i x = / u s r / l o c a l
b i n d i r = $ (e x e c p r e f i x)/ b i n
l i b d i r = $ (p r e f i x)/ l i b
i n s t a l l : a l l

$ (INSTALL PROGRAM) foo $ (DESTDIR) $ (b i n d i r)/ foo
$ (INSTALL DATA) l i b f o o . a $ (DESTDIR) $ (l i b d i r)/ l i b f o o . a

These examples use standard variables names: why is it useful?

Configure and beyond

Configuration options

I Compiler, compiler options

I Libraries or library versions

I Enable/disable specific features

./configure

I Discover reasonable default values for configuration options
and detect missing dependencies,
using tools such as pkg-config, ocamlfind, etc.

I Generate (parts) of Makefile or code, perhaps using automake.

Writing a portable configure script can be quite complex;
the script itself may be generated instead using autoconf.

More user-friendly systems?

I cmake for C

I ant for Java

I sbt for Scala

I xbuild for .NET

I ocamlbuild, ocp-build for OCaml

I . . .

Evaluate your needs before choosing! Some tools are easy for
simple projects, but make more complex cases very hard or
impossible.

In practice

Example

I ocaml-ogg for autotools

I 2018’s rogue for parallelization

Exercise
Users may build software from a release or from a code repository.
In either case a release or revision number can identify the software
version; such information is useful when reporting problems.

I How would you make the information available in the
application, e.g. as output of --version or in crash reports.

Exercise
When library XYZ is available, you want to provide an entry in your
application’s menubar for performing something thanks to XYZ.

I How/when would you do this in C ? in OCaml ?

In practice

Example

I ocaml-ogg for autotools

I 2018’s rogue for parallelization

Exercise
Users may build software from a release or from a code repository.
In either case a release or revision number can identify the software
version; such information is useful when reporting problems.

I How would you make the information available in the
application, e.g. as output of --version or in crash reports.

Exercise
When library XYZ is available, you want to provide an entry in your
application’s menubar for performing something thanks to XYZ.

I How/when would you do this in C ? in OCaml ?

Beyond the build

Code, compile, test, commit: how to enforce this humble workflow?

Hooks
.git/hooks/pre-commit is executed to verify commits:

I extend sample hook to run a simple make test.

Limitations:

I the hook’s execution should be fast;

I its success may be dependent upon untracked files,
a particular configuration, etc.

Continuous integration

For every commit pushed on the main repository, build and test
a fresh clone on one/several blank virtual machines.
Public github repositories get free Travis CI servers.

Beyond the build

Code, compile, test, commit: how to enforce this humble workflow?

Hooks
.git/hooks/pre-commit is executed to verify commits:

I extend sample hook to run a simple make test.

Limitations:

I the hook’s execution should be fast;

I its success may be dependent upon untracked files,
a particular configuration, etc.

Continuous integration

For every commit pushed on the main repository, build and test
a fresh clone on one/several blank virtual machines.
Public github repositories get free Travis CI servers.

Beyond the build

Code, compile, test, commit: how to enforce this humble workflow?

Hooks
.git/hooks/pre-commit is executed to verify commits:

I extend sample hook to run a simple make test.

Limitations:

I the hook’s execution should be fast;

I its success may be dependent upon untracked files,
a particular configuration, etc.

Continuous integration

For every commit pushed on the main repository, build and test
a fresh clone on one/several blank virtual machines.
Public github repositories get free Travis CI servers.

Conclusion

Recap

We’ve seen some of the most common software development tools.

Your project will rock if you use them well.

Keep searching for more techniques to improve your workflow.

Next:

I Choice of projects

I Git tutorial

Conclusion

Recap

We’ve seen some of the most common software development tools.

Your project will rock if you use them well.

Keep searching for more techniques to improve your workflow.

Next:

I Choice of projects

I Git tutorial

Conclusion

Recap

We’ve seen some of the most common software development tools.

Your project will rock if you use them well.

Keep searching for more techniques to improve your workflow.

Next:

I Choice of projects

I Git tutorial

	Introduction
	Programming Language
	Contracts and Assertions
	Automation
	Conclusion

