
Manuel Baclet and Claire Pagetti

Around Hopcroft’s Algorithm

Research Report LSV-06-12

May 2006

Around Hopcroft’s Algorithm

Manuel BACLET1 andClaire PAGETTI2

1 LSV - ENS de Cachan & CNRS - Cachan, France

IRIT - UPS & CNRS - Toulouse, France
baclet@lsv.ens-cachan.fr

2 ONERA / Cert - Toulouse, France
claire.pagetti@cert.fr

Abstract. In this paper, a reflection is made on an indeterminism inherent to
Hopcroft’s minimization algorithm: thesplitter choice. We have implemented
two natural policies (FIFO and FILO) for managing the set of splitters forwhich
we obtain the following practical results: the FILO strategy performs betterthan
the FIFO strategy, in the case of a one letter alphabet, the practical complexity
in the FILO case never exceeds a linear one and our implementation is more
efficient than the minimization algorithm of the FSM tool. This implementation is
being integrated in a finite automata library, the Dash library. Thus, we present an
efficient manner to manipulate automata by usingcanonicalminimal automata.
Keywords: Finite automata, minimization, Hopcroft’s algorithm.

1 Introduction

The problem of minimizing a deterministic finite automaton has been widely
studied. Finite automata libraries, such as FSM [MPR00], Mona [KM01], etc.,
include a minimization procedure. State of the art implementations of minimiza-
tion algorithm is then an important issue for practical efficiency.

Minimization Algorithms For a detailed presentation of the currently known
minimization algorithms, the reader is referred to Watson’s taxonomy [Wat95].
For a given automaton labeled by the alphabetΣ whereQ is the states set andF
the final states set, most of minimization algorithms have aO(|Q|2) complexity
and use one of the following two fix point strategies:
(S1) Consider the coarsest partition{F, Q/F} and refine this partition until it

satisfies some congruence properties;
(S2) Consider the finest partition and gather the equivalent classes.
Among the algorithms using other strategies, the Brzozowski algorithm [Brz62]
allows to compute the minimal automaton from a non deterministic automaton in
an exponential time.
A linear algorithm exists for complete deterministic automata over a one letter
alphabet [PTB85]. Indeed, the problem is equivalent to determining thecoarsest
partition of the states set stable with respect to the transition relation function.
Thus, the authors of [PTB85] use the second strategy (S2): the startingpartition
is the partition with singleton classes and the output is built via a sequence of
steps in which two or more classes are merged.

An incremental algorithm has been proposed in [WD03,Wat01]. Unlike theother
iterative algorithms, the intermediate results can be used since they consistin
partially minimized automata.
The Hopcroft’s algorithm proposed in [Hop71] has a theoreticalO(|Σ|.|Q|. log
|Q|) complexity which is currently the best for a minimization algorithm.

Contribution We propose a new implementation of the Hopcroft algorithm
in the OCaml1 language. We describe this implementation and some heuristics
that significantly improve the speed of the practical state-of-the-art Hopcroft’s
minimization algorithm.
In the Hopcroft’s algorithm, at each step a splitter is chosen among a set of classes
in order to refine the partition. Every complexity computation leans on the worst
case choice. It is the case in [BC04] where the authors exhibit an automata family
over a one letter alphabet and a bad strategy that lead to theO(|Q|. log |Q|)
complexity with the Hopcroft’s algorithm. This means that there exists a bad
strategy in the splitter choice while applying the Hopcroft’s algorithm.
Our point of view is that there exists a good strategy in the splitter choice that
allows a fast implementation of the Hopcroft’s algorithm. This heuristic consists
in a FILO strategy in which the most recent class is chosen as the splitter. Inprac-
tice, this heuristic is powerful. In the case of a one letter alphabet, the practical
complexity seems linear, even on the “bad” automata depicted in [BC04].
This implementation is being included in the Dash library (currently developedat
the LSV2) which is a finite automata library designed to share common connected
components between automata. The sharing of common components imposes that
two equivalent automata are represented with the same minimal automaton.We
thus propose an extension of our implementation, based on the work of [Cou04],
to automatically compute a canonical representative.

