
Jean Goubault-Larrecq

Towards Producing Formally

Checkable Security Proofs,
Automatically

Research Report LSV-08-15

April 2008

Towards Producing Formally Checkable Security Proofs, Automatically∗

Jean Goubault-Larrecq goubault@lsv.ens-cachan.fr
LSV, ENS Cachan, CNRS, INRIA 61, avenue du président Wilson 94230 Cachan

Abstract

First-order logic models of security for cryptographic
protocols, based on variants of the Dolev-Yao model, are
now well-established tools. Given that we have checked a
given security protocol π using a given first-order prover,
how hard is it to extract a formally checkable proof of it,
as required in, e.g., common criteria at evaluation level 7?
We demonstrate that this is surprisingly hard: the problem
is non-recursive in general. On the practical side, we show
how we can extract finite modelsM from a set S of clauses
representing π, automatically, in two ways. We then define
a model-checker testing M |= S, and show how we can
instrument it to output a formally checkable proof, e.g., in
Coq. This was implemented in the h1 tool suite. Experience
on a number of protocols shows that this is practical.

1 Introduction

So far, automated verification of cryptographic protocols
in models in the style of Dolev and Yao [28] has been con-
sidered under a variety of angles: (un)decidability results
[30, 38], practical decision procedures [49, 68, 5], extension
to security properties other than secrecy and authentication
(e.g., [15]), to protocols requiring equational theories, to
soundness with respect to computational models (e.g., [43]
for the latter two points), in particular.
We consider yet another angle: producing formally

checkable proofs of security, automatically. There is indeed
a more and more pressing need from the industrial commu-
nity, as well as from national defense authorities, to get not
just Boolean answers (secure/possibly insecure), but also
formal proofs, which could be checked by one of the estab-
lished tools, e.g., Isabelle [55] or Coq [8]. This is required
in Common Criteria certification of computer products at
the highest assurance level, EAL 7 [39], a requirement that
is becoming more and more common for security products.
For example, the PFC initiative (“trusted platform”) of the

∗Partially supported by project PFC (“plateforme de confiance”), pôle
de compétitivité System@tic Paris-région Ile-de-France. Part of this work
was done during RNTL project EVA, 2000-2003.

French pôle de compétitivité System@tic will include a for-
mal security model and formal proofs for its trusted Linux-
based PC platform. Producing formal proofs for tools such
as Isabelle or Coq is also interesting because of their small
trusted base, and defense agencies such as the French DGA
would appreciate being able to extract formal Coq proofs
from Blanchet’s ProVerif tool [11].
It is certainly the case that hand-crafted formal proofs

(e.g., [13, 56]) provide such formally checkable certificates.
Isabelle’s high degree of automation helps in this respect,
but can we hope for full automation as in ProVerif, and hav-
ing formal proofs as well? It is the purpose of this paper to
give a first answer to that question.
Outline. We explore related work in Section 2, then de-

scribe our security model, à la Dolev-Yao, in Section 3. We
really start in Section 4, where we show that our problem re-
duces to a form of model-checking, which is unfortunately
undecidable in general. To solve this, we turn to finite mod-
els, expanding on Selinger’s pioneering idea [62]. We ob-
serve that representing finite models explicitly is sometimes
cumbersome, and that such models are sometimes hard to
find. Surprisingly, larger, finite models in the form of al-
ternating tree automata are sometimes easier to find: we
examine such models in Section 6. We then show how we
can model-check clause sets against both kinds of models in
Section 7. Finally, we argue that the approach is equally ap-
plicable to some security protocols that require equational
theories in Section 8, and we conclude in Section 9. Our
claims are supported by several practical case studies.
Acknowledgments. We presented early findings at

JFLA [34]: we thank the organizers and all the people who
were there. David Lubicz, Bruno Blanchet, and Steve Kre-
mer all suggested recently this was interesting. Thanks also
to Koen Claessen, who suggested the use of Paradox to me.
Finally, thanks to Ankit Gupta and to Stéphanie Delaune.

2 Related Work

Many frameworks and techniques have been proposed to
verify security protocols in models inspired from Dolev and
Yao [28]. It would be too long to cite them all. However,
whether they are based on first-order proving [68, 22, 11],

tree automata [49], set constraints [5], typing [1], or process
algebra [4, 3], one may fairly say that most of these frame-
works embed into first-order logic. It is well-known that
tree automata are subsumed by set constraints, and that set
constraints correspond to specific decidable classes of first-
order logic (a fact first observed by Bachmair, Ganzinger,
and Waldmann [7]). Some modern typing systems for se-
crecy are equivalent to a first-order logic presentation [2],
while safety properties of cryptographic protocols (weak se-
crecy, authentication) presented as processes in a process al-
gebra are naturally translated to first-order logic [2], or even
to decidable classes of first-order logic such as H1 [53].
In all cases, the fragments of first-order logic we need

can be presented as sets of Horn clauses. Fix a first-order
signature, which we shall leave implicit. Terms are denoted
s, t, u, v, . . . , predicate symbols P , Q, . . . , variables X , Y ,
Z, . . . We assume there are finitely many predicate sym-
bols. Horn clauses C are of the form H ⇐ B where the
head H is either an atom or ⊥, and the body B is a finite set
A1, . . . , An of atoms. If B is empty (n = 0), thenC = H is
a fact. For simplicity, we assume that all predicate symbols
are unary, so that all atoms can be written P (t). This is in-
nocuous, as k-ary relations P (t1, . . . , tk) can be faithfully
encoded as P (c(t1, . . . , tk)) for some k-ary function sym-
bol c; we shall occasionally take the liberty of using some
k-ary predicates, for convenience. We assume basic famil-
iarity with notions of free variables, substitutions σ, unifica-
tion, models, Herbrand models, satisfiability and first-order
resolution [6]. It is well-known that satisfiability of first-
order formulae, and even of sets of Horn clauses, is unde-
cidable. We shall also use the fact that any satisfiable set
S of Horn clauses has a least Herbrand model. This can be
defined as the least fixpoint lfpTS of the monotone operator
TS(I) = {Aσ | A ⇐ A1, . . . , An ∈ S, Aσ ground, A1σ ∈
I, . . . , Anσ ∈ I}. If ⊥ ∈ lfpTS , then S is unsatisfiable.
Otherwise, S is satisfiable, and lfpTS is a set of ground
atoms, which happens to be the least Herbrand model of S.
We shall concentrate on reachability properties (i.e.,

weak secrecy) in this paper, without equational theories for
the most part. While this may seem unambitious, remem-
ber that our goal is not to verify cryptographic protocols but
to extract formally checkable proofs automatically, and one
of our points is that this is substantially harder than mere
verification. We shall deal with equational theories in Sec-
tion 8, and claim that producing formally checkable proofs
is not much harder than in the non-equational case. We
will not deal with strong secrecy, although this reduces to
reachability, up to some abstraction [12]. Weak and strong
secrecy are, in fact, close notions under reasonable assump-
tions [25].
We also concentrate on security proofs in logicalmodels,

derived from the Dolev-Yao model [28]. Proofs in computa-
tional models would probably be more relevant. E.g., naive

Dolev-Yao models may be computationally unsound [48].
However, some recent results show that symbolic (Dolev-
Yao) security implies computational security in a number
of frameworks, usually provided there are no key cycles at
least, and modulo properly chosen equational theories on
the symbolic side. See e.g. [40], or [64]. The latter is a rare
example of a framework for developing formal proofs (e.g.,
in Coq or Isabelle) of computational soundness theorems.
The search for such theorems is hardly automated for now;
yet, we consider this to be out of the scope of this paper, and
concentrate on Dolev-Yao-like models.
The starting point of this paper is Selinger’s fine paper

[62]. Selinger observes that security proofs (in first-order
formulations of weak secrecy in Dolev-Yao-like models)
are models, in the sense of first-order logic. To be a bit more
precise, a protocol π encoded as a set of first-order Horn
clauses S is secure if and only if S is consistent, i.e., there is
no proof of false ⊥ from S. One may say this in a provoca-
tive way [34] by stating that a proof of security for π is the
absence of a proof for (the negation of) S. Extracting a for-
mal Coq proof from such an absence may then seem tricky.
However, first-order logic is complete, so if S is consistent,
it must be satisfiable, that is, it must have a model. Selinger
then observed that you could prove π secure by exhibiting
a model for S, and demonstrated this by building a small,
finite model (5 elements) for the Needham-Schroeder-Lowe
public-key protocol [50, 46].
The idea of proving properties by showing the consis-

tency of a given formula F , i.e, showing that ¬F has no
proof, is known as proof by consistency [41], or induction-
less induction [45, 19]. Note that the formal Coq proofs we
shall extract from models of S, using our tool h1mc, are
proofs of security for π that work by (explicit) induction
over term structure. The relationship between inductionless
and explicit induction was elicited by Comon and Nieuwen-
huis [21], in the case of first-order logic with equality and
induction along the recursive path ordering.
We shall use an approach based on model-checking cer-

tain classes of first-order formulae F against certain classes
of finite modelsM, i.e., on testing whetherM |= F . There
is an extensive body of literature pertaining to this topic,
see e.g. the survey by Dawar [26]. One particular (easy)
result we shall recall is that model-checking first-order for-
mulae against finite models, even of size 2, is PSPACE-
complete. Many results in this domain have focused on
fixed-parameter tractability, and to be specific, on whether
model-checking was hard with respect to the size of the
model, given a fixed formula as parameter. Even then, the
parametrized model-checking problem isAW[∗]-complete,
and already W[k]-hard for Πk formulae. This will be of
almost no concern to us, as our formulae F will grow in
general faster than our models.
None of the works cited above addresses the question

2

of extracting a model from a failed proof attempt. Tammet
worked on this for resolution proofs [66]. The next step,
producing formally checked, inductive proofs from models,
seems new. In one of our approaches, finite models will be
presented in the form of tree automata, and formally check-
ing models in this case essentially amounts to producing
formal proofs of computations on tree automata. This was
pioneered by Rival and the author [59]; the procedure of
Section 7 is several orders of magnitude more efficient.

3 A Simple Protocol Model, à la Dolev-Yao

Our first-order model for protocols is close to Blanchet’s
[10], to Selinger’s [62], and to a number of other works.
While the actual model is not of paramount importance for
now, we need one to illustrate our ideas. Also, models in
the style presented here will behave nicely in later sections.
Blanchet uses a single predicate att, so that att(M) if

and only ifM is known to the Dolev-Yao attacker. We shall
instead use a family of predicates atti, where i is a phase,
to be able to model key and nonce corruption (more below).
The facts that the Dolev-Yao attacker can encrypt, decrypt,
build lists, read off any element from a list, compute succes-
sors and predecessors are axiomatized by the Horn clauses
of Figure 1. We take the usual Prolog convention that iden-
tifiers starting with capital letters such as M , K, A, B, X ,
are variables, while uncapitalized identifiers such as sym,
crypt, att are constants, function or predicate symbols.
We assume crypt(M, K) denotes the result of symmet-
ric or asymmetric encrypting M with key K, and write it
{M}K for convenience. The key k(sym, X) is the symmet-
ric key used in session X; the term sessioni(A, B, Na)
will denote any session between principals A and B shar-
ing the nonce Na, while in phase i; we shall also use
k(sym, [A, S]) to denote long-term symmetric keys between
agents A and S. The key k(pub, X) denotes agent X’s
long-term public key, while k(prv, X) is X’s private key.
Lists are built using nil and cons; we use the ML notation
M1 :: M2 for cons(M1, M2), and [M1, M2, . . . , Mn] for
M1 :: M2 :: . . . :: Mn :: nil. We use suc to denote the
successor function λn ∈ N · n + 1, as used in our running
example, the Needham-Schroeder symmetric key protocol
[50].
This protocol, whose purpose is to establish a fresh, se-

cret session key Kab between two agents, Alice (A) and
Bob (B), using a trusted third party (S), is shown in Fig-
ure 2. It has the convenient property that there is a well-
known attack against it, so that the key Kab that Bob will
end up having is possibly known to the attacker, while the
keys Kab that S sent and that Alice received will remain
secret. Note that all three keys Kab may be different.
The protocol itself is modeled in a simple way, originally

inspired from strand spaces [67], and similarly to Blanchet

atti({M}K) ⇐ atti(M), atti(K) (1)
atti(M) ⇐ atti({M}k(pub,X)), atti(k(prv, X)) (2)
atti(M) ⇐ atti({M}k(prv,X)), atti(k(pub, X)) (3)
atti(M) ⇐ atti({M}k(sym,X)), atti(k(sym, X)) (4)
atti(nil) (5)

atti(M1 :: M2) ⇐ atti(M1), atti(M2) (6)
atti(M1) ⇐ atti(M1 :: M2) (7)
atti(M2) ⇐ atti(M1 :: M2) (8)

atti(suc(M)) ⇐ atti(M) (9)
atti(M) ⇐ atti(suc(M)) (10)

Figure 1. Intruder capabilities

1. A −→ S : A, B, Na

2. S −→ A : {Na, B, Kab, {Kab, A}Kbs
}Kas

3. A −→ B : {Kab, A}Kbs

4. B −→ A : {Nb}Kab

5. A −→ B : {Nb + 1}Kab

Figure 2. The Needham-Schroeder
symmetric-key protocol

[10]. Each agent’s role is modeled as a sequence of (re-
ceive, send) pairs. Given any such pair (M1, M2), we add
a Horn clause of the form atti(M2) ⇐ atti(M1). This
denotes the fact that the attacker may use the agent’s role
to his profit by sending a message M1 of a form that the
agent will accept, and learning M2 from the agent’s re-
sponse. Accordingly, the protocol rules for the Needham-
Schroeder symmetric key protocol are shown in Figure 3.
We use Blanchet’s trick of abstracting nonces by function
symbols applied to the free parameters of the session, so
that nai(A, B) denotes Na, depending on the identities A
and B of Alice and Bob respectively and the phase i, and
nbi(Kab, A, B) denotes Nb, depending on the phase i, the
received key Kab, and identities A and B (all three being
variables, by our convention). In clause (15), representing
the fact that Alice receives {Nb}Kab

(message 4 of Figure 2)
to send {Nb+1}Kab

(message 5), we use an auxiliary predi-
cate alice keyi to recover Alice’s version ofKab, received
in message 2. We also define a predicate bob keyi in (17)
to recover Bob’s version of Kab after message 5.
The fact that variables such as A, B are used through-

out for agent identities, instead of actual agent identities
(for which we reserve the constants a, b, s, and i for the
attacker), is due to the fact that we wish to model unbound-
edly many sessions of the protocol in parallel. E.g., (11)

3

atti([A, B, nai(A, B)]) ⇐ agent(A), agent(B) (11)
atti({[Na, B, kab, {[kab, A]}kbs

