Manuel Baclet and Claire Pagetti

Around Hopcroft's Algorithm

Research Report LSV-06-12

May 2006

R boratoire
écification
arification

Ecole Normale Supérieure de Cachan
61, avenue du Président Wilson
94235 Cachan Cedex France

Around Hopcroft's Algorithm

Manuel BACLET! andClaire RGETTI?

1SV - ENS de Cachan & CNRS - Cachan, France

IRIT - UPS & CNRS - Toulouse, France
bacl et @sv. ens-cachan. fr

2 ONERA/ Cert - Toulouse, France
claire. pagetti @ert.fr

Abstract. In this paper, a reflection is made on an indeterminism inherent to
Hopcroft's minimization algorithm: theplitter choice. We have implemented
two natural policies (FIFO and FILO) for managing the set of splittersvaich

we obtain the following practical results: the FILO strategy performs btter

the FIFO strategy, in the case of a one letter alphabet, the practical cétyplex
in the FILO case never exceeds a linear one and our implementation is more
efficient than the minimization algorithm of the FSM tool. This implementation is
being integrated in a finite automata library, the Dash library. Thus, wepres
efficient manner to manipulate automata by usiagonicalminimal automata.
Keywords: Finite automata, minimization, Hopcroft's algorithm.

1 Introduction

The problem of minimizing a deterministic finite automaton has been widely
studied. Finite automata libraries, such as FSM [MPROO], Mona [KMQt], e
include a minimization procedure. State of the art implementations of minimiza-
tion algorithm is then an important issue for practical efficiency.

Minimization Algorithms For a detailed presentation of the currently known

minimization algorithms, the reader is referred to Watson’s taxonomy [BYat9

For a given automaton labeled by the alphabethereQ is the states set arid

the final states set, most of minimization algorithms ha@(KQ|*) complexity

and use one of the following two fix point strategies:

(S1) Consider the coarsest partitigi, @/ F'} and refine this partition until it
satisfies some congruence properties;

(S2) Consider the finest partition and gather the equivalent classes.

Among the algorithms using other strategies, the Brzozowski algoritha6@Br

allows to compute the minimal automaton from a non deterministic automaton in

an exponential time.

A linear algorithm exists for complete deterministic automata over a one letter

alphabet [PTB85]. Indeed, the problem is equivalent to determiningdhesest

partition of the states set stable with respect to the transition relation function.

Thus, the authors of [PTB85] use the second strategy (S2): the stpatitition

is the partition with singleton classes and the output is built via a sequence of

steps in which two or more classes are merged.

An incremental algorithm has been proposed in [WD03,Wat01]. Unlikether
iterative algorithms, the intermediate results can be used since they consist
partially minimized automata.

The Hopcroft’s algorithm proposed in [Hop71] has a theoreti2glY|.|Q|. log
|Q|) complexity which is currently the best for a minimization algorithm.

Contribution We propose a new implementation of the Hopcroft algorithm
in the OCami language. We describe this implementation and some heuristics
that significantly improve the speed of the practical state-of-the-arciofys
minimization algorithm.

In the Hopcroft's algorithm, at each step a splitter is chosen among adasses

in order to refine the partition. Every complexity computation leans on thetwor
case choice. It is the case in [BC04] where the authors exhibit an atadamaily

over a one letter alphabet and a bad strategy that lead tO{h@|. log |Q|)
complexity with the Hopcroft's algorithm. This means that there exists a bad
strategy in the splitter choice while applying the Hopcroft's algorithm.

Our point of view is that there exists a good strategy in the splitter choice that
allows a fast implementation of the Hopcroft's algorithm. This heuristic ist&1s

in a FILO strategy in which the most recent class is chosen as the splitpeadn

tice, this heuristic is powerful. In the case of a one letter alphabet, the @actic
complexity seems linear, even on the “bad” automata depicted in [BC04].

This implementation is being included in the Dash library (currently develaped
the LSV?) which is a finite automata library designed to share common connected
components between automata. The sharing of common componensesipat

two equivalent automata are represented with the same minimal autorviégon.
thus propose an extension of our implementation, based on the worloo®J;

to automatically compute a canonical representative.