Outline Section 2 recalls basic definitions and results concerning minimiza-
tion. We present the Hopcroft’s algorithm in section 3. We discuss its complexity
and present an open question. In the section 4, the implementation is precisely
depicted and the two strategies, FILO and FIFO are detailed. These implementa-
tions are then experimented on benchmarks and compared to other softwares in
section 5. Finally, in section 6, we detail the efficient representation of automata
in the Dash library usingcanonicalminimal automata.

2 Minimal Automaton

In this section, we recall some basic notions and terminology on finite automata
and regular languages. For a complete theory, one can refer to [BBC92,HU79].
In the sequel,Σ is a non empty finite alphabet.

Definition 1. A deterministic, complete andfinite automaton3 overΣ is a tuple
(Q, q0, T, F) where:

1 http://caml.inria.fr/index.en.html
2 http://www.lsv.ens-cachan.fr
3 Since we only consider deterministic, complete and finite automata, we use theshortcut finite

automaton.

– Q is a finite set of states;
– q0 ∈ Q is the initial state;
– T : Q × Σ → Q is thetransition function;
– F ⊆ Q is the set of final states.

A rational language is associated to any finite automaton: it consists in the setof
letter sequences which label paths from the initial state to a final state. We suppose
that every considered automaton isreachable, i.e. any state of the automaton
is reachable from the initial state. The automata theory ensures [Ner58,BBC92]
that any rational language is recognized by a unique finite automaton (up toan
isomorphism) with a minimal number of states. This automaton is theminimal
automatonassociated with the language.
For a given deterministic, complete and finite automaton, the equivalent (interm
of language recognized) minimal automaton can be obtained by defining acon-
gruence relation on the initial automaton’s states, i.e. an equivalence relation
which is stable with the transition function:

q ∼ q′ =⇒ ∀a ∈ Σ, T (q, a) ∼ T (q′, a)

If ∼m is the coarsest congruence such that

q ∼m q′ =⇒ (q, q′) ∈ F 2 or (q, q′) ∈ (Q/F)2,

we have the following result:

Proposition 1. The finite automaton(Q/∼m, q0, T
′, F ′) where

– q0 is theq0 class up to∼m;
– T ′(a, q) = T (a, q);
– q ∈ F ′ ⇔ q ∈ F ;

is the minimal automaton associated to the automaton(Q, q0, T, F).

Given a finite automaton, this proposition allows to compute the associated mini-
mal automaton by simply computing the equivalence relation. In the next section,
we introduce an efficient algorithm for computing this equivalence.

3 Hopcroft’s Algorithm

The Hopcroft’s algorithm [Hop71] is detailled in Algorithm 1. It has a theoret-
ical O(|Σ|.|Q|. log |Q|) complexity. The main principle consists in refining the
coarsest partition until finding a stable partition (strategy S1). The initial partition
is {F, Q \ F} and each step of the algorithm consists in splitting the classes for
which the stability constraint is not satisfied.
P is the current partition andL contains the elements of the partition to be treated.
The setC is called thesplitter.

1. The functionsplit covers all the classes inP whose image by the transi-
tion function meets the splitter and determines the refined classes. Its imple-
mentation will be precise latter.

2. SPLIT has three arguments and decomposes the second argument (a sub-
set) into two subsets depending on the splitter (the first argument) and the
transitions labeled by the third argument. More precisely:

(B ∩ T−1(C, a), B ∩c T−1(C, a)) = SPLIT(B, C, a);

3. ADD has two arguments and adds a new subset in a set of subsets;
4. EXTRACT is the choice function on which we act to define the strategies we

studied.
In the next section, we detail our implementation.