}kas)) ⇐ atti([A,B, Na]) (12)
where kab = k(sym, sessioni(A, B, Na), kbs = k(sym, [B, s]), kas = k(sym, [A, s])

atti(M) ⇐ atti({[nai(A, B), B, Kab, M]}k(sym,[A,s])) (13)
atti({nbi(Kab, A, B)}Kab

) ⇐ atti({[Kab, A]}k(sym,[B,s]) (14)
atti({suc(Nb)}Kab

) ⇐ atti({Nb}Kab
), alice keyi(A, Kab) (15)

alice keyi(A, Kab) ⇐ atti({[nai(A, B), B, Kab, M]}k(sym,[A,s])) (16)
bob keyi(B, Kab) ⇐ atti({nbi(Kab, A, B)}Kab

) (17)

Figure 3. Protocol rules

agent(a) agent(b) agent(i) agent(s)

Figure 4. Agents

att2(M) ⇐ att1(M) (18)
att2(k(sym, session1(A, B, Na))) (19)

att2(k(sym, na1(A, B))) (20)
att2(k(sym, nb1(Kab, A, B))) (21)

Figure 5. Phases

states that any pair of agents A, B may initiate the pro-
tocol and emit message 1 of Figure 2. We assume that the
only possible agents are Alice (a), Bob (b), the trusted third-
party (s), and the Dolev-Yao attacker i. Since we only deal
with secrecy, considering this many agents is sufficient [22].
To model the fact that secrets may be corrupted over

time, we distinguish two phases i = 1, 2. Intuitively,
phase 1 represents sessions that are old enough that the old
session keys k(sym, session1(A, B, Na)) may have been
guessed or discovered by the intruder. This is (again) a con-
servative approximation: we estimate that all old secrets
(in phase 1) are compromised, although only some or even
none of them may have been actually compromised. On the
other hand, no secret in phase 2 is compromised—unless the
protocol itself leaks them. To model phases, we only need
a few more clauses, shown in Figure 5: (18) states that the
intruder has memory, and remembers all old messages from
phase 1 in phase 2, while the other clauses state that all old
session keys, as well as all old nonces, are compromised.
This is similar, e.g., to Paulson’s Oops moves [56].
Figure 6 lists our security assumptions, i.e., what we es-

timate the attacker might know initially: all agent identities
are known, as well as all public keys k(pub, X), and the
attacker’s own private key k(prv, i)—whatever the phase.

atti(X) ⇐ agent(X)

atti(k(pub, X)) atti(k(prv, i))

Figure 6. The attacker’s initial knowledge

Note that talking about public and private keys in this pro-
tocol, which only uses symmetric keys, is overkill. We in-
clude them to illustrate the fact that the model is not lim-
ited to symmetric key encryption, and public-key protocols
would be encoded just as easily.
Finally, Figure 7 lists our security goals, or rather their

negated forms. Note that we are only concerned with the
security of phase 2 data, since phase 1 is compromised by
nature. Negation comes from the fact that a formula G is
a consequence of a set S of clauses such as those listed
above if and only if S,¬G is inconsistent. E.g., (22) is the
negation of ∃Na · att2(k(sym, session2(a, b, Na))), and
corresponds to asking whether the secret key Kas, as gen-
erated by the trusted third-party in current sessions, can be
inferred by the attacker. (23) asks whether there is a key
Kab that would be both known to the attacker, and is plau-
sibly accepted by Alice (a) as its new symmetric key; we
again use the auxiliary predicate alice key2. Finally, (24)
asks whether there is a keyKab as could be used in the final
check of the protocol by Bob (message 5 of Figure 2), and
that would be, in fact, compromised.

⊥⇐ att2(k(sym, session2(a, b, Na))) (22)
⊥⇐ att2(Kab), alice key2(a, Kab) (23)
⊥⇐ att2(Kab), bob key2(b, Kab) (24)

Figure 7. (Negated) security goals

Call, somewhat abusively, the protocol π the collection
of the cryptographic protocol itself, the (Dolev-Yao) secu-

4

rity model, the security assumptions and the security goals.
The clause set SNS denoting the symmetric-key Needham-
Schroeder protocol is then the union of the clauses in Fig-
ure 1 (i = 1, 2), Figure 3 (i = 1, 2), Figure 6 (i = 1, 2),
Figure 4, Figure 5, and Figure 7.
Unsurprisingly, running a first-order prover against SNS

reveals a possible attack against Bob. E.g., SPASS v2.0
[70] finds that the above set of clauses is inconsistent, with
a small resolution proof, where only 309 clauses were de-
rived, in 0.07 seconds on a 2.4GHz Intel Centrino Duo class
machine. Examining the proof reveals that the attack is ac-
tual. This is the well-known attack where the attacker uses
an old message 3 from a previous session (for which Kab is
now known), and replays it to Bob. The attacker can then
decrypt message 4, since he knows Kab, and Bob will ac-
cept message 5 as confirmation.
Removing the failing security goal (24) produces a con-

sistent set of clauses Ssafe
NS : so there is no attack on the other

two security goals. This seems to be out of reach for SPASS
(at least without any specific option): after 10 minutes al-
ready, SPASS is lost considering terms with 233 nested ap-
plications of the successor function suc; we decided to stop
SPASS after 4h 10 min, where this number had increased to
817. However, our own tool h1, from the h1 tool suite [33],
shows both that there is a plausible attack against Bob and
definitely no attack against Alice or the trusted third-party,
in 0.68 s; h1works by first applying a canonical abstraction
to the given clause set S [35, Proposition 3], producing an
approximation S′ in the decidable class H1 [53, 68]; then
h1 decides S′ by the terminating resolution algorithm of
[35]. We shall return to this approach in Section 6.

4 Undecidability

An intuitive idea to reach our goal, i.e., producing for-
mal proofs from a security proof discovered by a tool such
as ProVerif, SPASS or h1, is to instrument it so as to return
a trace of its proof activity, which we could then convert
to a formal proof. However, this cannot be done. As il-
lustrated on Ssafe

NS , the protocol, without the security goal
(24), is secure because we cannot derive any fact of the
form att2(k(sym, session2(a, b, na))) for any term na,
and there is no term kab such that both att2(kab) and
alice key2(a, kab) would be derivable. In short, security
is demonstrated through the absence of a proof.
It would certainly be pointless to instrument ProVerif,

SPASS or h1 so as to document everything it didn’t do.
However, these tools all work by saturating the input clause
set S representing the protocol π to get a final clause set
S∞, using some form of the resolution rule, and up to spe-
cific redundancy elimination rules. To produce a formally
checkable security proof of the protocol π—in case no con-
tradiction is derived from S—, what we can therefore safely

assume is: (A) S∞ is consistent, (B) S∞ is entailed by S,
and (C) S∞ is saturated up to redundancy (see [6]).
Bruno Blanchet kindly reminded me that point (C) could

in principle be used to produce a formal proof that π is se-
cure. We have to: (a) prove formally that the saturation
procedure is complete, in the sense that whenever S∞ is
saturated up to redundancy, and every clause in S is redun-
dant relative to S∞, then S is consistent; and: (b) produce a
formal proof that S∞ is indeed saturated up to redundancy.
Task (b) is complex, and complexity increases with the so-
phistication of the saturation strategy; realize that even the
mundane task of showing, in Isabelle or Coq, that two given
literals do not unify requires some effort. Moreover, S∞

is in general rather large, and task (b) will likely produce
long proofs. Task (a) is rather formidable in itself. Fur-
thermore, (a) and (b) have to be redone for each different
saturation procedure, i.e., for different tools, or when these
tools evolve to include new redundancy elimination rules or
variants of the original resolution rule.
This prompts us to use only points (A) and (B) above, not

(C). Fortunately, and this is one of the points that Selinger
makes [62], a clause set is consistent if and only if it has a
model. We may therefore look for models of S as witnesses
of security for π. While Selinger proposes this approach to
check whether π is secure, it can certainly be used to fulfill
our purpose: assume that we know that S is consistent, typ-
ically because ProVerif, SPASS or h1, has terminated on a
clause set S∞ that is saturated under some complete set of
logical rules (forms of resolution in the cited provers) and
which does not contain the empty clause ⊥; then our tasks
reduces to answering two questions: (1) how can we extract
a model from a saturated set of clauses S∞ not containing
⊥? (2) given a modelM that acts as a certificate of satis-
fiability, hence as a certificate of security for π, how do we
convertM to a formal Coq proof?
Question (2) is not too hard, at least in principle: build a

model-checking algorithm to check whetherM satisfies S
(in notation,M |= S), and keep a trace of the computation
of the model-checker. Then convert this trace into a formal
proof. We shall see how to do this in Section 7.
Question (1) is easy, but ill-posed, because we did not

impose any restriction on the format the model should as-
sume. (Note that we don’t know whether M is finite, in
particular in the cases of SPASS and ProVerif.) The answer
is that S∞ is itself a perfectly valid description of a model,
namely the unique least Herbrand model lfpTS∞

of S∞ (I
owe this simple remark to Andreas Podelski, personal com-
munication, 1999). What this model lacks, at least, is be-
ing effective: there is in general no way of testing whether
a given ground atom A holds or not in this model. In our
case, the important result is the following, which shows that
we cannot in general even test whether M |= S, where
M = lfpTS∞

, contradicting our goal (2).

5

Proposition 4.1 The following problem is undecidable:
Given a satisfiable set of first-order Horn clauses S∞, and
a set of first-order Horn clauses S, check whether the least
Herbrand model of S∞ satisfies S. This holds even if S
contains just one ground unit clause, and S∞ contains only
three clauses.

Proof. By [27], the satisfiability problem for clause sets
S1 consisting of just three clauses p(fact), p(left) ⇐
p(right), and ⊥ ⇐ p(goal) is undecidable. Take S∞ to
consist of the clauses p(fact), p(left) ⇐ p(right), and
q(∗) ⇐ p(goal), where q is a fresh predicate symbol and ∗
a fresh constant. Take S to contain just the clause q(∗).
Note that S∞, as a set of definite clauses, is satisfiable.

We claim that S1 is unsatisfiable if and only if lfpTS∞

satisfies S. If S1 is unsatisfiable, then ⊥ ∈ lfpTS1
=

TS1
(lfpTS1

). By definition of TS1
, and since ⊥ ⇐ p(goal)

is the only clause of S1 with head ⊥, there is a ground in-
stance p(goal σ) in lfpTS1

. Now lfpTS1
=

⋃
n∈N

Tn
S1

(∅),
since the TS1

operator is Scott-continuous. By an easy
induction on n (which, intuitively, is proof length), every
atom of the form p(t) in Tn

S1
(∅) is in Tn

S∞
(∅). So p(goal σ)

is in lfpTS∞
, whence q(∗) is in the least Herbrand model

of S∞, i.e., the latter satisfies S. Conversely, if lfpTS∞
sat-

isfies S, that is, q(∗), by similar arguments we show that
it must satisfy some instance p(goal σ), which is then in
lfpTS1

, so that S1 is unsatisfiable. !

Despite the similarity, this theorem is not a direct conse-
quence of Marcinkowski and Pacholski’s result [47], that
the Horn clause implication problem C1 |= C2 is undecid-
able. Recall that C1 |= C2 whenever every model of C1

satisfies C2. Indeed, this is not equivalent to (not entailed
by, to be precise) the fact that the least Herbrand model of
C1 satisfies C2.
Replacing the ground unit clause q(∗) of S above by

att1(∗) shows that:

Corollary 4.2 The following problem is undecidable:
given a satisfiable set of first-order Horn clauses S∞, check
whether lfpTS∞

is a model of a first-order formulation of
a cryptographic protocol π. This holds even if π contains
absolutely no message exchange (i.e., the number of proto-
col steps is zero), has only one phase, the initial knowledge
of the intruder consists of just one ground message ∗, the
Dolev-Yao intruder has no deduction capability at all (i.e.,
we don’t include any of the rules of Figure 1), and the num-
ber of security goals is zero.

To mitigate this seemingly devastating result, recall that
SPASS and ProVerif use variants of resolution, and the
clause sets S∞ produced by SPASS or ProVerif are satu-
rated up to redundancy. SPASS uses sophisticated forms of
ordered resolution with selection and sorts, while ProVerif
uses two restrictions of resolution. “Saturated up to re-
dundancy” [6] means that every conclusion of the chosen

resolution rule with premises in S∞ is either already in
S∞, or redundant with respect to S∞, e.g., subsumed by
some clause in S∞. It is well-known that, for all vari-
ants of resolution that can be shown complete by Bach-
mair and Ganzinger’s forcing technique [6], the models of
a set S∞ that is saturated up to redundancy are exactly
the models of the subset Sprod ⊆ S∞ of all the so-called
productive clauses of S∞. In particular, for Horn clauses,
lfpSprod = lfpS∞. For example, the first phase of the
ProVerif algorithm uses a form of resolution with selection,
where all literals of the form atti(M) are selected in clause
bodies. The effect is that the clauses of Sprod cannot con-
tain any literal of the form atti(M) in their body. It is then
a trivial observation that Proposition 4.1 still holds with S∞

replaced by Sprod (just make p different from atti). How-
ever, this first phase is not a complete procedure in itself.
Ordered resolution with selection [6], as well as the kind of
resolution used in SPASS [69] are complete. Using the for-
mer for example, Sprod consists of clauses where no atom
is selected in any clause body, and the head is maximal with
respect to the chosen stable, well-founded ordering*. Even
so, this does not help in general:

Proposition 4.3 Proposition 4.1 and Corollary 4.2 still
hold if S∞ is replaced by a set Sprod of productive clauses,
again even of cardinality 3.

Proof. Modify the construction of S∞ slightly, and take it
to consist of p(c, fact), p(f(X), left) ⇐ p(X, right), and
q(∗) ⇐ p(X, goal). Let * be defined by q(M) * p(N)
for every terms M and N , and p(M, N) * p(M ′, N ′) if
and only ifM ′ is a proper subterm of M . Select no atom in
any clause body. Then Sprod = S∞ is a set of productive
clauses. As in Proposition 4.1, S1 is unsatisfiable if and
only if lfpTSprod

|= q(∗). !