Outline Section 2 recalls basic definitions and results concerning minimiza-
tion. We present the Hopcroft's algorithm in section 3. We discuss its codityple
and present an open question. In the section 4, the implementation iseprecis
depicted and the two strategies, FILO and FIFO are detailed. These impeme
tions are then experimented on benchmarks and compared to othearssftw
section 5. Finally, in section 6, we detail the efficient representation ofraito

in the Dash library usinganonicalminimal automata.

2 Minimal Automaton

In this section, we recall some basic notions and terminology on finite ataoma
and regular languages. For a complete theory, one can refer to [RBOJ9].
In the sequelX’ is a non empty finite alphabet.

Definition 1. A deterministic, complete arfihite automatohover X is a tuple
(@, qo, T, F) where:

L hitp://caml.inria.fr/index.en.html

2 http://www.Isv.ens-cachan.fr

% Since we only consider deterministic, complete and finite automata, we uskdheut finite
automaton.

Q is a finite set of states;

go € Q is the initial state;

— T:Q x X — Q is thetransition function
— F C Q is the set of final states.

A rational language is associated to any finite automaton: it consists in thé set
letter sequences which label paths from the initial state to a final state. \Wesip
that every considered automatonréachable i.e. any state of the automaton
is reachable from the initial state. The automata theory ensures [N&69H
that any rational language is recognized by a unique finite automaton @mp to
isomorphism) with a minimal number of states. This automaton igrtimemal
automatorassociated with the language.

For a given deterministic, complete and finite automaton, the equivaletar(m
of language recognized) minimal automaton can be obtained by defirdag-a
gruence relation on the initial automaton’s states, i.e. an equivalend®mela
which is stable with the transition function:

g~q = VYae X, T(q,a) ~T(qa)
If ~,, is the coarsest congruence such that
qg~mqd = (¢,4) € F?or(q,q") € (Q/F)?
we have the following result:

Proposition 1. The finite automatoQ/~., o, 7', F") where
— qo is theqo class up to~,,;
- T'(a,q) = T(a,q);
—geEF ©qeF;
is the minimal automaton associated to the automd®@ngo, 7', F).
Given a finite automaton, this proposition allows to compute the associated mini-
mal automaton by simply computing the equivalence relation. In the netibse
we introduce an efficient algorithm for computing this equivalence.

3 Hopcroft's Algorithm

The Hopcroft's algorithm [Hop71] is detailled in Algorithm 1. It has a theore
ical O(|X].|Q|.log |Q]) complexity. The main principle consists in refining the
coarsest partition until finding a stable partition (strategy S1). The initiétiosar

is {F,Q \ F'} and each step of the algorithm consists in splitting the classes for
which the stability constraint is not satisfied.

‘P is the current partition anfl contains the elements of the partition to be treated.

The setC is called thesplitter.
1. The functiorspl i t covers all the classes iR whose image by the transi-

tion function meets the splitter and determines the refined classes. Its imple-
mentation will be precise latter.

2. SPLI T has three arguments and decomposes the second argument (a sub-
set) into two subsets depending on the splitter (the first argument) and the
transitions labeled by the third argument. More precisely:

(BNT ' (C,a), BN°T ' (C,a)) = SPLI T(B, C, a);

3. ADD has two arguments and adds a new subset in a set of subsets;
4. EXTRACT is the choice function on which we act to define the strategies we
studied.
In the next section, we detail our implementation.