L := ∅
if |F | < |Q/F | then

C0 := Q/F ; C1 := F ;ADD(C1, L)
else

C1 := Q/F ; C0 := F ;ADD(C1, L)
end if
P := {C0, C1};
while L 6= ∅{The while loop corresponds to the Cut procedure}do

let C = EXTRACT(L) in
for all a ∈ Σ do

for all B ∈ P {The forall loop corresponds tosplit (C, a) procedure}do
let (B′, B′′) = SPLIT(B, C, a)
if |B′| < |B′′| then

B := B′′;ADD(B′,P);ADD(B′, L)
else

B := B′;ADD(B′′,P);ADD(B′′, L);
end if

end for
end for

end while

Algorithm 1 : Hopcroft’s Algorithm

4 Implementation

4.1 Automata Representation

In our implementation, automata states are represented by integers: the states of
an automatonA are numbered from0 to |Q|−1 and the following data structures
will be used:

– the initial state is represented by an integer,
– the final states are represented by a boolean array of size|Q|,
– the transition function is represented by an array of integer array:

transition.(i).(a) = j ⇔ T (i, a) = j

4.2 Data Structures

The current partition is represented by an integer arraypartition of size|Q| and
an integer couple arrayclass_indices.
To each classB of the current partition, the arrayclass_indicesmaps the integer
couple(l, h) so that elements of classB are the elements of the arraypartition
whose indices are betweenl andh. During the execution of our implementation,
elements in a class always have consecutive indices in the arraypartition.
When a classB is split in B′ andB′′, the elements inpartition with indices
betweenl andh are permuted so that elements of classB′ have indices betweenl
andh′ and elements ofB′′ have indices betweenl′ = (h′ + 1) andh. An integer
arrayclassis used to quickly find the class of an element.

In order to find efficiently the index of an element, an integer arraypartition−1 is
held up to date. It has the following property:

partition.(i) = j ⇔ partition−1.(j) = i.

Thepartition array represents a one-to-one mapping over the integers between0
and|Q| − 1 and the arraypartition−1 represents the inverse mapping.
In order to realize the split operation efficiently, an integer list arraytransition−1

is used to decide which classes have to be (possibly) split. It represents the inverse
of the transition function:

i ∈ transition−1.(a).(j) ⇔ T (i, a) = j

A pointer_array is used to decide whether a class needs to be split: ifB is a
class with indicesh andl in class_indicesand if pointer_array.(B) 6= (h − 1),
thenB needs to be split inB′ andB′′, with respective indices(l, h′) and(h′ +
1, h), whereh′ = pointer_array.(B). At the beginning of each iteration of the
algorithm,pointer_arrayassociates to each classB the upper indexh associated
to B, if class_indices.(B) = (l, h).
In our implementation, the two initial classes are numbered0 and1. Then, the
created classes during the algorithm execution are numbered with increasing in-
dices above2.

4.3 L’s Implementation

There are two natural choices for implementing theL object. By natural, we
mean that there is no other simple choice that allows to carry out the ADD and
EXTRACT operations in constant time [Knu01]. For instance, always choosing
the class ofL with the smallest size needs important resources and leads to a loss
of performance in practice.

FIFO Strategy For this strategy, the classes are treated in their appearance
order. If classes_numberrefers to the number of known classes andnext_class
indicates the next splitter, the algorithm 1 while loop, where the functionincr
increments an integer pointer, becomes Algorithm 2.

while next_class6 classes_numberdo
let C =next_class
for all a ∈ Σ do
split (C, a)

end for
incr next_class

end while

Algorithm 2 : FIFO Cut Procedure

FILO Strategy For this strategy, the chosen splitter is the most recent class of
the splitter set. TheL object is then represented by a list: additions and deletions
then occur on the top of the list. The Algorithm 1 while loop becomes Algo-
rithm 3.

while L 6= ∅ do
let C = head(L) in remove_head(L);
for all a ∈ Σ do
split (C, a)

end for
end while

Algorithm 3 : FILO Cut Procedure

4.4 split Function Implementation

Let C be the splitter anda a letter, thesplit function acts in two steps:
1. First, the setT−1(C, a) is considered and the elements of the arraypartition

are permuted so that each classB is transformed into:

B ∩ T−1(C, a) B ∩∁ (T−1(C, a))

where∁A denotes the complementary ofA in Q.
Moreover, a listvisited_classeswhich stores the encountered classes is also
computed. A particular care must be taken whenC ∩ T−1(C, a) 6= ∅.