5 Explicit, Finite Models

There is a much simpler solution: directly find finite
models M of the set S of clauses representing the proto-
col π. This won’t enable us to verify protocols that are se-
cure because S is satisfiable, but not finitely satisfiable. But
again Selinger’s early experiments [62] suggest that this is
perhaps not a problem in practice. To wit, remember that
there is a 5 element model for Selinger’s encoding of the
Needham-Schroeder-Lowe public-key protocol. In fact, our
encoding of the 7-message Needham-Schroeder-Lowe pro-
tocol has a 4 element model, found by K. Claessen’s tool
Paradox. As for our running example, our tool h1 finds a
46 element model for Ssafe

NS (see Section 3), but there is also
a 4 element model (see below).
There are certainly protocols which could only be shown

secure using techniques requiring infinite models. In par-
ticular, this is likely for parametric verification of recur-

6

crypt !1 !2 !3 !4
!1 !1 !1 !4 !1
!2 !2 !1 !4 !4
!3 !3 !4 !4 !4
!4 !3 !2 !2 !2

Figure 8. crypt, in Paradox’s 4 element model

sive protocols—where by parametric we mean that verifi-
cation should conclude for all values of an integer param-
eter n, typically the number of participants or the number
of rounds. Solving first-order clause sets representing such
protocols was addressed by Küsters and Truderung [44].
Examples of such protocols are Bull and Otway’s recur-
sive authentication protocol [14], or the IKA protocols [65].
Note however that both are flawed [61, 58], so that S would
in fact be unsatisfiable in each case.
Finding finite models of first-order clause sets is a sport,

and is in particular addressed in the finite model category of
the CASC competition at annual CADE conferences. Para-
dox [16] is one such model-finder, and won the competition
in 2003, 2004, 2005, 2006. Paradox v2.3 finds a 4 element
model for Ssafe

NS (see Section 3), in 1.6 s. Due to the algo-
rithm used by Paradox, this also guarantees that there is no
3 element model.
Paradox represents such finite models in the obvious

way, as tables representing the semantics of functions, and
truth-tables representing predicates. Call these explicitly
presented models. The explicitly presented model found
by Paradox on Ssafe

NS has 4 element !1, !2, 3, and !4. All
identities a, b, i, s have value !1; this is also the value of
nil, prv and pub, while the value of sym is !2. The att1

predicate holds of value !1 only, while att2 holds of !1 and
!2 only. The table for encryption is shown in Figure 8: !3
and !4 can be thought as values that will remain secret, but
encrypting !4 with the compromised datum !2 will produce
!2, which is known to the attacker in phase 2.
Model-checking clause sets S against such small models

M, represented as tables, i.e., checking whether M |= S,
is straightforward, and works in polynomial time, assuming
the number of free variables in each clause of S is bounded:
let k be the largest number of free variables in clauses of S,
n the number of elements inM, then for each clauseC in S,
enumerate the at most nk tuples ρ of values for the variables
of C, then check that C under ρ is true. Call one such step
of verification that C holds under ρ a check. In the example
of Section 3, k = 4, there are 50 clauses with at most 5
free variables: a conservative estimate shows that we need
at most 50 × 45 = 51 200 checks. A precise computation
shows that we need 8.40 + 11.41 + 17.42 + 8.43 + 4.44 +

2.45 = 3 908 checks.
However, the assumption that the number of free vari-

ables is bounded is important in the latter paragraph. In
general, using the same construction that the one showing
that model-checking first-order formulae against finite mod-
els is PSPACE-complete, we obtain:

Lemma 5.1 Checking whetherM |= S, whereM is an ex-
plicitly presented finite model andS is a set of Horn clauses,
is coNP-complete, even whenM is restricted to 2-element
models and S contains just one positive, unit clause.

Proof. We show that checkingM ,|= S is NP-complete.
Membership in NP is easy: guess an unsatisfied clause
C in S and values for its free variables. Conversely, we
show that the problem is NP-hard already whenM is the
two-element model {0, 1}, with one predicate true, which
holds of 1 but not of 0. We also assume term constants
t (denoting 1), f (denoting 0), and (denoting logical con-
junction), or (denoting logical disjunction), not (denoting
negation). We are now ready to reduce SAT: let the input be
a set S0 of propositional clauses on a vector %A of proposi-
tional variables, seen as a conjunction F (%A). Build a first-
order term F ∗(%A), where now the variables in %A are seen as
term variables, by replacing ands (∧) by and, ors (∨) by or,
negations (¬) by not, and so on, in F (%A). Let S consist of
the unique positive unit clause true(not(F ∗(%A))). Clearly
M |= S if and only if S0 is not satisfiable. !

What this lemma illustrates, and what practice confirms,
is that it is not so much the number k of elements of the
model that counts, or even the number of entries in its ta-
bles, but what we called the number of checks needed. Both
the number of entries in the tables and the number of checks
can be exponentially large. We have conducted a small ex-
periment on secrecy protocols found in the Spore library
[63]—be warned that the proportion of secrecy protocols
that are in fact secure is small—, see Figure 9. The NS row
is our example Ssafe

NS , while the amended NS row is a cor-
rected version [51] that satisfies all required security proper-
ties. Paradox always finds smallest possible models, since it
looks for models of size k for increasing values of k. On the
other hand, h1 is a resolution prover that decides the class
H1, all of whose satisfiable formulae have finite models; the
models extracted are in particular not minimal in any way.
We report figures found by h1 so as to appreciate how even
small models in terms of number of elements (e.g., 57 for
the amended NS protocol) are in fact large in practice (e.g.,
188 724 entries—we actually report a number of transitions
in a deterministic tree automaton describing the model, as
explained in Section 6, and this is a lower bound on the ac-
tual number of entries), and require many checks (e.g., more
than one billion). The NSL row is the 7-message version of
the Needham-Schroeder-Lowe protocol, checking that the
secrecy of the exchanged messages is preserved, instead of

7

Protocol Paradox h1

#elts #entries #checks #elts #entries #checks
NS 4 824 3 908 46 217 312 430 106

amended NS [51] ?(≥ 5) ? ? 57 188 724 1.245 109

NSL 4 2 729 2 208 over-approximated
Yahalom [57] 6 5 480 38 864 > 56 –

Figure 9. Model sizes

mutual authentication. This is a rare example where the
standard approximation strategy of h1 fails (without added
tricks), and h1 does not conclude that the protocol is safe;
Paradox finds a 4 element model, showing it is indeed safe.
The Yahalom row is Paulson’s corrected version of the Ya-
halom protocol [57]. While it is found secure by h1 in 4.8
s, the model found (in implicit form, see Section 6) is so big
that we have been unable to convert it to an explicit repre-
sentation in 2 GB of main memory using our determinizer
pldet. Paradox finds a 4 element model for NS in 1.6 s,
a 4 element model for NSL in 4.85 s, a 6 element model
for Yahalom in 53 min, and hasn’t found one for amended
NS in 8 hours 1/4; the only thing we know is that the least
model contains at least 5 elements.
From an explicitly presented finite model M, it is in

principle easy to extract a formally checkable proof. In
Coq, we declare an inductive type of values of M, e.g.,
Inductive M : Set := v1 : M | v2 : M | v3 : M |
v4 : M for a 4-element model. Then, define all function
and predicate symbols by their semantics. E.g., crypt (Fig-
ure 8) would be described by:

Definition crypt(m : M)(k : M) : M :=
match m, k with

v1, v1 ⇒ v1 | v1, v2 ⇒ v1 | v1, v3 ⇒ v4 | v1, v4 ⇒ v1
| v2, v1 ⇒ v2 | v2, v2 ⇒ v1 | v2, v3 ⇒ v4 | v2, v4 ⇒ v4
| v3, v1 ⇒ v3 | v3, v2 ⇒ v4 | v3, v3 ⇒ v4 | v3, v4 ⇒ v4
| v4, v1 ⇒ v3 | v4, v2 ⇒ v2 | v4, v3 ⇒ v2 | v4, v4 ⇒ v2
end.

and att2 would be described by Definition att2(m :
M) : Prop := match m with v1 ⇒ True | v2 ⇒
True | ⇒ False end. The size of such a description is
proportional to what we called the number of entries above.
Proofs of clauses C from the clause set S would then be
very short: if C contains k free variables, we would write
its proof in Coq’s tactic language as intro x1; case x1;
. . . intro xk; case xk; simpl; tauto. The effect of this
command line is to enumerate all nk assignments of values
to variables. This not only takes time proportional to the
number of checks (the #checks columns in Figure 9), but
also produces a proof term of size proportional to it.
We conclude that the explicitly presented models ap-

proach would only work for small models. While this ap-
proach is applicable for the 4 to 6 element models that Para-

dox found in Figure 9, it is completely unrealistic for the
models found by h1, whether representable explicitly (NS,
amended NS) or not (Yahalom). Note that the MACE al-
gorithm underlying Paradox is doubly exponential in the
number n of elements of the model. In practice, the largest
models we have discovered with Paradox contained 7 ele-
ments. However, when this works, this works well, despite
Lemma 5.1. The Coq proofs corresponding to NS, NSL,
and Yahalom are 748, resp. 1 038, resp. 3 581 lines long,
and are checked by Coq in 3.29 s, 1.76 s, and 36.6 s respec-
tively.

6 Large Models, and Tree Automata

There are several reasons why we would like to find
a more efficient method for producing formally checkable
proofs. This will be solved in Section 7. As it stands, the
strategy of Section 5 does not scale up. That is, it does
not apply to security proofs that would require finite mod-
els larger than 6 elements. And there are a few reasons why
we would like some larger finite models.
The first one is that Dolev-Yao secrecy properties are in

fact simple to prove. Remember that the 4-element model
that Paradox found for Ssafe

NS mapped each intruder identity
to the same value, !1. No such model can ever be used to
prove authentication properties, where we need to make a
distinction between identities. This phenomenon is already
illustrated on Paulson’s corrected version of the Yahalom
protocol [57], whose security depends on checking the iden-
tity of an agent included in a message.
A second reason is that the style of protocol specifica-

tion that we used in Section 3 makes it more likely that se-
cure protocols have small models, but we may need other
styles in other applications. One may describe our style as
stateless: agents only remember past values, not because we
have modeled a local state containing all values of their in-
ternal variables, but because they are given back to them in
received messages. For example, look at message 2 of Fig-
ure 2: Alice receives {Na, B, Kab, {Kab, A}Kbs

}Kas
from

the trusted third party. The corresponding clause is (13)
(see Figure 3), where Alice expects a message of the form
{[nai(A, B), B, Kab, M]}k(sym,[A,s]). While freshness is
checked by verifying that the nonce part Na is of the form
nai(. . .), Blanchet’s clever trick of parametrizing nai by
some free parameters forces this term to match only if A
was indeed the intended recipient (viz. the occurrence of A
in the key k(sym, [A, s])), and to remember who A wanted
to talk to (viz. the two occurrences ofB must match). Other,
more precise, protocol verification tools employ stateful
models, whereby each agent maintains a state vector con-
sisting of its local program counter, and all values of its vari-
ables (see [13] for an early example). This is needed in ver-
ifying protocols where sessions must be sequential, e.g., for

8

the Otway-Rees protocol [54], which is secure if sessions
are sequential, but insecure if sessions can be run in parallel
[17]. We have played with such a model, and found it satis-
fiable both with h1 (with a 54 element model, in 1.1 s) and
with Paradox (with a 4 element model, in 227 s). However,
the fact that state vectors have high arity (up to 9) entails
that, while function tables only require 143 entries—for the
4 element model—, predicate entries require 706 716.
We can only expect to need even larger models when

considering composition of protocols, or Web services [9],
or cryptographic APIs [24], in order of increased complex-
ity.
Our model-checking technique will be able to check the

larger models found by h1 (see Figure 9). Some of it rests
on intuitions on how we decide H1 by resolution [35], and
the relationship to tree automata.
For each satisfiable set S of Horn clauses, and each

predicate symbol P , let LP (S) be the set of ground terms
t such that P (t) is in the least Herbrand model of S.
LP (S) is the language recognized at state P . When S con-
sists only of tree automaton clauses P (f(X1, . . . , Xn)) ⇐
P1(X1), . . . , Pn(Xn) (X1, . . . , Xn pairwise distinct), this
coincides with the usual definition of the set of terms recog-
nized at P ; such clauses are just tree automaton transitions
from P1, . . . , Pn to P . Accordingly, we shall call a set
of tree automaton clauses a (tree) automaton. This connec-
tion between tree automata and Horn clauses was pioneered
by Frühwirth et al. [31]; there, LP (S) is called the success
set for P . This connection was then used in a number of
papers: see the comprehensive textbook [20], in particular
Section 7.6 on tree automata as sets of Horn clauses.
Tree automata clauses can be generalized right away to

alternating tree automata [20, Chapter 7]. Call ε-block any
finite set of atoms of the form P1(X), . . . , Pm(X) (with the
same X , and m ≥ 0); it is non-empty iff m ≥ 1. We ab-
breviate ε-blocks as B(X) to make the variable X explicit.
We shall also writeB for the set {P1, . . . , Pm}. Alternating
automaton clauses are of the form:

P (f(X1, . . . , Xk)) ⇐ B1(X1), . . . , Bk(Xk) (25)

where B1(X1), . . . , Bk(Xk) are ε-blocks, and X1, . . . , Xk

are pairwise distinct. Universal clauses are of the form
P (X). An alternating tree automaton is any set S of al-
ternating automaton clauses and universal clauses. (The
standard definition [20] does not include universal clauses;
on a fixed first-order signature Σ, a universal clause P (X)
may be replaced by the clauses P (f(X1, . . . , Xk)) ⇐
P (X1), . . . , P (Xk), where f ranges over Σ.) Automata
are the special case without universal clauses, and where
ε-blocks contain at most one atom.
Given any clause set S, h1 first applies a canonical ab-

straction [35, Proposition 3] to get a clause set S′ in the
decidable class H1 [53, 68], and such that S is satisfiable

whenever S′ is. Then h1 saturates S′ by ordered resolution
with selection [35], getting a saturated set S∞. The point is
that the subset Sprod ⊆ S∞ of productive clauses that h1
returns is always an alternating tree automaton [35, Propo-
sition 9]. Determinizing Sprod can be done by a standard
powerset construction, and we have implemented this in the
tool pldet, also a part of the h1 tool suite [33]. The states
of the determinized automatonDet(Sprod) are sets of states
of Sprod, i.e., sets of predicate symbols.
We shall assume that the following procedure is used

to define Det(Sprod), which builds new states on de-
mand. Initially, the set Q of states, and the set of tran-
sitions of Det(Sprod), are empty. Then, while there
is a function symbol f , say of arity k, and k states
q1, . . . , qk already constructed in Q such that (†) q =
{P | (∃P (X) ∈ Sprod) or ∃(P (f(X1, . . . , Xk)) ⇐
B1(X1), . . . , Bk(Xk)) ∈ Sprod ·∀i·Bi ⊆ qi} is non-empty,
add q to Q, and add the transition q(f(X1, . . . , Xk)) ⇐
q1(X1), . . . , qk(Xk) to Det(Sprod). Call this the powerset
construction. It is well-known that the powerset construc-
tion has the property that the language Lq(Det(Sprod))
of the state q = {P1, . . . , Pn} in Det(Sprod) is exactly
the intersection