L:=0
if |F| < |Q/F|then
Co :=Q/F;Cy1 := F; ADD(C1, L)

else

Ch:=Q/F;Co := F; ADD(C1, L)
end if
P .= {Co,cl};

while L # @{The while loop corresponds to the Cut procedude}
let C' = EXTRACT(L) in
forall a € ¥ do
forall B € P {The forall loop corresponds tepl i t (C,a) procedure}do
let(B’, B") = SPLI T(B, C, a)
if |B’] < |B"”| then
B := B"; ADD(B’, P); ADD(B', L)
else
B := B'; ADD(B",P); ADD(B", L);
end if
end for
end for
end while

Algorithm 1 : Hopcroft's Algorithm

4 Implementation

4.1 Automata Representation

In our implementation, automata states are represented by integers:itéseo$ta
an automatom are numbered frorei to | Q| — 1 and the following data structures
will be used:

— theinitial state is represented by an integer,

— the final states are represented by a boolean array of@|ze

— the transition function is represented by an array of integer array:

transition.(i).(a) = j © T(i,a) = j

4.2 Data Structures

The current partition is represented by an integer apaayition of size|Q| and
an integer couple arraglass_indices

To each clas® of the current partition, the arrafass_indicesnaps the integer
couple(l, h) so that elements of clads are the elements of the arrpgrtition
whose indices are betweémandh. During the execution of our implementation,
elements in a class always have consecutive indices in the@artion.

When a classB is split in B’ and B”, the elements ipartition with indices
between andh are permuted so that elements of cl&$ave indices betwedn
andh’ and elements aB” have indices betwedh = (k' + 1) andh. An integer
arrayclassis used to quickly find the class of an element.

In order to find efficiently the index of an element, an integer apayition™* is

held up to date. It has the following property:
partition. (i) = j < partition™'.(j) = i.

The partition array represents a one-to-one mapping over the integers befween
and|@| — 1 and the arrayartition—* represents the inverse mapping.

In order to realize the split operation efficiently, an integer list atragsition™
is used to decide which classes have to be (possibly) split. It represeintsdinse
of the transition function:

1

i € transition '.(a).(j) < T(i,a) = j

A pointer_arrayis used to decide whether a class needs to be spli i a
class with indices: and! in class_indicesnd if pointer_array(B) # (h — 1),
then B needs to be split i3’ and B”, with respective indice§, h') and (k' +
1,h), whereh' = pointer_array(B). At the beginning of each iteration of the
algorithm,pointer_arrayassociates to each claBsthe upper index associated
to B, if class_indicegB) = (I, h).

In our implementation, the two initial classes are numbdreshd 1. Then, the
created classes during the algorithm execution are numbered with iimgyéas
dices above.

4.3 L’s Implementation

There are two natural choices for implementing theobject. By natural, we
mean that there is no other simple choice that allows to carry out the ADD and
EXTRACT operations in constant time [KnuO1]. For instance, alwayssing

the class of_ with the smallest size needs important resources and leads to a loss
of performance in practice.

FIFO Strategy For this strategy, the classes are treated in their appearance
order. If classes_numbeefers to the number of known classes a&kt_class
indicates the next splitter, the algorithm 1 while loop, where the fundtioor
increments an integer pointer, becomes Algorithm 2.

while next_class< classes_numbeto
let C =next_class
forall a € ¥ do
split (C,a)
end for
i ncr next_class
end while

Algorithm 2 : FIFO Cut Procedure

FILO Strategy For this strategy, the chosen splitter is the most recent class of
the splitter set. Thé object is then represented by a list: additions and deletions
then occur on the top of the list. The Algorithm 1 while loop becomes Algo-
rithm 3.

while L # @ do
let C' = head(L) in remove_head(L);
forall a € X' do
split (C,a)
end for
end while

Algorithm 3: FILO Cut Procedure

4.4 split Function Implementation

Let C be the splitter and a letter, thespl i t function acts in two steps:
1. First, the seT’~!(C, a) is considered and the elements of the apastition
are permuted so that each cld$ss transformed into:

(BNT(C,a)[BC (T~1(C,)|

where® 4 denotes the complementary 4fin Q.
Moreover, a listvisited_classewhich stores the encountered classes is also
computed. A particular care must be taken wiien T-*(C, a) # ().
2. For everyB in visited_classeswe determine ifB is refined byC: B is
refined if, and only ifB N ©(T~1(C,a)) # 0. (Since B was encountered
in the first stepB N T71(C, a) # 0.) If itis the case, a new class with the
smaller part ofB is created and added fg otherwise nothing is done.
Thespl i t procedure is described in the appendix, Algorithms 4 and 5.
We have presented the implementation, thus the contiguous question is its com-
plexity and its efficiency. We only have actually partial results that we ptése
the following.