2. For everyB in visited_classes, we determine ifB is refined byC: B is
refined if, and only ifB ∩ ∁(T−1(C, a)) 6= ∅. (SinceB was encountered
in the first step,B ∩ T−1(C, a) 6= ∅.) If it is the case, a new class with the
smaller part ofB is created and added toL, otherwise nothing is done.

Thesplit procedure is described in the appendix, Algorithms 4 and 5.
We have presented the implementation, thus the contiguous question is its com-
plexity and its efficiency. We only have actually partial results that we present in
the following.

4.5 Complexity

We do not go into the details of the Hopcroft’s algorithm complexity computation.
The reader is referred to [BBC92,Knu01] for instance.

Theoretical Upper BoundThe computation of the time complexity preponder-
ant term is realized by bounding the sum, denoted byS, of the lists size ofT−1

covered during the execution. It can be shown thatS 6 |Σ|.(log
2
|Q|).|Q|.

Reachability of the Upper BoundFor the case of one letter alphabet, the
authors of [BC04] construct an automata family and a splitter choice so that the
boundO(|Q| log |Q|) is reached. Their strategy consists in choosing at each step
a splitter that does not refine classes inL (if possible).

Conjecture There are open questions: does there exists a static strategy such
that for every automaton the complexity is linear? And if it does, is it the caseof
the FILO strategy?
We have not found yet any way to compute this complexity. We only have practi-
cal results that we develop in the next section. For each automaton, a treederiva-
tion can be constructed as proposed in [Knu01] for representing the program
execution. It is a binary tree such that a node is a set of states and each son is a
subset of the root such that the two sons form a partition. We add three colors:
black when a set belongs toL and has never been modified, blue when a set be-
longs toL and has been refined, green when the set does not belong toL. A cost
function can be associated to each node to compute the complexity. The ideais
that the smaller the splitter is the smaller the cost function is locally, but this does
not ensure that the minimum is global.
In order to obtain precise practical results of our two implementations behavior,
our programs also compute the value ofS.

5 Experiments

We realized many experiments on different automata families and we imple-
mented several automata generators:

– a random automata family over a one letter alphabet with a number of states
between40 and4.106;

– the automata family over a one letter alphabet constructed from the de Bruijn
words given in [BC04];

– a random automata family over a two letters alphabet with a number of states
between40 and4.106;

– a particular automata family over a four letters alphabet developped in pre-
vious works [BPP04] to model hardware signal processing components.

These experimentations allowed to compare the practical performancesof our
program with those of the Finite-State Machine Library FSM [MPR00].

5.1 One Letter Alphabet Results

Random one letter The random automata generation over a one letter alphabet
is a simple problem since the topology of a reachable finite automaton over this
particular alphabet has the particular structure of afrying pan.
The diagram given on the left of Figure 1 depicts our experimentations results: for
any fixed size minimized automaton, we representmax{S/(|Q|.|Σ|)} in func-
tion of |Q|, which corresponds to the worst case. The scale of the abscissa axis is
logarithmic: a logarithmic curve will be represented by a line. We notice that the
FIFO strategy is a linear function and it means that we obtain a bad complexity
around|Q| log |Q|.
On the opposite, the curve associated to the FILO strategy is always below the
constant 3 and seems to converge towards the constant2. This suggests a linear
complexity for the one letter case.

