$\mathbf{SK3}$

Author(s): Victor Shoup and Avi D. Rubin 1996 Last modified February 11, 2003

Summary: Symmetric key distribution using Smart Cards, by Shoup and Rubin.

Protocol specification (in common syntax)

A, B, S, Ca, Cb:			Cb:	principal							
Ka, Kb:					symkey						
Kac, Kbc:					symkey						
Na, Nb:					nonce						
0,1,2:					number						
alias Kab = $\{A, 0\}$ K				0}K	b						
	alias $Pab = Kab + \{B, 1\}Ka$										
	1.	А	->	S	:	А, В					
						Pab, {Pab, B, 2}Ka					
	3.				:						
	4.	Ca	->	А	:	Na, {Na, 1, 1}Kac					
						A, Na					
	6.	В	->	СЪ	:	A, Na					
	7.	СЪ	->	В	:	Nb, {Nb, 0, 0}Kab, {Na, Nb, 1}Kab, {Nb, 0, 1}Kab					
	8.	В	->	А	:	Nb, {Na, Nb, 1}Kab					
	9.	А	->	Ca	:	B, Na, Nb, Pab, $\{$ Pab, B, 2 $\}$ Ka, $\{$ Na, Nb, 1 $\}$ Kab, $\{$ Nb, 0, 1 $\}$ Ka					
	10.	Ca	->	А	:	$\{Nb, 0, 0\}$ Kab, $\{Nb, 0, 1\}$ Kab					
	11.	А	->	В	:	{Nb, 0, 1}Kab					

Description of the protocol rules

- the operator $\{\tt M\}\tt K$ denotes DES encryption.
- the operator + is xor.
- the principal Ca (resp. Cb is a smart card connected to A (resp. B) and used to store its long term keys.
- NB: the connection between A and Ca (resp. B and Cb) is assumed to be secure (i.e. no intruder has the capability to listen to this connection).

- Ka (resp. Kb) is a long term (symmetric) keys associated to the principal A (resp. B). It is assumed to be known initially only by Ca (resp. Cb) and the server S.
- Kac (resp. Kbc) is a secret symmetric key share (and initially only known by) A and Ca (resp. B and Cb).
- 0, 1, 2 are arbitrary padding constants, known to every principal.
- 1,2 A requires and obtains from the server S the pair key Pab associed to A and B. {Pab, B, 2}Ka is a verifier for this value.
- 3,4 A requires and abtains a nonce Na from her smart card Ca. {Na, 1, 1}Kac is a verifier. In [SR96], it is suggested to use a 8 bytes counter on Ca to generate Na.
 - 5 A sends the nonce, meaning she request the establishment of a session symmetric key.
- 6,7 B obtains the nonce Nb from Cb (same remark as in 3,4 for the counters). {Nb, 0, 0}Kb is a session key and {Na, Nb, 1}Kab, and {Nb, 0, 1}Kab are verifiers respectively for A and B.
 - $8\,$ B transmits the nonce Nb and $A{\rm 's}$ verifier to A.
 - $9\,$ the nonce Nb and $A{\rm 's}$ verifier are transmitted to A.
 - 10 A's smart card Ca makes the verifications, computes the session key $\{Nb, 0, 0\}Kb$ and transmits it to A.
 - 11 A aknowledge to B, who can compare this message to his verifier remaining from message 7.

Requirements

The session key $\{Nb, 0, 0\}$ Kb must remain secret.

References

[SR96]. Some variants and implementation issues are discussed in the update [Sho96]. See also the implementor's paper [JHC⁺98].

Claimed proofs

The proof of [SR96] is based on the probabilistic definition of secure key distribution from Bellare and Rogaway [BR95].

[Bel01] uses a theorem proving approach, following Paulson's inductive method.

Remark

See [Sho96]. The nonce Na that A obtains from his smart card Ca must actually be truly random and not implemented by counters as first suggested in [SR96].

Indeed, if the next value of Na (sent in message 5 of session i) is predictable (let us call it Na'), then then the intruder I can query B for the verifiers including Na' (session ii) and use them to answer the next challenge of A (hence, authentication error in session iii).

i.5.	А	->	В	:	A, Na						
ii.5.	I(A)	->	В	:	A, Na'						
ii.6.	В	->	СЪ	:	A, Na'						
ii.7.	СЪ	->	В	:	Nb', {Nb', 0, 0}Kab, {Na', Nb', 1}Kab, {Nb', 0, 1}Ka						
ii.8.	В	->	А	:	Nb', {Na', Nb', 1}Kab						
iii.5.	А	->	I(B)	:	A, Na'						
iii.8.	I(B)	->	А	:	Nb', {Na', Nb', 1}Kab						
According to [Sho96], the nonce Nb may though be a counter.											

Citations

- [Bel01] Giampaolo Bella. Mechanising a protocol for smart cards. In Proc. of e-Smart 2001, international conference on research in smart cards, LNCS. Springer-Verlag, september 2001.
- [BR95] Mihir Bellare and Phillip Rogaway. Provably secure session key distribution- the three party case. In Proceedings 27th Annual Symposium on the Theory of Computing, ACM, pages 57–66, 1995.
- [JHC⁺98] Rob Jerdonek, Peter Honeyman, Kevin Coffman, Kim Rees, and Kip Wheeler. Implementation of a provably secure, smartcardbased key distribution protocol. In In Proceedings of the Third Smart Card Research and Advanced Application Conference, 1998.

- [Sho96] Victor Shoup. A note on session key distribution using smart cards. http://www.shoup.net/papers/update.ps, july 1996.
- [SR96] Victor Shoup and Avi Rubin. Session key distribution using smart cards. In In Proceedings of Advances in Cryptology, EU-ROCRYPT'96, volume 1070 of LNCS. Springer-Verlag, 1996.