4.5 Complexity

We do not go into the details of the Hopcroft's algorithm complexity computation
The reader is referred to [BBC92,Knu01] for instance.

Theoretical Upper Boundhe computation of the time complexity preponder-
ant term is realized by bounding the sum, denotedbyf the lists size of"~*
covered during the execution. It can be shown iat | X|.(log, |Q]).|Q|.

Reachability of the Upper Boundor the case of one letter alphabet, the
authors of [BC04] construct an automata family and a splitter choice sohtha
boundO(|Q|log |Q]) is reached. Their strategy consists in choosing at each step
a splitter that does not refine classed.ifif possible).

Conjecture There are open questions: does there exists a static strategy such
that for every automaton the complexity is linear? And if it does, is it the ofise
the FILO strategy?

We have not found yet any way to compute this complexity. We only haaetipr

cal results that we develop in the next section. For each automaton,deties-

tion can be constructed as proposed in [KnuO1] for representing thiggrgm
execution. It is a binary tree such that a node is a set of states andaaishas
subset of the root such that the two sons form a partition. We add thless:co
black when a set belongs foand has never been modified, blue when a set be-
longs toL and has been refined, green when the set does not beldngitoost
function can be associated to each node to compute the complexity. This idea
that the smaller the splitter is the smaller the cost function is locally, but this does
not ensure that the minimum is global.

In order to obtain precise practical results of our two implementationsvimeha

our programs also compute the valueSof

5 Experiments

We realized many experiments on different automata families and we imple-
mented several automata generators:

— arandom automata family over a one letter alphabet with a number of states
betweent0 and4.10°;

— the automata family over a one letter alphabet constructed from the de Bruijn
words given in [BC04];

— arandom automata family over a two letters alphabet with a number of states
betweent0 and4.10%;

— a particular automata family over a four letters alphabet developped-n pre
vious works [BPP04] to model hardware signal processing comyene

These experimentations allowed to compare the practical performahces
program with those of the Finite-State Machine Library FSM [MPRO0O].

5.1 One Letter Alphabet Results

Random one letter The random automata generation over a one letter alphabet
is a simple problem since the topology of a reachable finite automaton over this
particular alphabet has the particular structure fifag pan

The diagram given on the left of Figure 1 depicts our experimentaticudtsefor

any fixed size minimized automaton, we represeat:{S/(|Q|.|~|)} in func-

tion of |Q|, which corresponds to the worst case. The scale of the abscissa axis is
logarithmic: a logarithmic curve will be represented by a line. We notice tleat th
FIFO strategy is a linear function and it means that we obtain a bad complexity
around|Q|log |Q]|.

On the opposite, the curve associated to the FILO strategy is always bedow th
constant 3 and seems to converge towards the coristdihis suggests a linear
complexity for the one letter case.

B
53

W 00 000 40000 400000 4000000
1l

Fig. 1. One letter and two letters alphabet experimental results

De Bruijn’s Words Automata We depict briefly the de Bruijn’'s words. A
n-de Bruijn’s wordw over X' is a word of minimal size such that for every word
v of sizen, v is a contiguous sub-word ab?: Vv, |v| = n, Ju1,us such that
w = wu1.v.uz. FOrinstance, the worgd = 11101000 is 3-de Bruijn’s word.

In [BCO4], the authors use these words to construct one letter autonitata w
circular shape: ift and0 are the letters, ifv = wo.ws...w,—1 is the de Bruijn’s
word, the associated automaton hastates{0, - - - ,n — 1}, the transition func-
tionisT :i— (i+ 1) mod n and a staté is final if, and only ifw; = 1.

For the wordw = 11101000, the automaton is depicted in Figure 2.