Fig. 1.One letter and two letters alphabet experimental results

De Bruijn’s Words Automata We depict briefly the de Bruijn’s words. A
n-de Bruijn’s wordw overΣ is a word of minimal size such that for every word
v of sizen, v is a contiguous sub-word ofw2: ∀v, |v| = n, ∃u1, u2 such that
w = u1.v.u2. For instance, the wordω = 11101000 is 3-de Bruijn’s word.
In [BC04], the authors use these words to construct one letter automata with a
circular shape: if1 and0 are the letters, ifw = w0.w2...wn−1 is the de Bruijn’s
word, the associated automaton hasn states{0, · · · , n − 1}, the transition func-
tion isT : i 7→ (i + 1) mod n and a statei is final if, and only ifwi = 1.
For the wordω = 11101000, the automaton is depicted in Figure 2.

1

2

3

4

5

6

7

8

a

a a

a

a

aa

a

a

a

a

a, ba

a

a

b

b

b

b
b

b

Fig. 2.Automaton forω = 11101000 and a two letter automaton

The experiments are made over automata associated to de Bruijn’s word of size
between3 and21. The results are identical to those of the previous subsection.

5.2 Two Letters Alphabet Results

The topology of a two letters alphabet is more complex than the case of one letter.
We thus have chosen a particular family with the shape of a binary tree given in
Figure 2.
Such automata with various number of states, which are final with a probability p,
were minimized and the worst case results are given on the right side of Figure 1.

5.3 FSM Minimization Comparison

FSM [MPR00] is a powerful and performant finite-state machine library. It is able
to manipulate large size automata and transducers. In particular, it holds amini-
mization implementation whose code is not known. We compared the library with
our implementations on the benchmarks previously depicted. Our implementation
is always faster, the efficiency varies from 4 to 15 times faster.
The test automata for four letters we have chosen are signal processing compo-
nents studied in some verification process. Their interest is that they are realistic
examples and that it is easy to generate many automata with the same structure
but with different sizes. Their precise description can be found in [BPP04]. A
small library was written to handle these models which are specified in a func-
tional way, so that their descriptions are very close to the automaton definition.
Two families of automata were studied and the results are given in Figure 3.

Fig. 3. Comparison with FSM

6 Canonical Minimal Automaton

When manipulating huge automata, a software decomposes each automaton in
its connected components and stores the minimal automaton associated to each
component. In order to reduce the resources and memory, if two components
recognize the same language, it would be interesting to store it only once.
In the previous sections, we detailed minimization procedures that computetwo
isomorphic automata. We can refine this result and impose a states encoding so
that we can compute an identical minimal automaton, which is calledcanonical
minimal automaton. Thus, letA be an automaton, we denote byAc the canonical
minimal automaton (w.r.t. a particular states encoding). We have:

∀A,B,L(A) = L(B) =⇒ Ac = Bc.

Finding the canonical minimal automaton is rather straightforward: once the clas-
sical Hopcroft’s algorithm has been applied, the states are renamed by aprocedure
of complexityO(|Σ|.|Q|) with numbers in{0, · · · , n − 1}. The idea is roughly
the following:

– the letters are ordered,
– the initial state has the number 0,
– if the state reached from 0 bya is not the initial state, then it is denoted 1

and is stored in a stack. Every successor of 0 is treated in the same way,
– every successor of the state in the top of the stack is numbered like the suc-

cessors of 0 (note that if a state is already visited, nothing is done),
– the procedure ends when the stack is empty.

The previous solution can be applied when there is an initial state which is not the
case when dealing with connected components. The author of [Cou04] proposes
two techniques, which he did not prove formally, to find a canonical representa-
tive:

– asortedHopcroft’s algorithm that needs to be executed twice;
– a sortedHopcroft’s algorithm with a static storage policy that computes di-

rectly the solution.
We prove in this paper that these solutions are correct. We included them in our
FILO implementation so that we could experiment this approach on different
automata families.

6.1 Two-pass Solution

In this case, the idea is to sort the encountered classes listvisited_classeshan-
dled in the split procedure. Thus, this procedure is modified by adding a sorting
algorithm:
visited_classes:=sort(visited_classes).
With this modification, the canonical minimal automaton is obtained by applying
twice the FILO strategy. Let us denote bymin2 this new implementation.