⋂
P∈q LP (Sprod) \

⋃
P %∈q LP (Sprod). The

fact that states q are built on demand also implies that
Lq(Det(Sprod)) ,= ∅ for all q.
The connection with finite models was done by Kozen

[42], who observed that complete deterministic tree au-
tomata were just finite models. (In fact, Kozen de-
fined them this way.) There is a transition from the tu-
ple of states (q1, . . . , qm) to q labeled f , i.e., a clause
q(f(X1, . . . , Xm)) ⇐ q1(X1), . . . , qm(Xm) in the clausal
representation of the automaton, if and only if the seman-
tics of f maps the tuple of values (q1, . . . , qm) to q. That
is, the states of a complete deterministic automaton are the
values of the corresponding finite model. The powerset
construction is easier to understand in this light: for ev-
ery f satisfying (†) above, instead of adding the transition
q(f(X1, . . . , Xk)) ⇐ q1(X1), . . . , qk(Xk) to Det(Sprod),
we add the table entry f(q1, . . . , qk) = q to the model. Ad-
ditionally, tables for predicates are given as truth-tables; for
each predicate P , this is defined in Det(Sprod) so that P
holds of state q if and only if P ∈ q.
We can now explain how we estimated the size of models

returned by h1 in Figure 9: we ran pldet, which builds
Det(Sprod), and we counted states (values) and transitions
(table entries).
Finally, while our model-checking technique will work

on alternating tree automata, it will in particular work on
finite models encoded as alternating tree automata (which
will necessarily be deterministic); i.e., each entry in a ta-
ble, stating that f applied to values (v1, . . . , vm) should
yield value v, will give rise to a tree automaton clause
is v(f(X1, . . . , Xm)) ⇐ is v1(X1), . . . , is vm(Xm),

9

where there is one is v predicate for each value v; the truth-
table of each predicate P is encoded as the collection of
clauses P (X) ⇐ is v(X), where v ranges over the val-
ues that satisfy P in the model. While this won’t decrease
the size of the description of the model in Coq—still propor-
tional to #entries—, our model-checker will have the oppor-
tunity to find proofs that are shorter than the #checks steps
needed in enumeration proofs. E.g., our model-checker will
produce the obvious proof that P (X) ⇐ P (X) holds (in
any model), without enumerating all possible values forX .
Finally, we loop the loop and observe that model-

checking against Det(Sprod) or against our old friend
lfpTSprod

are the same thing:

Lemma 6.1 Let Sprod be an alternating tree automaton.
For any set S of first-order clauses, Det(Sprod) |= S if
and only if lfpTSprod

|= S.

Proof. Say that a value v in a model M is definable iff
v is the denotation of some ground term. A model is fully
complete if and only if all its values are definable. Clearly,
lfpTSprod

is fully complete, as every value is its own deno-
tation. Det(Sprod) is also fully complete, since every value
(state) q inDet(Sprod) is the denotation of any ground term
in Lq(Det(Sprod)), and this is non-empty by construction.
For any ground term t, observe that Det(Sprod) |= P (t)

if and only if t is in
⋃

q/P∈q Lq(Det(Sprod)) =
⋃

q/P∈q

(⋂
P ′/P ′∈q LP ′(Sprod) \

⋃
P ′/P ′ %∈q LP ′(Sprod)

)
=

LP (Sprod), where the latter equality is by standard set
reasoning. That is, Det(Sprod) |= P (t) if and only if
lfpTSprod

|= P (t). It follows that Det(Sprod) |= F if and
only if lfpTSprod

|= F for every universal closed formula
F : this is by structural induction on F , using the easy fact
that, whenever M is fully complete, M |= ∀X · G(X)
if and only if M |= G(t) for every ground term t. Since
every set S of first-order clauses is a universal sentence
(taking into the implicit universal quantifications over free
variables), we conclude. !

7 Model-Checking Against Alternating Tree
Automata

SinceDet(Sprod) can have exponential size in the size of
Sprod, one may say that alternating tree automata are com-
pact representations of possibly large finite models. We de-
scribe how to model-check S against M = Det(Sprod)
efficiently in practice. But compactness has its toll:

Proposition 7.1 Checking whether M |= S, where M =
Det(Sprod) is compactly represented by an alternating
tree automaton Sprod, and S is a set of Horn clauses, is
EXPTIME-complete. It is EXPTIME-hard already if
Sprod is a (non-alternating) automaton, and S only con-
tains one positive, unit clause.

Γ $ C (P universal)
(−Univ)

Γ $ C ∨ ¬P (t)

(Loop)
Γ, C $ C

(P universal)
(+Univ)

Γ $ C ∨ P (t)

Figure 10. Basic model-checking rules

Proof. Let n be the number of predicates in Sprod, S, k
be the largest number of variables in a clause C of S, α
the largest symbol arity. Note that we don’t require to com-
pute Det(Sprod). However, computing it yields the desired
upper bound: Det(Sprod) can be computed in time expo-
nential in the size of Sprod, producing a model with at most
2n states, and tables with at most 2nα entries. We then enu-
merate up to (2n)k = 2nk tuples ρ of values for variables.
For each, we can check whether C holds under ρ in expo-
nential time on a Turing machine (we need exponential time
to travel along exponential-sized tables stored on the tapes).
Conversely, non-deterministic tree automaton univer-

sality is EXPTIME-complete [20, Section 1.7, Theo-
rem 14]. This is the problem of checking whether, given
a (non-alternating) tree automaton Sprod and a state P ,
LP (Sprod) is the set of all ground terms. This is the same as
checking lfpTSprod

|= S, where S only contains the clause
P (X), hence to Det(Sprod) |= S by Lemma 6.1. !

To define our model-checking procedure (Figure 10, Fig-
ure 11), we need a few definitions. Let Sprod be an al-
ternating tree automaton. Call a predicate P universal in
Sprod if and only if Sprod contains the clause P (X). Judg-
ments Γ 2 C are composed of a clause C and a history
Γ, which is a finite set of ε-clauses. An ε-clause, E(X)
is a disjunction of literals of the form P (X) or ¬P (X),
with the same variableX; ε-blocks are the special case with
no negation. All clauses in a judgment are implicitly uni-
versally quantified, and do not share variables. Here it is
convenient that clauses may be non-Horn, and are written
as disjunctions L1 ∨ L2 ∨ . . . ∨ Lk. We let Sprod/P be
the the set of clauses of the form P (f(X1, . . . , Xn)) ⇐ B
in Sprod for some body B and some function symbol f ;
Sprod/P, f is the set of clauses of the same form, this time
with given function f . We write %t for t1, . . . , tn, and %X
similarly in the name of brevity; [%t/ %X] is the substitution
[t1/X1, . . . , tn/Xn]. The notation E(f(%X)), used in rule
(−P Elim), stands for E(X)[f(%X)/X]; this rule is the
only one that adds a clause to the history Γ. The brace
notation used there means that there are as many premises
as there are clauses P (f(%X)) ∨ D in Sprod/P ; similarly
for (−P, f Elim). In rule (+P, f Elim), we enumerate
the clauses P (f(%X)) ⇐ B of Sprod/P, f ;

∧
B denotes the

10

conjunction of all atoms in the body B. By cnf, we mean a
conjunctive normal form, obtained by distributing ands over
ors. The (Split) rule is the only non-deterministic rule, and
picks one subclause Ci of C1 ∨ . . . ∨ Cn, provided the lat-
ter is block-decomposed, i.e., C1, . . . , Cn are all non-empty
and share no free variable. The rules in Figure 11 apply
only if no rule from Figure 10 applies. This implies that no
universal predicate occurs on the right of 2.

(P (f(!X))∨D)∈Sprod/P,f
z }| {

Γ $ C ∨ D[!t/ !X]
(−P, f Elim)

Γ $ C ∨ ¬P (f(!t))

(P (f(!X))∨D)∈Sprod/P
z }| {

Γ, ∀X · E(X) ∨ ¬P (X) $ E(f(!X)) ∨ D
(−P Elim)

Γ $ E(X) ∨ ¬P (X)

Γ $ C1 . . . Γ $ Ck
(+P, f Elim)

Γ $ C ∨ P (f(!t))
where

Vk
i=1 Ci is a cnf for

C ∨
W

(P (f(!X))⇐B)∈Sprod/P,f

V
B[!t/ !X]

Γ $ Ci (1 ≤ i ≤ n, n ≥ 2)
(Split)

Γ $ C1 ∨ . . . ∨ Cn
where C1 ∨ . . . ∨ Cn is block-decomposed

Figure 11. Model-checking rules, end

To produce a Coq proof that Det(Sprod) |= S, we check
that 2 C for each clauseC in S. Our tool h1mc, also part of
the h1 tool suite [33], looks for a proof (of 2 C by apply-
ing the model-checking rules from the bottom up. The im-
portant result here is the following soundness theorem. This
is proved by induction on a derivation(of 2 C; apart from
this outer induction, the rest of the proof is the skeleton of
the Coq proof that h1mc extracts from (. Let* denote the
proper subterm ordering, and observe this is well-founded.
Let 3 be defined by s 3 t if and only if s * t or s = t.

Theorem 7.2 (Soundness) Let Γ = ∀X ·E1(X), . . . ,∀X ·
Em(X), and C = C(X1, . . . , Xk) be a clause with free
variables in X1, . . . , Xk. If Γ 2 C is derivable using the
model-checking rules, then the following formula holds in
lfpTSprod

, where all variables range over ground terms:

∀X1, . . . , Xk·
∧

1≤i≤k
1≤j≤m

(∀X 4 Xi·Ej(X)) ⇒ C(X1, . . . , Xk)

Proof. By induction over a derivation (of the judg-
ment. We look at the last rule. The cases of (−Univ) and
(+Univ) are clear. For (Loop), we observe that C must be

of the form Ej(Xi) for some i, j, and we conclude by the
antecedent ∀X 4 Xi · Ej(X).
For (−P Elim), letX1, . . . , Xk contain at least the vari-

ableX free in E(X) ∨ ¬P (X). Without loss of generality,
let X be X1. We prove ∀X1, . . . , Xk ·

∧
1≤i≤k
1≤j≤m

(∀X 4

Xi · Ej(X)) ⇒ C(X1, . . . , Xk) ⇒ E(X1) ∨ ¬P (X1)
by an auxiliary induction on X1, well-ordered by *. (In
Coq, we use the fix tactic to do this.) Our new induction
hypothesis is (∗) ∀X ≺ X1 · E(X) ∨ ¬P (X). We must
then show that E(X1) ∨ ¬P (X1) holds in lfpTSprod

. As-
sume P (X1) holds: we must show E(X1). But the only
way that P (t) can hold in lfpTSprod

, for any ground term
t, is that t is of the form f(%t), and that there is a clause
with head P (f(%X)), say P (f(%X)) ⇒ B, in Sprod/P ,
where

∧
B[%t/ %X] holds in lfpTSprod

. (In Coq, we use
case and inversion.) We may also write this clause as
P (f(%X))∨D, whereD is equivalent to the negation of

∧
B.

Let %X be Xk+1, . . . , Xk+p, and let Em+1(X) be E(X) ∨
¬P (X). By the outer induction on (, we have a proof of
∀X2, . . . , Xk, Xk+1, . . . , Xk+p ·

∧
2≤i≤k+p
1≤j≤m+1

(∀X 4 Xi ·

Ej(X)) ⇒ E(f(%X))∨D. ForX1 = f(Xk+1, . . . , Xk+p),
we have that every X 4 Xk+i is such that X ≺ X1, so
we may apply (∗). Simple logic then shows that E(X2)
holds. So ∀X1, . . . , Xk ·

∧
1≤i≤k
1≤j≤m

(∀X 4 Xi · Ej(X)) ⇒

C(X1, . . . , Xk) ⇒ E(X1) ∨ ¬P (X1) holds in lfpTSprod
.

Rule (−P, f Elim) is justified by the same case anal-
ysis, using Coq’s case and inversion tactics, but does
not require to introduce any new induction hypothesis into
the history. The correctness of (Split) is obvious. Fi-
nally, for (+P, f Elim), propositional reasoning (using
Coq’s tauto tactic) shows that

∧k
i=1 Ck implies C ∨∨

(P (f("X))⇐B)∈Sprod/P,f

∧
B[%t/ %X]. Using the fact that, for

any clauseP (f(%X)) ⇐ B in Sprod/P, f ,
∧
B[%t/ %X] implies

P (f(%t)) in lfpTSprod
, we infer that C ∨ P (f(%t)) must also

hold in lfpTSprod
!

Using Theorem 7.2 and Lemma 6.1, we then obtain:

Corollary 7.3 If 2 C is derivable using the model-checking
rules for every C ∈ S, then Det(Sprod) |= S.

For the sake of efficiency, h1mc actually uses a num-
ber of extra rules that act as shortcuts in common cases.
Typically, proving Γ 2 P (X) ⇐ Q(X), i.e., proving that
LQ(Sprod) ⊆ LP (Sprod), can be done in many cases by
exhibiting a form of simulation relation between automaton
states such thatQ simulates P . See Appendix A for details.
Another h1-specific optimization is the following. Re-

member that h1 first abstracts the initial clause set S into
another clause set S′ that falls into the classH1. Instead of
model-checking S directly against Det(Sprod), we model-
check S′ instead, then produce a Coq proof that S′ implies

11

S. Since S′ is obtained from S by some reversed form of
resolution, showing that S′ implies S is particularly easy.
Finally, h1mc memoizes proof attempts. That is, when

attempting to derive Γ 2 C, it first checks whether it has
already derived Γ′ 2 C ′ for some Γ′ ⊆ Γ and some clause
C ′ that subsumes C, i.e., such that C = C ′σ ∨D for some
substitution σ and some subclause D. If so, it reuses the
proof of Γ′ 2 C ′ to infer Γ 2 C directly.
Finally, we describe additional optimizations in Ap-

pendix C. Experiments show that these are less important
when it comes to model-checking alternating tree automata
produced by h1, but are crucial in case one wants to model-
check models produced by Paradox.
The model-checking procedure is also complete, in a

subtle sense. We now need to quantify over all signatures
Σ that contain all the symbols of Sprod and S. While
lfpTSprod

is a set of ground atoms that is independent of the
signature Σ, as a model, it is a subset of the set of all ground
atoms, which does depend on Σ. To make the dependency
on Σ explicit, write this model lfpΣ TSprod

. Then:

Proposition 7.4 (Completeness) If lfpΣ TSprod
|= S for

every signature Σ containing all the symbols of Sprod and
S, then one may find a derivation of 2 C for every C ∈ S,
in an effective way.