Fig. 2. Automaton forw = 11101000 and a two letter automaton

The experiments are made over automata associated to de Bruijn’s ivse o
betweer and21. The results are identical to those of the previous subsection.

5.2 Two Letters Alphabet Results

The topology of a two letters alphabet is more complex than the case ofttere le
We thus have chosen a particular family with the shape of a binary tree iive
Figure 2.

Such automata with various number of states, which are final with a pititpah
were minimized and the worst case results are given on the right sidguweFL.

5.3 FSM Minimization Comparison

FSM [MPRO0O0] is a powerful and performant finite-state machine libiaiy able

to manipulate large size automata and transducers. In particular, it holds-a
mization implementation whose code is not known. We compared the libitiry w
our implementations on the benchmarks previously depicted. Our imptatizen

is always faster, the efficiency varies from 4 to 15 times faster.

The test automata for four letters we have chosen are signal progessirpo-
nents studied in some verification process. Their interest is that thegalistic
examples and that it is easy to generate many automata with the same structur
but with different sizes. Their precise description can be found in [BPPA
small library was written to handle these models which are specified in a func
tional way, so that their descriptions are very close to the automaton definitio
Two families of automata were studied and the results are given in Figure 3.

IDCT TRSP

—Fsm
|+ Hopcrot|

Time (s)
o r N WM O N ®

6132 28997 88562 433292 558530 794957

621 3068 11641 35679 93329 216569 457816 898328 ™

11

Fig. 3. Comparison with FSM

6 Canonical Minimal Automaton

When manipulating huge automata, a software decomposes each autamato
its connected components and stores the minimal automaton associatetl to ea
component. In order to reduce the resources and memory, if two auenps
recognize the same language, it would be interesting to store it only once.

In the previous sections, we detailed minimization procedures that cortvpaite
isomorphic automata. We can refine this result and impose a states ensodin
that we can compute an identical minimal automaton, which is catednical
minimal automatonThus, let4 be an automaton, we denote Hy the canonical
minimal automaton (w.r.t. a particular states encoding). We have:

VA, B, L(A) = L(B) = A. = B..

Finding the canonical minimal automaton is rather straightforward: orecel&is-

sical Hopcroft's algorithm has been applied, the states are renamequtbyeiure
of complexityO(] X].|Q|) with numbers in{0, - -- ,n — 1}. The idea is roughly
the following:

— the letters are ordered,
— the initial state has the number 0,
— if the state reached from O hyis not the initial state, then it is denoted 1
and is stored in a stack. Every successor of 0 is treated in the same way,
— every successor of the state in the top of the stack is numbered like the suc-
cessors of 0 (note that if a state is already visited, nothing is done),
— the procedure ends when the stack is empty.
The previous solution can be applied when there is an initial state which isenot th
case when dealing with connected components. The author of [Cotdplges
two techniques, which he did not prove formally, to find a canonicalesgnta-
tive:
— asortedHopcroft’s algorithm that needs to be executed twice;
— asortedHopcroft's algorithm with a static storage policy that computes di-
rectly the solution.
We prove in this paper that these solutions are correct. We included theun in o
FILO implementation so that we could experiment this approach on differe
automata families.

6.1 Two-pass Solution

In this case, the idea is to sort the encountered classeddigtd_classeban-
dled in the split procedure. Thus, this procedure is modified by addiogtiag
algorithm:

visited_cl asses: =sort (visited_cl asses).

With this modification, the canonical minimal automaton is obtained by applying
twice the FILO strategy. Let us denote byn, this new implementation.

Proposition 2. Let.4 and B two automata such that(.A) = £(B), then
min, ominy(A) = min, o miny(B).

The proof is given in appendix 7.2 page 13.

The complexity is not easy to estimate. Nevertheless, on practical asallise
sorting does not increase that much the execution time: the number séslas
often small.