Proposition 2. LetA andB two automata such thatL(A) = L(B), then

min2 ◦ min2(A) = min2 ◦ min2(B).

The proof is given in appendix 7.2 page 13.
The complexity is not easy to estimate. Nevertheless, on practical analyses, the
sorting does not increase that much the execution time: the number of classes is
often small.

6.2 One-pass Solution

The sorted Hopcroft’s algorithm can be improved in the following way:
– when a classB is split in {B ∩ T−1(C, a), B ∩ ∁(T−1(C, a))}, we add

to L eitherB ∩ T−1(C, a), or B ∩ ∁(T−1(C, a). The author of [Cou04]
proposes to impose statically that one of these sets is always chosen. In our
experiments, we found that the setB ∩ T−1(C, a) is more profitable,

– during the initialization ofL, again a static choice of the final set or the
non-final states is done.

Note that there does not exist a good static strategy for the initialization step:
indeed, if forA = (Q, q0, T, F) it is more efficient to chooseF , then forA′ =
(Q, q0, T, Q \ F) the choice ofQ \ F is more advantageous.
Note that the modifications do not act on the correction but only on the complexity
which could be increased.
Let us denote this new algorithmmin1. It computes a canonical minimal automa-
ton:

Proposition 3. LetA andB be two automata such thatL(A) = L(B), then

min1(A) = min1(B).

The proof is given in appendix 7.3 page 15.

6.3 Practical Results

We apply the two sorted Hopcroft’s algorithm on the automata families depicted
in the section 5. The two-pass solution goes practically twice slower than the one-
pass solution if the initialization step is good. At the opposite, if the initialization
is badly realized, the complexity of the one-pass solution increases a lot. These
practical results are presented in Figure 4. Since the initialization step of the one-

Fig. 4.Canonical Minimization

pass algorithm is too sensitive, the two-pass algorithm is included in the Dash
library.

7 Conclusion

We have presented a detailed implementation of the Hopcroft’s algorithm which
is very efficient in practice. This implementation is being included in the Dash
library. The way the set of splitters is handled is a crucial point for the efficiency
and we studied two natural implementations. On very large scale experiments, we

discover that the FILO strategy performs better and could lead to a minimization
procedure that could be linear in the size of the automaton in the case of a one
letter alphabet. In future works, we plan to find a proof of this belief.
In the second part of the paper, we investigate how the original algorithm can
be modified in order to obtain a canonical minimal automaton associated to a
rational language. Two solutions are proved correct and experimental results are
depicted that show that, most of the time, one solution is better than the other.

References

[BBC92] D. Beauquier, J. Berstel, and P. Chrétienne.Éléments d’Algorithmique.
Masson, 1992.

[BC04] J. Berstel and O. Carton. On the complexity of Hopcroft’s state min-
imization algorithm. InProc. 9th Conference on Implementation and
Application of Automata (CIAA’04), volume 3317 ofLecture Notes in
Computer Science, pages 35–44. Springer, 2004.

[BPP04] M. Baclet, R. Pacalet, and A. Petit. Register transfer level simulation.
Technical Report LSV-04-10, Laboratoire Spécification et Vérification,
ENS de Cachan, France, 2004.

[Brz62] J. A. Brzozowski. Canonical regular expressions and minimal state
graphs for definite events. InMathematical Theory of Automata, vol-
ume 12 ofMRI Symposia Series, pages 529–561. Polytechnic Press,
1962.

[Cou04] J.-M. Couvreur. A BDD-like implementation of an automata package.
In Proc. 9th International Conference on Implementation and Applica-
tion of Automata (CIAA’04), volume 3317 ofLecture Notes in Com-
puter Science, pages 310–311. Springer, 2004.

[Hop71] J. E. Hopcroft. Ann log n algorithm for minimizing the states in a
finite automaton. In Z. Kohavi, editor,The Theory of Machines and
Computations, pages 189–196. Academic Press, 1971.

