Needham Schroeder Symmetric Key

Author(s): Roger Needham and Michael Schroeder 1978 Last modified November 8, 2002

Summary: Distribution of a shared symmetric key by a trusted server and mutual authentification. Symmetric key cryptography with server.

Protocol specification (in common syntax)

A, B, S:				principal				
Na, Nb:				nonce				
Kas, Kbs, Kab:				key				
dec :				nonce -> nonce				
1.	А	->	S	:	A, B, Na			
2.	S	->	А	:	{Na, B, Kab, {Kab, A}Kbs}Kas			
3.	А	->	В	:	{Kab,A}Kbs			
4.	В	->	А	:	{Nb}Kab			
5.	А	->	В	:	{dec(Nb)}Kab			

Description of the protocol rules

This protocol establishes the fresh shared symmetric key Kab.

Messages 1-3 perform the distribution of the fresh shared symmetric key Kab and messages 4-5 are for mutual authentification of A and B.

The operator dec is decrementation.

Requirements

The protocol must guaranty the secrecy of Kab: in every session, the value of Kab must be known only by the participants playing the roles of A, B and S in that session.

If the participant playing B accepts the last message 5, then Kab has been sent in message 3. by A (whose identity is included in the cipher of message 3).

References

[NS78].

Claimed attacks

Authentication attack by Denning and Sacco [DS81]. Assume that I has recorded the session i and that Kab is compromised. After the session ii, B is convinced that he shares the secret key Kab only with A.

i.1.	А	->	S	:	A, B, Na
i.2.	S	->	А	:	$\{ { t Na, B, Kab, \{ { t Kab, A} \} { t Kbs} } \} { t Kas}$
i.3.	А	->	I(B)	:	{Kab,A}Kbs
					assume that Kab is compromised
ii.3.	I(A)	->	В	:	{Kab,A}Kbs
ii.4.	В	->	I(A)	:	{Nb}Kab
ii.5.	I(A)	->	В	:	{dec(Nb)}Kab

See also

Amended Needham Schroeder Symmetric Key, Denning-Sacco shared key, Kerberos V5.

Citations

- [DS81] D. Denning and G. Sacco. Timestamps in key distributed protocols. Communication of the ACM, 24(8):533–535, 1981.
- [NS78] R. Needham and M. Schroeder. Using encryption for authentication in large networks of computers. Communications of the ACM, 21(12), December 1978.