6.2 One-pass Solution

The sorted Hopcroft's algorithm can be improved in the following way:
— when a classB is splitin { B N T*IEC, a),Bn Y(T7(C,a))}, we add
to L eitherBNT~(C,a), or BN (T~ '(C,a). The author of [Cou04]
proposes to impose statically that one of these sets is always chosem. In o
experiments, we found that the §810 7' (C, a) is more profitable,
— during the initialization ofL, again a static choice of the final set or the
non-final states is done.
Note that there does not exist a good static strategy for the initialization step:
indeed, if forA = (Q, qo, T, F') it is more efficient to choosé&’, then for A’ =
(Q,q0,T,Q\ F) the choice ofp \ F'is more advantageous.
Note that the modifications do not act on the correction but only on the leaityp
which could be increased.
Let us denote this new algorithinin, . It computes a canonical minimal automa-
ton:

Proposition 3. Let.4 and B be two automata such tha&t(4) = £(B), then

min; (A) = min, (B).

The proof is given in appendix 7.3 page 15.

6.3 Practical Results

We apply the two sorted Hopcroft's algorithm on the automata families depicted
in the section 5. The two-pass solution goes practically twice slower thanéie on
pass solution if the initialization step is good. At the opposite, if the initialization
is badly realized, the complexity of the one-pass solution increases a kEgeTh
practical results are presented in Figure 4. Since the initialization step ofithe o

. o Canonical minimization of
Canonical minimization of TRSP
25
60 l
| /
1
20 i 50 nI
I /
1
; /
] “ f
15 T |
2 1
H I % I
1 o ———-1-pass
F I @ 30 I
E T 2-pass
I tpas £
10 T | — i-pass’
2-pass
! I
/ — —ipass
20
/ I
/
s 7 1
/I I
10
4 I
/ .
-~ = I
o s
S CRCY S o B —
¢ g D"@” bq%"w o I e
el 6132 28997 88562 433292 558530 794957
el

Fig. 4. Canonical Minimization

pass algorithm is too sensitive, the two-pass algorithm is included in the Dash
library.

7 Conclusion
We have presented a detailed implementation of the Hopcroft's algorithnhwhic

is very efficient in practice. This implementation is being included in the Dash
library. The way the set of splitters is handled is a crucial point for theieffcy
and we studied two natural implementations. On very large scale expésimen

discover that the FILO strategy performs better and could lead to a mirionza
procedure that could be linear in the size of the automaton in the case ef a on
letter alphabet. In future works, we plan to find a proof of this belief.

In the second part of the paper, we investigate how the original algorittim c
be modified in order to obtain a canonical minimal automaton associated to a
rational language. Two solutions are proved correct and experitnestats are
depicted that show that, most of the time, one solution is better than the other.

References

[BBC92] D.Beauquier, J. Berstel, and P. Chrétierfiéments d’Algorithmique
Masson, 1992.

[BCO4] J. Berstel and O. Carton. On the complexity of Hopcroft’s state m
imization algorithm. InProc. 9th Conference on Implementation and
Application of Automata (CIAA'04Volume 3317 olecture Notes in
Computer Sciencgages 35-44. Springer, 2004.

[BPP0O4] M. Baclet, R. Pacalet, and A. Petit. Register transfer level stionla
Technical Report LSV-04-10, Laboratoire Spécification et Vérificgtio
ENS de Cachan, France, 2004.

[Brz62] J. A. Brzozowski. Canonical regular expressions and nahistate
graphs for definite events. Mathematical Theory of Automatsol-
ume 12 ofMRI Symposia Seriepages 529-561. Polytechnic Press,
1962.

[Cou04] J.-M. Couvreur. A BDD-like implementation of an automata paek
In Proc. 9th International Conference on Implementation and Applica-
tion of Automata (CIAA'04)volume 3317 ofLecture Notes in Com-
puter Sciencegpages 310-311. Springer, 2004.

[Hop71] J. E. Hopcroft. Amn log n algorithm for minimizing the states in a
finite automaton. In Z. Kohavi, editofhe Theory of Machines and
Computationspages 189-196. Academic Press, 1971.

[HU79] J. E. Hopcroft and J. D. Ullman.ntroduction to Automata Theory,
Languages, and ComputatioAddison-Wesley, 1979.