[HU79] J. E. Hopcroft and J. D. Ullman.Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

[KM01] N. Klarlund and A. Møller. MONA Version 1.4 User Manual. BRICS
Notes Series NS-01-1, Department of Computer Science, University of
Aarhus, January 2001.

[Knu01] T. Knuutila. Re-describing an algorithm by Hopcroft.Theoretical Com-
puter Science, 250(1-2):333–363, 2001.

[MPR00] M. Mohri, F. Pereira, and M. Riley. The design principles of a
weighted finite-state transducer library.Theoretical Computer Science,
231(1):17–32, 2000.

[Ner58] A. Nerode. Linear automaton transformation. InProc. American Math-
ematical Society, volume 9, pages 541–544, 1958.

[PTB85] R. Paige, R. E. Tarjan, and R. Bonic. A linear time solution to the sin-
gle function coarsest partition problem.Theoretical Computer Science,
40:67–84, 1985.

[Wat95] B. W. Watson. Taxonomies and Toolkits of Regular Language Algo-
rithms. PhD thesis, Eindhoven University of Technology, the Nether-
lands, 1995.

[Wat01] B. W. Watson. An incremental DFA minimization algorithm. InProc.
3rd International Workshop on Finite-State Methods and Natural Lan-
guage Processing (FSMNLP’01), 2001.

[WD03] B. W. Watson and J. Daciuk. An efficient incremental DFA minimiza-
tion algorithm.Natural Language Engineering, 9(1):49–64, 2003.

Appendix

7.1 Algorithms

The details of the split procedure are given in algorithms 4 and 5.

let visited_classes = empty_list andpred_in_C = empty_list in
for all x ∈ T−1(C, a) do

let classx = class.(x) in
let (i1, i2) = class_indices.(classx) in
let indexx = partition−1.(x) in
let pointer = pointer_array.(classx) in
if i1 6= i2 then

if classx = C then
push(x, pred_in_C)

else
if pointer = i2 then

push(classx, visited_classes)
end if
swap(indicex, pointeur); pointer_array.(classx) ⇐ (pointer − 1)

end if
end if

end for
if pred_in_C 6= ∅ then

push(C, visited_classes)
for all x ∈ pred_in_C do

let indexx = partition−1.(x) in
let pointer = pointer_array.(classx) in
swap(indexx, pointer); pointer_array.(C) ⇐ (pointer − 1)

end for
end if
for all D ∈ visited_classes do
split_refine(D)

end for

Algorithm 4 : split(C, a)

7.2 Proof of proposition 2

In this section, we prove that the two-pass solution computes a canonical minimal
automaton. For this, we first prove the following lemma:

let (i1, i2) = classes_indices.(D) in
let pointer = pointer_array.(D) in
if pointer = (i1 − 1) {D is not split by(D, a)} then

pointer_array.(D) ⇐ i2
else{D is split (D, a)}

incr partition_pointeur; new_class = partition_pointer
if (i2 − pointer − 1) 6 (pointer − i1) then

classes_indices.(D) ⇐ (i1, pointer)
classes_indices.(new_class) ⇐ (pointer + 1, i2)
for all j, pointer + 1 6 j 6 i2 do

class.(partition.(j)) ⇐ new_class
end for
pointer_array.(D) ⇐ pointer; pointer_array.(new_class) ⇐ i2

else
classes_indices.(D) ⇐ (pointer + 1, i2)
classes_indices.(new_class) ⇐ (i1, pointer)
for all j, i1 6 j 6 pointer do

class.(partition.(j)) ⇐ new_class
end for
pointer_array.(D) ⇐ i2; pointer_array.(new_class) ⇐ pointer

end if
push(new_class, L){In case FILO}

end if

Algorithm 5 : split_refine(D)

Lemma 1. Let A andB be two automata recognizing the same language. We
assume thatA andB are minimal. Then we have:

min2(A) = min2(B)