We omit the proof, for lack of space. In any case, this is
less central to our work. Also, neither soundness nor com-
pleteness has to be part of our trusted base: the onus of
correctness rests entirely on Coq itself.
Since h1, as a resolution engine, produces proof that are

independent on Σ, any set Sprod produced by h1 from S
will be such that not only lfpTSprod

|= S, but the stronger
assumption of Proposition 7.4 is satisfied. Models produced
by Paradox only satisfy lfpΣ TSprod

|= S forΣ equal to—no
larger than–the signature Σ0 defined by S. To regain com-
pleteness under this weaker assumption, we need an addi-
tional rule:

f∈Σ0︷ ︸︸ ︷
Γ, ∀X · E(X) 2 E(f(%X))

(+Elim)
Γ 2 E(X)

whenever E(X) is an ε-block consisting only of positive
atoms +P (X), and there is one premise for each func-
tion symbol f in the given signature Σ0. This is costly:
the only rule that can be applied to derive the premise is
(+P, f Elim), which we had better avoid. We have exper-
imented h1mc with the (+Elim) rule on (i.e., using its so-
called -exact-sig option), and found this not to be com-
petitive relative to the simple-minded approach of Section 5
on models found by Paradox, despite extra algorithmic op-
timizations in h1mc in this case. This seems to be due to

Det(Sprod) Coq proof
Protocol #elts #entries #checks size #lines time
NS 46 217 312 430 106 1.3Mb 27 318 1.86 s+41.7 s
am. NS 57 188 724 1.245 109 1.7Mb 36 285 4.9 s+66.2 s
Yahalom> 56 – 2.5Mb 48 609 12.6 s+91.5 s

Figure 12. Coq proofs

the fact that tables are dense, and that h1mc still has to enu-
merate them in some way. (E.g., we have witnessed h1mc
generate 510 premises in one instance of (−P Elim).)
On the other hand, the approach of Figure 10 and Fig-

ure 11, i.e., without the (+Elim) rule, is effective in all
cases where we can find a model using h1. We believe this
is due to the fact that transitions in alternating tree automata
found by h1 are very sparse, so that, in particular, instances
of (−P Elim) have very few premises in general. The role
of optimizations (see below) is crucial, too.
Figure 12 gives an indication of the size of Coq proofs

produced by h1mc on the models found by h1. We have
copied back the #elts, #entries and #checks from Figure 9
for easy reference. Times (rightmost column) are reported
as t1 + t2, where t1 is the time taken by h1mc, and t2 is
the time taken by Coq to check the proof. Note that pro-
ducing and checking a formal Coq proof of the amended
NS protocol, even on the 57 element model found by h1, is
practical, even though there is probably a smaller model—
which we didn’t find. It is also rather remarkable that while
we haven’t been able to determinize Sprod in the Yahalom
case, h1mcmanages to find a proof in a reasonable amount
of time.

8 Equational Theories

More and more protocols in the literature can only be
modeled using equational theories, to represent e.g. bitwise
exclusive-or or modular exponentiation [23]. While h1 re-
ally cannot deal with such equational theories, this is in
principle easy to Paradox: just add the needed equations as
unit clauses. For example, Figure 13 lists axioms for modu-
lar exponentiation as used in Diffie-Hellman key agreement,
where exponents obey an Abelian group law ∗; g(M) is
meant to denote gM for a fixed generator g. (Following an
established tradition in automated deduction, we use ≈ for
the equality symbol, to distinguish it visually from actual
equality.)
We were happily surprised to see that this approach

worked fine. (In particular, that secure protocols found
in the literature again tend to have models with few ele-
ments.) We started with the small Diffie-Hellman protocol
(A → B : gNa , B → A : gNb , followed by some message
exchange A → B : {1}gNa∗Nb), again with old compro-
mised sessions, and more recent sessions. see Appendix D.

12

X ∗ one ≈ X X ∗ Y ≈ Y ∗ X X ∗ (Y ∗ Z) ≈ (X ∗ Y) ∗ Z
X ∗ inv(X) ≈ one g(zero) ≈ one

Figure 13. Diffie-Hellman equations

1. A −→ B : A, B, Na

2. B −→ S : A, B, Na, Nb

3. S −→ B : Ns,
f1(Ns, Nb, A, Pb) ⊕ f1(Ns, Na, B, Pa)

| {z }

K

,

f2(Ns, Nb, A, Pb) ⊕ f2(Ns, Na, B, Pa)
| {z }

Ha

,

f3(Ns, Nb, A, Pb) ⊕ f3(Ns, Na, B, Pa)
| {z }

Hb

,

g(K, Ha, Hb, Pb)
4. B −→ A : Ns, Hb

5. A −→ B : Ha

Figure 14. Gong’s protocol, from SPORE

Paradox finds that the common key gNa∗Nb of current ses-
sions is unknown to the intruder in 0.34 s, producing a 3
element model (namely Z/3Z) with 100 entries.
For a more complicated example, we modeled Gong’s

protocol [32], or rather the variant from the SPORE repos-
itory [63]. This is shown in Figure 14, and uses an op-
erator ⊕ (exclusive-or) that is associative, commutative,
has a unit 0 and is nilpotent (M ⊕ M ≈ 0). Here f1,
f2, f3, g are one-way functions, Pa is a long-term secret
shared between A and S, and similarly for Pb. We omit the
clauses, which again include two phases separated by an
Oops move revealing all session keys from the first phase.
Using Paradox, we have been able to verify that the session
keyK = f1(Ns, Na, B, Pa) remained secret in current ses-
sions, from the point of view of Alice, Bob and the trusted
third-party: Paradox finds a 4 element model in two hours,
with 1 774 table entries.
It is easy to extend the approach of Section 5 to the

equational case. Indeed, to model-check the clause set S
against the finite model M, modulo the equational theory
E, we only need to model-check S ∪ Ẽ ∪ Eq against
M, where Ẽ is the set of clauses equal(M, N) when
M ≈ N ranges over the equations of E, and Eq is the
theory of equality: for each function symbol f of arity
k, a clause equal(f(X1, . . . , Xk), f(Y1, . . . , Yk)) ⇐
equal(X1, Y1), . . . , equal(Xk, Yk), for each pred-
icate symbol P , a clause P (X) ⇐ P (Y),
equal(X, Y), and finally the clauses equal(X, X),
equal(X, Y) ⇐ equal(Y, X) and equal(X, Z) ⇐
equal(X, Y), equal(Y, Z).
This is easily done. Note that this contrasts with han-

dling equality in automated theorem proving, which can
make proof search harder (e.g.,H1 plus equality is undecid-
able [35, Theorem 11]). But checking them against a finite
model is no harder than in the non-equational case. Us-
ing the approach of Section 5, we have produced a 641 line
Coq proof of the Diffie-Hellman protocol this way, which
is checked in 0.74 s, and a 2 555 line Coq proof of Gong’s
protocol, which is checked in 1 204 s (20 minutes).

9 Conclusion

We hope to have demonstrated, first, that producing for-
mally checkable proofs from first-order formulations S of
security goals π was difficult, and sometimes more diffi-
cult than verification itself. The most frustrating aspect of
things is that there seems to be no practically usable way of
exploiting the fact that ProVerif, SPASS or h1 concluded
that there was no attack, to infer a proof of it.
On the other hand, we hope to have shown that formal

Coq proofs of security could be extracted and checked effi-
ciently from a model (in the explicit model approach of Sec-
tion 5), or from a model-checking process (in the automata-
theoretic approach of Section 7).
This endeavor is a first step towards formally verifying

full security protocols, and many things remain to be done.
For one, complementing this work with formally checkable
proofs of computational soundness of the Dolev-Yao model,
when it is indeed sound [40, 64], would be desirable. There
is a growing interest from industrial firms and defense agen-
cies towards formally checked proofs of security models,
and we believe our work solves an important part of it.
Another necessary step is to find techniques that would

scale up better. While Paradox and the explicit model ap-
proach of Section 5 work fine when there is a model of
at most, say, 6 elements, the automata-theoretic approach
of Section 7 handles much larger models, but cannot cope
with equational theories yet. However, note that the num-
ber of elements of a model is a very bad measure of its size:
function and predicate tables are much larger than what the
number of elements suggests. We have also observed that
the size of the model is independent of the size of the pro-
tocol to be proved secure. Rather, the size of the model
seems to be correlated to its logical complexity. In particu-
lar, we have observed, reproducing an experiment by Koen
Claessen, that some safe C implementations of roles in the
Needham-Schroeder asymmetric key protocol [36] only re-
quired models with 3 elements. It remains to be examined
whether scaling up is necessary, or is in fact a non-problem.

References

[1] M. Abadi. Secrecy by typing in security protocols. Journal
of the ACM, 46(5):749–786, 1999.

13

[2] M. Abadi and B. Blanchet. Analyzing security protocols
with secrecy types and logic programs. Journal of the ACM,
52(1):102–146, Jan. 2005.

[3] M. Abadi and C. Fournet. Mobile values, new names, and
secure communication. SIGPLAN Notices, 36(3):104–115,
2001.

[4] M. Abadi and A. D. Gordon. A calculus for cryptographic
protocols. Information and Computation, 148(1):1–70, Jan.
1999.

[5] R. Amadio and W. Charatonik. On name generation and set-
based analysis in the Dolev-Yao model. In CONCUR’02,
pages 499–514. Springer-Verlag LNCS 2421, 2002.

[6] L. Bachmair and H. Ganzinger. Resolution theorem proving.
In Robinson and Voronkov [60], chapter 2, pages 19–99.

[7] L. Bachmair, H. Ganzinger, and U. Waldmann. Set con-
straints are the monadic class. In Proc. 8th Annual IEEE
Symposium on Logic in Computer Science, pages 75–83,
1993.

[8] Y. Bertot and P. Castéran. Interactive Theorem Proving and
Program Development Coq’Art: The Calculus of Inductive
Constructions, volume XXV of Texts in Theoretical Com-
puter Science. An EATCS Series. Springer Verlag, 2004.
469 pages.

[9] K. Bhargavan, C. Fournet, A. D. Gordon, and A. R. Pucella.
Tulafale: A security tool for web services. In Intl. Symp.
Formal Methods for Components and Objects (FMCO’03),
pages 197–222. Springer Verlag LNCS 3188, 2004.

[10] B. Blanchet. An efficient cryptographic protocol verifier
based on Prolog rules. In 14th IEEE Computer Secu-
rity Foundations Workshop (CSFW-14), pages 82–96. IEEE
Computer Society Press, 2001.

[11] B. Blanchet. An automatic security protocol verifier based
on resolution theorem proving (invited tutorial). In 20th
International Conference on Automated Deduction (CADE-
20), Tallinn, Estonia, July 2005.

[12] B. Blanchet, M. Abadi, and C. Fournet. Automated veri-
fication of selected equivalences for security protocols. In
20th IEEE Symposium on Logic in Computer Science (LICS
2005), pages 331–340. IEEE Computer Society, June 2005.

[13] D. Bolignano. An approach to the formal verification of
cryptographic protocols. In 3rd ACM Conference on Com-
puter and Communication Security, 1996.

[14] J. Bull and D. J. Otway. The authentication protocol. Tech-
nical Report DRA/CIS3/PROJ/CORBA/SC/1/CSM/436-
04/03, Defence Research Agency, 1997.

[15] R. Chadha, S. Kremer, and A. Scedrov. Formal analysis of
multi-party contract signing. Journal of Automated Reason-
ing, 36(1-2):39–83, Jan. 2006.

[16] K. Claessen and N. Sörensson. New techniques that im-
prove MACE-style finite model building. In P. Baumgart-
ner, editor, Proc. CADE-19 Workshop W4, Miami, FL, July
2003. http://www.uni-koblenz.de/∼peter/
models03/final/soerensson/main.ps.

[17] J. Clark and J. Jacob. A survey of authentication protocol
literature, v1.0. http://citeseer.ist.psu.edu/
clark97survey.html, 1997.

[18] K. L. Clark. Negation as failure. In H. Gallaire and
J. Minker, editors, Logic and Databases, pages 293–322,
New York, NY, 1978. Plenum Press.

[19] H. Comon. Inductionless induction. In R. David, editor,
2nd Int. Conf. in Logic For Computer Science: Automated
Deduction. Lecture notes, Chambéry, 1994. Univ. de Savoie.

[20] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree automata tech-
niques and applications. www.grappa.univ-lille3.
fr/tata, 1997. Version of Sep. 6, 2005.

[21] H. Comon and R. Nieuwenhuis. Induction=i-
axiomatization+first-order consistency. Information
and Computation, 159(1–2):151–186, 2000.

[22] H. Comon-Lundh and V. Cortier. Security properties: Two
agents are sufficient. Science of Computer Programming,
50(1–3):51–71, 2004.

[23] V. Cortier, S. Delaune, and P. Lafourcade. A survey of alge-
braic properties used in cryptographic protocols. Journal of
Computer Security, 14(1):1–43, 2006.

[24] V. Cortier, S. Delaune, and G. Steel. A formal theory of
key conjuring. In Proceedings of the 20th IEEE Computer
Security Foundations Symposium (CSF’07), pages 79–93,
Venice, Italy, July 2007. IEEE Computer Society Press.

[25] V. Cortier, M. Rusinowitch, and E. Zălinescu. Relating two
standard notions of secrecy. Logical Methods in Computer
Science, 3(2), 2007.

[26] A. Dawar. Model-checking first-order logic: Automata and
locality. In J. Duparc and T. A. Henzinger, editors, CSL,
volume 4646 of Lecture Notes in Computer Science, page 6.
Springer, 2007.

[27] P. Devienne, P. Lebègue, A. Parrain, J.-C. Routier, and
J. Würtz. Smallest Horn clause programs. Journal of Logic
Programming, 27(3):227–267, 1994.

[28] D. Dolev and A. C. Yao. On the security of public key
protocols. IEEE Transactions on Information Theory, IT-
29(2):198–208, 1983.

[29] P. K. Downey, R. Sethi, and R. E. Tarjan. Variations on
the common subexpression problem. Journal of the ACM,
27(4):758–771, 1980.

[30] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Un-
decidability of bounded security protocols. In N. Heintze
and E. Clarke, editors, Proceedings of the Workshop on For-
mal Methods and Security Protocols — FMSP, Trento, Italy,
1999.

[31] T. Frühwirth, E. Shapiro, M. Y. Vardi, and E. Yardeni. Logic
programs as types for logic programs. In Proc. 6th Symp.
Logic in Computer Science, pages 300–309. IEEE Computer
Society Press, 1991.

[32] L. Gong. Using one-way functions for authentication. Com-
puter Communication Review, 19(5):8–11, Oct. 1989.