[KMO1] N. Klarlund and A. Mgller. MONA Version 1.4 User ManuaBRICS
Notes Series NS-01-1, Department of Computer Science, Univefsity o
Aarhus, January 2001.

[Knu01] T. Knuutila. Re-describing an algorithm by Hopcrdfheoretical Com-
puter Sciencg250(1-2):333-363, 2001.

[MPROO] M. Mohri, F. Pereira, and M. Riley. The design principles of a
weighted finite-state transducer librafheoretical Computer Science
231(1):17-32, 2000.

[Ner58] A. Nerode. Linear automaton transformationPhac. American Math-
ematical Societyvolume 9, pages 541-544, 1958.

[PTB85] R. Paige, R. E. Tarjan, and R. Bonic. A linear time solution to the sin
gle function coarsest partition probleheoretical Computer Science
40:67-84, 1985.

[Wat95] B. W. Watson. Taxonomies and Toolkits of Regular Language Algo-
rithms PhD thesis, Eindhoven University of Technology, the Nether-
lands, 1995.

[Wat01] B. W. Watson. An incremental DFA minimization algorithm.Rroc.
3rd International Workshop on Finite-State Methods and Natural Lan-

guage Processing (FSMNLP’Q12001.
[WDO03] B. W. Watson and J. Daciuk. An efficient incremental DFA miniaiiz

tion algorithm.Natural Language Engineerin@(1):49-64, 2003.
Appendix

7.1 Algorithms
The details of the split procedure are given in algorithms 4 and 5.

letvisited_classes = empty_list andpred_in_C = empty_list in
forall 2 € T7'(C,a) do
letclass, = class.(z) in
let (i1,i2) = class_indices.(classz) in
letindex,, = partition™'.(x) in
let pointer = pointer_array.(classy) in
if i1 # iz then
if class, = C then
push(z,pred_in_C)
else
if pointer = i then
push(classg,visited_classes)
end if
swap(indicey, pointeur); pointer_array.(classg) < (pointer — 1)
end if
end if
end for
if pred_in_C # 0 then
push(C, visited_classes)
forall z € pred_in_C do
letindex, = partition™".(z) in
let pointer = pointer_array.(classz) in
swap(indexy, pointer); pointer_array.(C) < (pointer — 1)
end for
end if
forall D € visited_classes do
split_refine(D)
end for

—1

Algorithm 4: split(C, a)

7.2 Proof of proposition 2

In this section, we prove that the two-pass solution computes a canorinalah
automaton. For this, we first prove the following lemma:

let (i1,1i2) = classes_indices.(D) in
let pointer = pointer_array.(D) in
if pointer = (i1 — 1) {D is not splitby(D, a)} then
pointer_array.(D) < iz
else{ D is split (D, a)}
incr partition_pointeur; new_class = partition_pointer
if (i2 — pointer — 1) < (pointer — i1) then
classes_indices.(D) < (i1, pointer)
classes_indices.(new_class) < (pointer + 1,1i3)
for all j, pointer +1 < j < iz do
class.(partition.(j)) < new_class
end for
pointer_array.(D) < pointer; pointer_array.(new_class) < iz
else
classes_indices.(D) < (pointer + 1,12)
classes_indices.(new_class) <= (i1, pointer)
forall j,i1 < j < pointer do
class.(partition.(j)) < new_class
end for
pointer_array.(D) < iz; pointer_array.(new_class) < pointer
end if
push(new_class, L){In case FILO}
end if

Algorithm 5: split_refine(D)

Lemma 1. Let A and B be two automata recognizing the same language. We
assume thal and B are minimal. Then we have:

miny(A) = miny(B)

Let us denoted = (Q, ¢3', T4, F*) andB = (Qs, ¢5, T?, F®).