[33] J. Goubault-Larrecq. The h1 Tool Suite. LSV,
ENS Cachan, CNRS, INRIA projet SECSI, 2003.
http://www.lsv.ens-cachan.fr/∼goubault/
H1.dist/dh1index.html.

[34] J. Goubault-Larrecq. Une fois qu’on n’a pas trouvé de
preuve, comment le faire comprendre à un assistant de
preuve ? In V. Ménissier-Morain, editor, Actes des
15èmes Journées Francophones sur les Langages Applicat-
ifs (JFLA’04), pages 1–40, Sainte-Marie-de-Ré, France, Jan.
2004. INRIA. Invited paper.

[35] J. Goubault-Larrecq. Deciding H1 by resolution. Informa-
tion Processing Letters, 95(3):401–408, Aug. 2005.

14

[36] J. Goubault-Larrecq and F. Parrennes. Cryptographic pro-
tocol analysis on real C code. In R. Cousot, editor, Pro-
ceedings of the 6th International Conference on Verification,
Model Checking and Abstract Interpretation (VMCAI’05),
volume 3385 of Lecture Notes in Computer Science, pages
363–379, Paris, France, Jan. 2005. Springer.

[37] J. Goubault-Larrecq, M. Roger, and K. N. Verma. Ab-
straction and resolution modulo AC: How to verify Diffie-
Hellman-like protocols automatically. Journal of Logic and
Algebraic Programming, 64(2):219–251, Aug. 2005.

[38] A. Huima. Efficient infinite-state analysis of security proto-
cols. In Proc. FLOC Workshop on Formal Methods in Secu-
rity Protocols, Trento, Italy, 1999.

[39] Information technology – security techniques – evaluation
criteria for IT security. ISO/IEC 15408 Standard, 2005.
Parts 1-3, http://standards.iso.org/ittf/
PubliclyAvailableStandards/index.html.

[40] R. Janvier, Y. Lakhnech, and L. Mazaré. Relating the sym-
bolic and computational models of security protocols us-
ing hashes. In P. Degano, R. Küsters, L. Viganò, and
S. Zdancewic, editors, Proceedings of the Joint Workshop on
Foundations of Computer Security and Automated Reason-
ing for Security Protocol Analysis (FCS-ARSPA’06), Seattle,
Washington, USA, Aug. 2006.

[41] D. Kapur and D. R. Musser. Proof by consistency. Artificial
Intelligence, 31:125–157, 1987.

[42] D. C. Kozen. Automata and Computability. Undergraduate
Texts in Computer Science. Springer, 1997.

[43] S. Kremer. Computational soundness of equational theories
(tutorial). In G. Barthe and C. Fournet, editors, Proceed-
ings of the 3rd Symposium on Trustworthy Global Comput-
ing (TGC’07), Lecture Notes in Computer Science, Sophia-
Antipolis, France, 2008. Springer. To appear.

[44] R. Küsters and T. Trudering. On the automatic analysis of
recursive security protocols with XOR. In W. Thomas and
P. Weil, editors, Proc. 24th Symp. Theoretical Aspects of
Computer Science (STACS 2007), pages 646–657. Springer
Verlag LNCS 4393, 2007.

[45] D. S. Lankford. A simple explanation of inductionless in-
duction. Technical Report MTP-14, Math. Dept., Louisiana
State University, 1981.

[46] G. Lowe. An attack on the Needham-Schroeder public-
key authentication protocol. Information Processing Letters,
56(3):131–133, 1996.

[47] J. Marcinkowski and L. Pacholski. Undecidability of the
Horn clause implication problem. In Proc. 33rd Ann. Symp.
Foundations of Computer Science (FOCS’92), pages 354–
362, Pittsburgh, PA, 1992.

[48] D. Micciancio and B. Warinschi. Soundness of formal en-
cryption in the presence of active adversaries. In M. Naor,
editor, Theory of Cryptography Conference - Proceedings
of TCC 2004, volume 2951 of Lecture Notes in Computer
Science, pages 133–151, Cambridge, MA, USA, Feb. 2004.
Springer.

[49] D. Monniaux. Abstracting cryptographic protocols with
tree automata. In Sixth International Static Analysis Sym-
posium (SAS’99), pages 149–163. Springer Verlag LNCS
1694, 1999.

[50] R. M. Needham and M. D. Schroeder. Using encryption for
authentication in large networks of computers. Communica-
tions of the ACM, 21(12):993–999, 1978.

[51] R. M. Needham and M. D. Schroeder. Authentication revis-
ited. Operating Systems Review, 21(12), Dec. 1987.

[52] G. Nelson and D. C. Oppen. Fast decision procedures based
on congruence closure. Journal of the ACM, 27(2):356–364,
avril 1980.

[53] F. Nielson, H. R. Nielson, and H. Seidl. Normalizable Horn
clauses, strongly recognizable relations and Spi. In 9th
Static Analysis Symposium (SAS). Springer Verlag LNCS
2477, 2002.

[54] D. Otway and O. Rees. Efficient and timely mutual authen-
tication. Operating Systems Review, 21(1):8–10, 1987.

[55] L. C. Paulson. Isabelle: The next 700 theorem provers.
In P. Odifreddi, editor, Logic and Computer Science, vol-
ume 31 of The APIC Series, pages 361–386. Academic
Press, 1990.

[56] L. C. Paulson. Proving properties of security protocols by
induction. In 10th IEEE Computer Security Foundations
Workshop, pages 70–83, 1997.

[57] L. C. Paulson. Relations between secrets: Two formal analy-
ses of the Yahalom protocol. Journal of Computer Security,
9(3):197–216, Jan. 2001.

[58] O. Pereira and J.-J. Quisquater. A security analysis of the
cliques protocols suites. In 14th IEEE Computer Security
Foundations Workshop, pages 73–81, June 2001.

[59] X. Rival and J. Goubault-Larrecq. Experiments with finite
tree automata in Coq. In R. J. Boulton and P. B. Jackson,
editors, Proceedings of the 14th International Conference
on Theorem Proving in Higher Order Logics (TPHOLs’01),
volume 2152 of Lecture Notes in Computer Science, pages
362–377, Edinburgh, Scotland, UK, Sept. 2001. Springer.

[60] J. A. Robinson and A. Voronkov, editors. Handbook of Au-
tomated Reasoning. North-Holland, 2001.

[61] P. Y. A. Ryan and S. A. Schneider. An attack on a recur-
sive authentication protocol: A cautionary tale. Information
Processing Letters, 65(1):7–10, 1998.

[62] P. Selinger. Models for an adversary-centric protocol
logic. Electronic Notes in Theoretical Computer Science,
55(1):73–87, 2001. Proceedings of the 1st Workshop
on Logical Aspects of Cryptographic Protocol Verification
(LACPV’01), J. Goubault-Larrecq, ed.

[63] Spore—security protocols open repository. http://www.
lsv.ens-cachan.fr/spore/, 2005.

[64] C. Sprenger, M. Backes, D. Basin, B. Pfitzmann, and
M. Waidner. Cryptographically sound theorem proving.
In Proceedings of the 19th IEEE Computer Security Foun-
dations Symposium Workshop (CSFW’06), pages 153–166.
IEEE Computer Society Press, Washington, DC, USA,
2006.

[65] M. Steiner, G. Tsudik, and M. Waidner. Key agreement in
dynamic peer groups. IEEE Transactions on Parallel and
Distributed Systems, 11(8):769–780, 2000.

[66] T. Tammet. Resolution Methods for Decision Problems and
Finite-Model Building. PhD thesis, Göteborg University,
1992.

[67] F. J. Thayer Fábrega, J. C. Herzog, and J. D. Guttman.
Strand spaces: Proving security protocols correct. Journal
of Computer Security, 7:191–230, 1999.

15

[68] C. Weidenbach. Towards an automatic analysis of security
protocols. In H. Ganzinger, editor, Proceedings of the 16th
International Conference on Automated Deduction (CADE-
16), pages 378–382. Springer-Verlag LNAI 1632, 1999.

[69] C. Weidenbach. Combining Superposition, Sorts and Split-
ting, chapter 27, pages 1965–2012. In Robinson and
Voronkov [60], 2001.

[70] C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen,
C. Theobald, and D. Topić. SPASS version 2.0. In
A. Voronkov, editor, Proceedings of the 18th Interna-
tional Conference on Automated Deduction. Springer-
Verlag LNAI 2392, 2002.

A Simulations in Alternating Tree Automata

First, let NE(S) be the smallest set of predicate sym-
bols such that, for every clause of the form (25) in S, if
B1 ⊆ NE(S) and . . . and Bk ⊆ NE(S), then P ∈
NE(S). Clearly, if LP (S) ,= ∅, then P ∈ NE(S). In
fact, if S is a non-deterministic automaton, this yields a de-
cision procedure for non-emptiness: if P ∈ NE(S) then
LP (S) ,= ∅. This is not so for alternating automata, for
which non-emptiness is EXPTIME-complete [20, Theo-
rem 55, Section 7.5]. NE(S) can be computed in polyno-
mial time by a marking algorithm.
We say that R is a simulation on the states of Sprod if

and only if for every clause:

P (f(X1, . . . , Xk)) ⇐ B1(X1), . . . , Bk(Xk) (26)

with P ∈ NE(Sprod), for every state P ′ with P R P ′,
there is a clause:

P ′(f(X1, . . . , Xk)) ⇐ B′
1(X1), . . . , B

′
k(Xk) (27)

in Sprod with Bi R# B′
i for every i, 1 ≤ i ≤ k—we let

B R# B′ if and only if for every Q′ ∈ B′, there is a Q ∈ B
with Q R Q′.
There is always a largest simulation, which is com-

putable in polynomial time, by a largest fixpoint compu-
tation on the set of pairs (P, P ′) of predicates.
The next two results are probably folklore, at least for

non-deterministic automata.

Lemma A.1 For any two simulations R and R′, (R; R′),
defined by P (R; R) P ′′ if and only if P R P ′ and
P ′ R′ P ′′ for some P ′ ∈ P , is a simulation.

Proof. First, we claim that: (∗) if P R P ′, where
R is a simulation, and P ∈ NE(Sprod), then P ′ ∈
NE(Sprod). This is by structural induction on a proof that
P ∈ NE(Sprod). Since P ∈ NE(Sprod) there must be a
clause (26) withB1 ⊆ NE(Sprod), . . . ,Bk ⊆ NE(Sprod).
By definition of a simulation, and since P ∈ NE(Sprod),
there must be a clause (27) such that Bi R# B′

i for every i,
1 ≤ i ≤ k. For every Q′ ∈ B′

i, there is a Q ∈ Bi such

that Q R Q′. By induction hypothesis, since Q ∈ Bi ⊆
NE(Sprod), Q′ ∈ NE(Sprod). So B′

i ⊆ NE(Sprod) for
every i, 1 ≤ i ≤ k. Whence P ′ ∈ NE(Sprod).
Let R and R′ be as in the Lemma. Let P (R; R′) P ′′,

say P R P ′ R ′P ′′. If P ,∈ NE(Sprod), then we are
done, so assume P ∈ NE(Sprod). For every clause (26)
in Sprod there is a clause (27) in Sprod with Bi R# B′

i for
every i, 1 ≤ i ≤ k. By (∗), P ′ ∈ NE(Sprod), so there is
a clause P ′′(f(X1, . . . , Xk)) ⇐ B′′

1 (X1), . . . , B′′
k (Xk) in

Sprod such thatB′
i R′# B′′

i for every i, 1 ≤ i ≤ k. It follows
that Bi (R; R′)# B′′

i for every i, showing that (R; R′) is a
simulation. !

Proposition A.2 Let R be the largest simulation. Then R
is a quasi-ordering. If E ⊇ E′ then E R# E′. If E R# E′

then LE(Sprod) ⊆ LE′(Sprod).

Proof. First, R is reflexive, because the equality relation
is a simulation. To show that R is transitive, we realize
that (R; R) is a simulation, by Lemma A.1, so by maxi-
mality (R; R) ⊆ R: so R is transitive. That E ⊇ E′

implies E R# E′ is by the definition of R# and the fact
that R is reflexive. The last claim is shown by proving
that wheneverR is a simulation, then for every ground term
t ∈ LE(Sprod), whenever E 4# E′ then t ∈ LE′(Sprod).
This is proved by structural induction on t = f(t1, . . . , tk).
Let E′ = {P ′

1, . . . , P
′
m}. Since E 4# E′, for every j,

1 ≤ j ≤ m, there is a Pj ∈ E such that Pj 4 P ′
j . Since

t ∈ LE(Sprod), t ∈ LPj
(Sprod) for every j, so there is a

clause:

Pj(f(X1, . . . , Xk)) ⇐ Bj1(X1), . . . , Bjk(Xk)

in Sprod such that ti ∈ LBji
(Sprod) for every i, 1 ≤

i ≤ k. Since t ∈ LPj
(Sprod), LPj

(Sprod) ,= ∅, so
Pj ∈ NE(Sprod), and because Pj R P ′

j , by definition there
must be a clause:

P ′
j(f(X1, . . . , Xk)) ⇐ B′

j1(X1), . . . , B
′
jk(Xk)

such that Bji R# B′
ji for every i, 1 ≤ i ≤ k. By induction

hypothesis, since ti ∈ LBji
(Sprod), ti ∈ LB′

ji
(Sprod). So,

using the clause above, t ∈ LP ′

j
(Sprod). As j is arbitrary

between 1 andm, t ∈ LE′(Sprod). !

It follows that, if there is a simulation R with Q R P , then
LQ(Sprod) ⊆ LP (Sprod). This again compiles into a Coq
proof using fix, case and inversion.

B Completeness

We wish to prove that, if C holds in lfpTSprod
, then we

can derive 2 C using the model-checking rules. As stated,
this is not quite true, and we need to make a technical point.

16

We decided early in this paper to assume the first-order sig-
nature Σ to be fixed. However, we now need to quantify
over all signatures Σ that contain all the symbols of Sprod

and S. While lfpTSprod
is a set of ground atoms that is

independent of the signature Σ, as a model, it is a subset
of the set of all ground atoms, which does depend on Σ.
To make the dependency on Σ explicit, write this model
lfpΣ TSprod

. The model-checking procedure only has the
following weak completeness property: if lfpΣ TSprod

|= C
for every Σ, then there is a derivation of 2 C. The difficulty
can be illustrated by considering the case Sprod = {p(a)}
and S = {p(X)}: we certainly have lfpΣ TSprod

|= S if
Σ only contains a, but this fails otherwise. Note that the
soundness Theorem 7.2 is in fact true whatever the signa-
ture Σ.
Proposition 7.4. If lfpΣ TSprod

|= S for every signature
Σ containing all the symbols of Sprod and S, then one may
find a derivation of 2 C for every C ∈ S, in an effective
way.
Proof. We first claim that, if C1 holds in lfpΣ TSprod

for all
Σ, then for any history Γ, some rule applies that has Γ 2 C1

as its conclusion. This is obvious if C1 contains a univer-
sal predicate, in which case (−Univ) or (+Univ) applies.
Otherwise, the key observation is that the only way that an
atom of the form P (f(%t)) can hold in lfpΣ TSprod

is that
there is a clause P (f(%X)) ⇐ B in Sprod/P, f such that∧
B[%t/%x] holds in Sprod. In other words, P (f(%t)) is equiv-

alent to
∨

(P (f("X))⇐B)∈Sprod/P,f

∧
B[%t/ %X] in lfpΣ TSprod

.
This is the familiar Clark completion from logic program-
ming [18]. This directly justifies using (+P, f Elim) in
case C1 contains a positive atom with non-variable argu-
ment, i.e., C1 is of the form C ∨ P (f(%t)). In case C1

can be written C ∨ ¬P (f(%t)), then Clark completion and
Boolean reasoning show that all the premises C ∨D[%t/ %X]
of rule (−P, f Elim) must hold in lfpTSprod

. In all other
cases, C1 is of the form E1(X1) ∨ . . . ∨Ek(Xk). If k ≥ 2,
we may apply (Split). If k = 0, then C1 would be false,
so the case does not happen. Otherwise, if C1 contains a
negative atom with variable argument, i.e., C1 = E(X) ∨
¬P (X), a variant of Clark completion (above), using the
fact that P is not universal, shows that P (X) is equivalent
to

∨
(P (f("X))⇐B)∈Sprod/P

∧
B[f(%t)/X] in lfpΣ TSprod

, jus-
tifying using (−P Elim). In the remaining case, C1 is a
disjunction P1(X) ∨ . . . ∨ Pn(X) of positive atoms with
variable arguments; however, for Σ large enough, i.e., con-
taining some constant a not in Sprod, we observe that P1(a),
. . . , Pn(a) are all false in lfpΣ TSprod

, contradicting that C1

is true: so this case does not happen.
Second, we observe that applying (Split) and (Loop)

eagerly forces proof search to terminate. This rests on the
fact that there can only be finitely many ε-clauses, hence
also finitely many possible histories Γ, in particular. The

missing, easy details are left to the reader. !

C Other Optimizations in h1mc

Given a clause C, h1mc applies the following rules in
turn. Some of these are rules from Figure 10 and Figure 11,
some others are specific optimizations that have been found
to be particularly effective.
The first thing that h1mc tries on a clause C in history Γ

is to find whether:

• C has already been proved in some history Γ′ ⊆ Γ. If
so, Γ 2 C holds.

• Or checking Γ 2 C (with the same history Γ) has al-
ready been done, and failed. If so, Γ 2 C does not
hold.

In all other cases, we cannot conclude yet. So h1mc refines
these checks to look for an ε-clause E(X) that would sub-
sume C, and such that Γ′ 2 ∀X · E(X) was already shown
to hold for some history Γ′ ⊆ Γ. We could look for clauses
that are not ε-clauses instead of E(X) here, but ε-clauses
are simpler to implement. This is naturally done by using
and maintaining specific tables.
If these checks failed, h1mc turns to the so-called

CheckSimple optimization.

C.1 The CheckSimple Optimization

A particularly effective way of checking a Horn clause
C = (P (t) ⇐ B) under history Γ is given by the following
algorithm CheckHornSimple(C):

• If P is universal, then return true: C clearly holds
in Det(Sprod). (This in particular subsumes the
(+Univ) rule.)

• If t is a variable X , and there is an atom Q(X) in B,
with Q R P for some simulation R on Sprod, then
return true: the clause C holds in Det(Sprod). (See
Section A for the notion of simulation.)

• If t is of the form f(t1, . . . , tn), then check whether
there is an automaton clause P (f(X1, . . . , Xn)) ⇐
B1(X1), . . . , Bn(Xn) in Sprod such that, for all i,
1 ≤ i ≤ n, for every predicate P ′ ∈ Bi,
CheckHornSimple(P ′(ti) ⇐ B) returns true. If so,
C again holds inDet(Sprod), so return true.

• In all other cases, return false.

This is a procedure that often manages to prove the input
clause C valid in Det(Sprod) while avoiding the use of the
costly rule (+P, f Elim). We memoize the head to make
this run in polynomial time.

17

In general, when C is a clause that is not nec-
essarily Horn, say P1(t1) ∨ . . . ∨ Pk(tk) ⇐ B,
we let CheckSimple(C) return true if and only if
CheckHornSimple(Pj(tj) ⇐ B) returns true for some j,
1 ≤ j ≤ k—in this case, too, C holds in Det(Sprod).
Otherwise, we turn to loop-checking.

C.2 Loop-Checking

Loop-checking amounts, basically, to checking whether
rule (Loop) applies, i.e., whether the current clause C oc-
curs in the history Γ. We actually check whether there is a
smaller clause C ′ ⊆ C such that C ′ is in Γ. If so, Γ 2 C
holds.

C.3 The (−Univ) Rule

Otherwise, we try to apply (−Univ), i.e., to find a uni-
versal predicate in the body of C.
If this fails, too, we use the NegEmptyInter optimization.

C.4 The NegEmptyInter Optimization

We may check that ⊥ ⇐ P (X), Q(X), i.e., that the
languages LP (Sprod) and LQ(Sprod) are disjoint, in poly-
nomial time, see below. In this case, we say that P and
Q are disjoint. We use this to conclude directly that C =
(P (t) ⇐ B) holds in Det(Sprod) as soon as there are two
atomsQ1(u) andQ2(u) in B, with the same u, and withQ1

and Q2 disjoint.
While this sometimes produces shorter Coq proofs from

alternating tree automata Sprod as found by h1, this rule
really shines when Sprod is a deterministic tree automaton,
as produced by Paradox. In this case indeed, all states are
disjoint.
To detect disjointness, we use two separate algorithms.

The CheckDisjointSimple algorithm works in a similar way
as the simulation finding algorithm. However, it is only
used in case the second one, the CheckDisjointVerySimple
algorithm, fails. The reason for using two algorithms is that
CheckDisjointSimple will sometimes produce Coq proofs
that are so big that Coq’s guardedness checker (which veri-
fies that recursive functions are indeed defined properly, by
structural induction on the relevant arguments) just blows
up.
We only describe the basic idea behind each algorithm.
CheckDisjointSimple is actually a function

CheckDisjointSimple(B) taking a set B of pred-
icates as arguments, and returns true only when B
contains two disjoint predicates P and P ′ that it can
prove disjoint. It enumerates all distinct pairs P, P ′ in
B, and returns true in case P and P ′ are not universal,
and for all alternating tree automaton clauses of the

form P (f(X1, . . . , Xn)) ⇐ B1(X1), . . . , Bn(Xn) and
P ′(f(X1, . . . , Xn)) ⇐ B′

1(X1), . . . , B′
n(Xn) (with the

same f), CheckDisjointSimple(Bi ∪ B′
i) returns true

for some i. This again needs some form of loop-checking:
we return true on encountering a pair P, P ′ on which we
are looping.
CheckDisjointVerySimple may fail to conclude, in

which case we turn to CheckDisjointSimple. Precisely,
CheckDisjointVerySimple fails if and only if there is an
alternating tree automaton clause P (f(X1, . . . , Xn)) ⇐
B1(X1), . . . , Bn(Xn) in Sprod where P is not univer-
sal, and some Bi, 1 ≤ i ≤ n, consists entirely of
universal predicates. Call such clauses unacceptable.
Otherwise, all clauses in Sprod are acceptable. Then,
we use an auxiliary trick, based on congruence closure,
a fast technique to decide ground equalities in ground
equational theories [52, 29]. For each non-empty block
B(X) = P1(X), . . . , Pn(X), let E(B) be the set of
equations P1 ≈ P2, P2 ≈ P3, . . . , Pn−1 ≈ Pn. For
each acceptable alternating tree automaton clause C, say
P (f(X1, . . . , Xn)) ⇐ B1(X1), . . . , Bn(Xn), let e(C) be
the equation f(P1, . . . , Pn) ≈ P , where P1 is a predicate
picked from B1, P2 ∈ B2, . . . , Pn ∈ Bn. Let E(C) be
E(B1) ∪ . . . ∪ E(Bn) ∪ {e(C)}, and finally let E(Sprod)
be the union of all E(C), C ∈ Sprod.
It is easy to see by induction on t that, for every ground

term t, if t is recognized at P in Sprod, and P is not univer-
sal, then t ≈ P is provable in E(Sprod). In particular, if P
and P ′ are two predicates such that E(Sprod) ,2 P ≈ P ′,
then P and P ′ are necessarily disjoint.
Observe that this trick in fact computes, in poly-

nomial time, a deterministic tree automaton A, whose
states are equivalence classes [P] of predicates P , mod-
ulo provable equality from E(Sprod). There is a transi-
tion [P](f(X1, . . . , Xn)) ⇐ [P1](X1), . . . , [Pn](Xn) in A
whenever E(Sprod) 2 f(P1, . . . , Pn) ≈ P . A is a pro-
jection of Sprod, in the sense that any ground term recog-
nized at P in Sprod is recognized at [P] in A (provided P
is not universal in Sprod). In general, A is different from
Det(Sprod): for one, A is computed in polynomial time,
while determinizing Sprod may take exponential time. On
the other hand, if Sprod is already deterministic and contains
no universal predicate, then A retrieves Sprod exactly.
If the current goal Γ 2 C could not be proved by re-

alizing that the body of C contained two atoms P (u) and
P ′(u) with P and P ′ disjoint, h1mc proceeds to the next
step: splitting.

C.5 Splitting

Splitting is just the (Split) rule. While it is in principle
only needed on disjunctions C = (C1 ∨ . . . ∨ Cn) of ε-
blocks, it is profitable in practice to spend some time trying

18

to block-decompose more complex clausesC eagerly. Then
h1mc tries to prove Γ 2 C1, then Γ 2 C2 if the latter failed,
. . . , and finally Γ 2 Cn if all previous cases failed.
We use a simple heuristic to test first for those clauses Ci

that will put less strain on h1mc. Let the weight of a clause
Ci be 1 if it is definite (Horn, and head is not ⊥) and has a
non-empty body, 2 if Ci is non-Horn and has a non-empty
body, 3 if Ci has an empty body and a head other than ⊥,
and 4 if Ci has ⊥ as head. We prefer clauses with smaller
weights, and in case of a tie, clauses with smaller sizes. This
was obtained through trial and error.

C.6 The (−P, f Elim) Rule

Only if all previous rules failed do we attempt to apply
the (−P, f Elim) rule. We may pick any non variable atom
P (f(t1, . . . , tn)) from the body of C. Currently, h1mc just
picks the first one it encounters from C.

C.7 Checking for Explicit Counterexam-
ples

If all previous rules failed, in particular C is of the form
P (t) ⇐ B, where the body B does not contain any function
symbol, we can only apply one of the rules (+P, f Elim)
or (−P Elim)—or even (+Elim) in case the signature is
assumed fixed.
However, these rules are costly: (+P, f Elim) takes

exponential time by itself in the worst case, (+Elim) pro-
duces premises that will most likely have to be dealt us-
ing (+P, f Elim), and (−P Elim), while not specifically
costly, is the one rule that is responsible for increasing the
history Γ, and Γ can increase up to an exponential number
of elements.
We therefore try to do whatever is possible before we

apply these rules, as a last resort.
The first thing we do is check for explicit coun-

terexamples. For each predicate P such that P
is non-empty in Sprod, i.e., such that there is a
ground term t recognized at P in Sprod, we pick
one. Write this term tP . Then, letting C be P (t) ⇐
P11(X1), . . . , P1k1

(X1), . . . , Pn1(Xn), . . . , Pnkn
(Xn),

we check whether tPi1
is recognized at Pi2, . . . , Piki

, and
t[tP11

/X1, . . . , tPn1
/Xn] is not recognized at P . If so, we

have found a ground instance Cσ of C that does not hold
in Det(Sprod), so C cannot hold: h1mc returns false. (I.e.,
it does not go on and try the next rules: there is no hope of
proving C.)
So much for the rough idea. We must make three things

more precise.
First, the case where some Pij is empty will be dealt

with later, as part as the FindNegEpsilon optimization. In
this case, we shall naturally conclude that Γ 2 C holds.

Second, while testing whether some given term is rec-
ognized at a given state can be done in polynomial time,
finding the term tP is as hard as testing whether P is non-
empty, which is EXPTIME-complete. Instead, we use
a heuristic, which may fail to return a term tP even when
P is non-empty: to find tP , we look for some automaton
clause P (f(X1, . . . , Xn)) ⇐ B1(X1), . . . , Bn(Xn), and
for each i, 1 ≤ i ≤ n, we look for a ground term tBi

that
would be recognized at all predicates of Bi. In case Bi is
empty, we let tBi

be some arbitrary constant. Otherwise, let
Bi = {P1, . . . , Pm}, m ≥ 1, then we let tBi

be tP1
pro-

vided tP1
is defined and recognized at P2, . . . , Pm as well.

This again necessitates some loop-checking: we just fail
and backtrack on encountering the same predicate P twice.
Third, we cheated a bit. In case C has a ground instance

Cσ that does not hold inDet(Sprod), we can only in princi-
ple conclude that checking Γ 2 C fails provided Γ is empty.
Indeed, if Γ 2 C then C holds under the assumptions in
Γ. It might in principle be the case that Cσ does not hold,
but this case would be ruled out by one of the induction hy-
potheses in Γ. Here is a hand-waving argument justifying
why we can conclude, even when Γ is non empty. (While a
formal proof would be better, remember that it does not re-
ally matter whether h1mc is proved correct: in the end, Coq
is the sole judge for deciding whether the proof that h1mc
produces is indeed correct or not.) Now, let H1, . . . , Hm be
the list of induction hypotheses in Γ, in the order that they
have been introduced by the use of the (−P Elim) rule. If
Γ 2 C indeed held, with C false, necessarily some induc-
tion hypothesis Hi in Γ would be false, too. Now, by the
form of (−P Elim), Hi was introduced into the history
when trying to establish H1, . . . , Hi−1 2 Hi. Since Hi is
false, either the goal H1, . . . , Hi−1 2 Hi will eventually
fail anyway, or some Hj is false again, with j < i. Eventu-
ally, we shall reach a minimal j such that Hj is false. Re-
peating the argument above, the goal H1, . . . , Hj−1 2 Hj

will eventually fail, so we can safely fail the descendant sub-
goalH1, . . . , Hm 2 C.