Since A and B are minimal, there exists a unique automata isomorphism
Q4 — Qp. To prove the lemma it is sufficient to prove the following property,
whereC € Nis a class computed by the algorithm:

VCeN,Vz€Qu, zeCe¥(x)eC Q)

Indeed:
— by using the second automata morphism definition property, the finakslass
are then the same in both executions,
— letC € N be aclass and € ¥, then the successor class@fy a in A is
the class containing the successor of ang @ 4 of C by lettera. If C' is
the class ofl4(z, a), the class ol 5(¥ (x),a) = ¥(Ta(zx,a)) is alsoC’.
Now, we prove the property (1). For this, we execute the algorithm stegtepy
on A andB and we prove the following invariant in the while loop:

[i.] the two lists L 4 and L3 are identical,

iVCeEN, Vz€eQu, z€C o ¥(x)eC)

We prove the invariant (2) by induction. Initially, the invariant is valid sinoe th

lists L 4 and L3 contain the class numberédvhich is in both cases either the set

of final states or the state of non-final states, because of the autonmatajigesm

property.

By induction, let us assume that at theh stepL4 = Ly = L. Let Cspiir =

hd(L) be the head of., C,,;: is the splitter for the lettei (let us remind that

the letters are always treated in the same order). Then we need to patve th

split_sortedC'pi:¢,i) preserves the invariant, i.e

i. the setvisited_classesf classes that have elementsBiT ! (Cspiic, a) is

identical in both executions. Then the sorted set of visited classes is also
identical in both executions. We have indeed:

lII(T_Zl(CSplita Z)) = Tgl(Cspm l)

and the induction hypothesis ensures that theviséed_classess identical
in both executions.
ii. the proceduresplit_refine is called on the elements of the sorted list
visited_classesThus we need to prove that the executipiit_refine on
a classD preserves the invariant.
e the set of classes that need to be split is the same in both executions:
needs to be split i) N® (T~ (Cupiir, i) # 0. Thus since

U({z € Qalz € D} N° (T4 (Cuprir, i) =

{z € Qslz € D}y (T ' (Coptin, 1)),
the isomorphism property ensures that the splitting produces classes
with the same cardinal in both executions.
e both smallest parts are then set into a new class (with same index) which
is added to the lisL.
Hence, the execution @plit_refine preserves the invariant and this con-
cludes the proof of lemma 1. O
We are now able to prove the proposition 2 sincelibnd3 are two automata
recognizing the same languagen.(.4) andmin,(B) recognize the same lan-
guage and are minimal.

7.3 Proof of proposition 3

The demonstration of the proposition 3 is quite similar to the proof of the propo
sition 2. We first show a preliminary lemma.

Lemma 2. Let.4 and B be two automata recognizing the same language such
that 5 is minimal. We have:

min; (A) = min, (B)

There exists a unique onto automata morphidm Q4 — Qg (such that
¥(Qa) = @g). For the same reasons depicted in the proof of lemma 1, it is
sufficient to prove the property (1) which is equivalent to prove theriana (2).

The only difference is in the algorithm eblit_refine since the set stored is
not the smallest one but alwaysgl(cspm, i) N D, if D is a visited class that
needs to be split. We just need to prove that this choice preserves tharyvkr

is the case indeed:

— Let D be a set that needs to be split, that meBNs® (T~ (Cupiit,) # 0.
Then

v ({z € Qsle € DY o (T3 (Capiirs 1)) =
{z € Qalz € D} N° (T (Cipti, 1))

The two set§{z € Qalz € D} N® (T (Cpiit,) and({z € Qplx €
D}y NE (T ' (Cspiit, i))) are both simultaneously either empty or not, be-
cause? is an onto map. (But not necessary with the same cardinal at the
opposite of the proof of lemma 1).

— the two sets{z € Qulz € D} N (T;"(Cspiit,i)) and{z € Qplzx €
D}N(Tz " (Cspiie, i)) generate in both executions a new class with the same
index which is added té. Moreover,

v~ ({z € Qslz € D} N (T ' (Cupir, 1)) =

{'T S QA|$ € D} N (T_,ZI(Csplihi))

and the execution of theplit_refine procedure preserves the invariant.[]
We can now conclude the proof of the proposition 3 since lemma 2 progés th
min; is idempotentfin;? = min,).