C.8 The FindNegEpsilon Optimization

The FindNegEpsilon optimization is meant to exhume
some further opportunities for the CheckSimple optimiza-
tion to succeed. The point of FindNegEpsilon is, at the very
least, to undo some nasty effects of converting Paradox-like
models into deterministic tree automata. Consider for ex-
ample that crypt is defined so that crypt(!4, !2) =!2 in
Figure 8, and that att2(!2) is true. A direct translation of
these into Horn clauses would yield:

!2(crypt(X1, X2)) ⇐ !4(X1), !2(X2)

att2(X) ⇐ !2(X) (28)

19

However, (28) is not a tree automaton clause. The actual
translation we use would replace the latter by all clauses of
the form att2(f(X1, . . . , Xn)) ⇐ B, for all clauses of the
form !2(f(X1, . . . , Xn)) ⇐ B deduced from the function
tables. I.e., we would generate att2(crypt(X1, X2)) ⇐
!4(X1), !2(X2), among others.

This has the unfortunate consequence that checking
clauses such as att2(suc(X)) ⇐ att2(X) is hard: we
must use rule (−P Elim) (with P =!2 here) first, then
conduct an induction. The CheckSimple rule will not
work here. However, the FindNegSimple optimization
will (re)discover that att2(X) can only be true provided
!2(X) or !1(X) is true (in the example), then proceed to
check whether we can prove att2(suc(X)) ⇐!2(X) and
att2(suc(X)) ⇐!1(X). Experiments show that the lat-
ter can then be proved easily using the CheckSimple rule.
Moreover, if this fails, then att2(suc(X)) ⇐ att2(X) is
in fact not provable, because att2(X) is in fact equivalent
with !2(X)∨!1(X) in Det(Sprod).

The main task of FindNegEpsilon is to find such equiv-
alences, of the form P (X) ⇔ P1(X) ∨ . . . ∨ Pm(X),
which are valid in Det(Sprod). It only does this for non-
universal P , and looks for P1, . . . , Pm that are states, i.e.,
predicates that occur in the body of at least one clause
in Sprod. To do this, FindNegEpsilon enumerates the
clauses of the form P (f(X1, . . . , Xn)) ⇐ B in Sprod

(with P given), and collects in a state Q all states Pi,
1 ≤ i ≤ m, such that Sprod also contains a clause of
the exact form Pi(f(X1, . . . , Xn)) ⇐ B. FindNegEp-
silon then checks whether for every Pi ∈ Q, for every
clause of the form Pi(f(X1, . . . , Xn)) ⇐ B, the clause
P (f(X1, . . . , Xn)) ⇐ B is in Sprod. If so, then it is easy
to see that P (X) ⇔ P1(X) ∨ . . . ∨ Pm(X) is valid in
Det(Sprod). Otherwise, FindNegEpsilon fails and we jump
to the FindSomeCaseAnalysis optimization.

Given our current goal Γ 2 C, h1mc looks for an atom
P (t) in the body ofC such that FindNegEpsilon was able to
discover an equivalence of the form P (X) ⇔ P1(X)∨. . .∨
Pm(X). (In case of ties, we choose one with the smallest
m.) Write C as C0 ∨ −P (t). Then h1mc replaces the task
of checking Γ 2 C by the m tasks of checking Γ 2 C0 ∨
−Pi(t), 1 ≤ i ≤ m, recursively.

Surprisingly, FindNegEpsilon also simplifies checking
alternating tree automata produced by h1 somewhat. In
a number of cases, FindNegEpsilon actually discovers an
equivalence of the form P (X) ⇔ P1(X) ∨ . . . ∨ Pm(X)
withm = 0, i.e., that P is empty. This has the effect of sim-
plifying checking Γ 2 C0 ∨ −P (t) to the task of checking
Γ 2 C0.

C.9 The FindSomeCaseAnalysis Opti-
mization

In case the signature Σ is fixed to some signature Σ0

(using the -exact-sig flag to h1mc), one may hope to
show that the disjunction q1(X) ∨ . . . ∨ qm(X) holds in
Det(Sprod), where q1, . . . , qm are the states of Sprod, as
defined in Section C.8. If so, Sprod is a complete determin-
istic automaton. This is the case of automata produced from
Paradox models.
We use a simple heuristic, named CheckExplicitUniv,

to conclude that Sprod is complete is to check that for
every function symbol f in Σ0, of arity, say, k, for
every indices j, i1, . . . , ik in the interval [1, m], the
clause qj(f(X1, . . . , Xk)) ⇐ qi1(X1), . . . , qik

(Xk) is in
Sprod, or subsumed by some clause in Sprod. (This is
sound, but not complete. A complete procedure would be
EXPTIME-complete again.)
If CheckExplicitUniv succeeds, then we know that

q1(X)∨ . . .∨ qm(X) holds inDet(Sprod). The FindSome-
CaseAnalysis then tries to find a variable X that would be
free in some positive atom of C but would not be free in
any negative atom of C, and replaces the task of check-
ing Γ 2 C by those of checking Γ 2 C ∨ −qi(X) for
each i, 1 ≤ i ≤ m. In particular, checking a clause of
the form P (f(X, Y)) ⇐ Q(X) will turn into checking
P (f(X, Y)) ⇐ Q(X), qi(Y) for each i. This gives new
opportunities to apply CheckSimple.
Note that the CheckExplicitUniv heuristic only applies

in the -exact-sig case, hence not to the alternating tree
models found by h1. Its purpose, then, is to try to make
the h1mc model-checker fare no worse than the simple ap-
proach of Section 5, up to some constant factor, on explicit,
finite models, as found by Paradox. Unfortunately, on large
examples such as Gong’s protocol, this is still not enough
to make it competitive. We have not been able to model-
check the model found by Paradox on this example using
2GB of main memory, and the Coq proof that was gener-
ated was already 669MB long (7.36 million lines) when we
interrupted h1mc after three hours. The model found by
Paradox for Diffie-Hellman is checked by h1mc in 1.03 s,
and generates a 25 660 line Coq proof that is checked in
60.4 s; h1mc takes 7.5 s on NS, generates a 89 308 line
Coq proof that is checked in 746 s (a bit less than 13 min-
utes), and produces proofs for Yahalom and amended NS
that are too big for Coq to verify.

C.10 The (+P, f Elim) Rule

Iff all previous rules fail, in particular the goal to check
is Γ 2 C with C an unsplittable clause whose body does
not contain function symbols. If C contains some positive
atom of the form +P (f(t1, . . . , tn)), i.e., with some func-

20

tion symbol f in it, then h1mc applies the (+P, f Elim)
rule.
It may be that the rule applies to several positive atoms

containing some function symbol. We use the following
heuristic to pick one positive atom. Imagine we pick such
a non variable atom, and C0 is the rest of the clause C.
Then (+P, f Elim) will require us to examine all clauses
in Sprod with a head of the form P (f(X̄)), say P (f(X̄)) ⇐
Bi(X̄), 1 ≤ i ≤ m. Then, we shall generate the premises
C0∨

∧m
i=1

∨
Bi(t̄), 1 ≤ i ≤ m. Let Bi contain ki atoms. In

the general case, (+P, f Elim) will require us to generate
k1× . . .×km new clauses as premises, as a cnf of the latter.
The heuristic we use is then simply to find one positive atom
that minimizes k1 × . . .× km.

C.11 The Universal Case

Finally, if all else failed, then C is an unsplittable clause
not containing any function symbol, i.e., an ε-clause E(X),
then we distinguish two cases.
If E(X)contains some negative atom, i.e., is of the

form E′(X) ∨ ¬P (X), then we apply (−P Elim). This
means checking, recursively, all premises Γ, ∀X · E(X) 2
E′(f(%X))∨D in turn, where P (f(%X))∨D ranges over the
clauses in Sprod/P .
If E(X) contains no negative atom, i.e., is of the form

P1(X) ∨ . . . ∨ Pn(X), then either the -exact-sig
option was not given, meaning that we want to check
lfpΣ TSprod

|= S for every Σ extending Σ0 (see Proposi-
tion 7.4), and then no rule from Figure 10 or 11 applies:
Γ 2 E(X) does not hold. Or the -exact-sig option was
given, meaning we wish to check lfpΣ0

TSprod
|= S, and

we apply rule (+Elim). However, we have already argued
this was costly, because it entailed using the (+P, f Elim)
rule next. So, we first apply the CheckExplicitUniv pro-
cedure (see Section C.9); if CheckExplicitUniv finds that
P1(X)∨ . . .∨Pn(X) holds inDet(Sprod), then Γ 2 E(X)
holds. Otherwise, we apply (+Elim).

D Modeling the Diffie-Hellman Protocol

We model the Diffie-Hellman protocol by the clauses in
Figure 1 (i = 1, 2), Figure 16 (i = 1, 2), Figure 15 (i =
1, 2), Figure 13 and Figure 4.
The first three clauses of Figure 15 model the protocol

itself, both in old and current sessions (i = 1, 2). The next
clause is just (18). The next three clauses model corruption
of old values of Na = na1(A, B) and Nb = nb1(A, B),
together with the old session keys gNa∗Nb = g(na1(A, B)∗
nb1(A, B)). Finally, the last clause states that we would
like the key gNa∗Nb = na2(a, b)∗nb2(a, b) shared between
Alice (a) and Bob (b) in current sessions to be secret.

atti(g(nai(A, B))) ⇐ agent(A), agent(B)

atti(g(nbi(A, B))) ⇐ agent(A), agent(B)

atti({one}g(nai(A,B)∗Nb) ⇐ atti(g(Nb))

att2(M) ⇐ att1(M)

att2(na1(A, B)) att2(nb1(A, B))

att2(g(na1(A, B) ∗ nb1(A, B)))

⊥⇐ att2(na2(a, b) ∗ nb2(a, b))

Figure 15. Diffie-Hellman protocol rules,
phases, and security goal

atti(zero) atti(one)

atti(g(X)) ⇐ atti(X)

atti(g(X ∗ Y)) ⇐ atti(g(X)), atti(Y)

atti(X ∗ Y) ⇐ atti(X), atti(Y)

atti(inv(X)) ⇐ atti(X)

Figure 16. Diffie-Hellman extra intruder de-
duction rules

Figure 16 shows the additional deduction rules we re-
quire. While most of them are standard, one should note
the clause atti(g(X∗Y)) ⇐ atti(g(X)), atti(Y), which
states that one can get gX∗Y from gX and Y—by comput-
ing (gX)

Y . We could have modeled this by adding an equa-
tion such as (gX)

Y
≈ gX∗Y to Figure 13, but this would

have complicated the theory, and would have required us to
replace the unary operation g() by binary exponentiation.
The approach we take was used in [37].

E Modeling Gong’s Protocol

Gong’s protocol is based on the equational theory of bit-
wise exclusive or, shown in Figure 18.
We also need extra intruder deduction rules, shown in

Figure 19.
The protocol rules are given in Figure 17. The first five

clauses correspond to the five messages of Figure 14, the
last two clauses define the keys K that Alice (A) and Bob

(X ⊕ Y) ⊕ Z ≈ X ⊕ (Y ⊕ Z) X ⊕ Y ≈ Y ⊕ X
X ⊕ zero ≈ X X ⊕ X ≈ zero

Figure 18. Axiomatizing xor

21

atti([A, B, nai(A, B)]) ⇐ agent(A), agent(B)
atti([A, B, Na, nbi(A, B, Na)]) ⇐ atti([A,B, Na])
atti([nsi(A, B, Na, Nb),

f1(nsi(A, B, Na, Nb), Nb, A, p(B)) ⊕ f1(nsi(A, B, Na, Nb), Na, B, p(A)),
f2(nsi(A, B, Na, Nb), Nb, A, p(B)) ⊕ f2(nsi(A, B, Na, Nb), Na, B, p(A)),
f3(nsi(A, B, Na, Nb), Nb, A, p(B)) ⊕ f3(nsi(A, B, Na, Nb), Na, B, p(A)),
g(f1(nsi(A, B, Na, Nb), Na, B, p(A)),

f2(nsi(A, B, Na, Nb), Na, B, p(A)),
f3(nsi(A, B, Na, Nb), Na, B, p(A)),
p(B))

]) ⇐ atti([A,B, Na, Nb])
atti([Ns, Hb]) ⇐ atti([Ns,

f1(Ns, nbi(A, B, Na), A, p(B)) ⊕ K),
f2(Ns, nbi(A, B, Na), A, p(B)) ⊕ Ha,
f3(Ns, nbi(A, B, Na), A, p(B)) ⊕ Hb,
g(K, Ha, Hb, p(B))])

atti(f2(Ns, nai(A, B), B, p(A))) ⇐ atti([Ns, f3(Ns, nai(A, B), B, p(A))])
alice keyi(A, f1(Ns, nai(A, B), B, p(A))) ⇐ atti([Ns, f3(Ns, nai(A, B), B, p(A))])

bob keyi(B, K) ⇐ atti([Ns,
f1(Ns, nbi(A, B, Na), A, p(B)) ⊕ K),
f2(Ns, nbi(A, B, Na), A, p(B)) ⊕ Ha,
f3(Ns, nbi(A, B, Na), A, p(B)) ⊕ Hb,
g(K, Ha, Hb, p(B))]),

atti(Ha)

Figure 17. Gong protocol rules

atti(zero) atti(X ⊕ Y) ⇐ atti(X), atti(Y)

Figure 19. Gong extra intruder deduction
rules

att2(M) ⇐ att1(M)

att2(f1(ns1(A, B, Na, Nb), Na, B, p(A)))

att2(na1(A, B))

att2(nb1(A, B, Na))

att2(ns1(A, B, Na, Nb))

Figure 20. Phases in Gong’s protocol

(B) get, respectively. In Bob’s case, note that we obtain K
from message 3, and we check the value of Ha using mes-
sage 5. The latter just means checking whether atti(Ha)
holds in our model.
Handling phases is done by slight variants of the rules of

Figure 5, shown in Figure 20. We now assume the old keys
f1(ns1(A, B, Na, Nb), Na, B, p(A)) are known in phase 2,
as well as all old nonces.
Our security goals are again, that all session keys, as gen-

erated by the server, and as received by Alice and Bob, are
unknown to the intruder, see Figure 21.

⊥⇐ att2(f1(ns2(a, b, Na, Nb)))

⊥⇐ att2(Kab), alice key2(a, Kab)

⊥⇐ att2(Kab), bob key2(b, Kab)

Figure 21. (Negated) security goals for
Gong’s protocol

Finally, Gong’s protocol as a whole is defined by the
rules in Figures 6, 4, 18, 1, 19, 17, and 21.

22