Let us denoteA = (QA, qA0 , TA, FA) andB = (QB, qB0 , TB, FB).
SinceA andB are minimal, there exists a unique automata isomorphismΨ :
QA → QB. To prove the lemma it is sufficient to prove the following property,
whereC ∈ N is a class computed by the algorithm:

∀C ∈ N, ∀x ∈ QA, x ∈ C ⇔ Ψ(x) ∈ C (1)

Indeed:
– by using the second automata morphism definition property, the final classes

are then the same in both executions,
– let C ∈ N be a class anda ∈ Σ, then the successor class ofC by a in A is

the class containing the successor of anyx ∈ QA of C by lettera. If C′ is
the class ofTA(x, a), the class ofTB(Ψ(x), a) = Ψ(TA(x, a)) is alsoC′.

Now, we prove the property (1). For this, we execute the algorithm step bystep
onA andB and we prove the following invariant in the while loop:

[i.] the two listsLA andLB are identical,
[ii.] ∀C ∈ N, ∀x ∈ QA, x ∈ C ⇔ Ψ(x) ∈ C

(2)

We prove the invariant (2) by induction. Initially, the invariant is valid since the
listsLA andLB contain the class numbered1 which is in both cases either the set
of final states or the state of non-final states, because of the automata isomorphism
property.
By induction, let us assume that at thek-th stepLA = LB = L. Let Csplit =
hd(L) be the head ofL, Csplit is the splitter for the letteri (let us remind that
the letters are always treated in the same order). Then we need to prove that
split_sorted(Csplit,i) preserves the invariant, i.e

i. the setvisited_classesof classes that have elements inT−1(Csplit, a) is
identical in both executions. Then the sorted set of visited classes is also
identical in both executions. We have indeed:

Ψ(T−1

A (Csplit, i)) = T−1

B (Csplit, i)

and the induction hypothesis ensures that the setvisited_classesis identical
in both executions.

ii. the proceduresplit_refine is called on the elements of the sorted list
visited_classes. Thus we need to prove that the executionsplit_refine on
a classD preserves the invariant.
• the set of classes that need to be split is the same in both executions:D

needs to be split ifD ∩∁ (T−1(Csplit, i)) 6= ∅. Thus since

Ψ({x ∈ QA|x ∈ D} ∩∁ (T−1

A (Csplit, i))) =

{x ∈ QB|x ∈ D} ∩∁ (T−1

B (Csplit, i)),

the isomorphism property ensures that the splitting produces classes
with the same cardinal in both executions.

• both smallest parts are then set into a new class (with same index) which
is added to the listL.

Hence, the execution ofsplit_refine preserves the invariant and this con-
cludes the proof of lemma 1. �

We are now able to prove the proposition 2 since ifA andB are two automata
recognizing the same language,min2(A) andmin2(B) recognize the same lan-
guage and are minimal.

7.3 Proof of proposition 3

The demonstration of the proposition 3 is quite similar to the proof of the propo-
sition 2. We first show a preliminary lemma.

Lemma 2. Let A andB be two automata recognizing the same language such
thatB is minimal. We have:

min1(A) = min1(B)

There exists a unique onto automata morphismΨ : QA → QB (such that
Ψ(QA) = QB). For the same reasons depicted in the proof of lemma 1, it is
sufficient to prove the property (1) which is equivalent to prove the invariant (2).
The only difference is in the algorithm ofsplit_refine since the set stored is
not the smallest one but alwaysT−1

A
(Csplit, i) ∩ D, if D is a visited class that

needs to be split. We just need to prove that this choice preserves the invariant. It
is the case indeed:

– Let D be a set that needs to be split, that meansD ∩∁ (T−1(Csplit, i)) 6= ∅.
Then

Ψ−1({x ∈ QB|x ∈ D} ∩∁ (T−1

B (Csplit, i))) =

{x ∈ QA|x ∈ D} ∩∁ (T−1

A (Csplit, i))

The two sets({x ∈ QA|x ∈ D} ∩∁ (T−1

A
(Csplit, i))) and({x ∈ QB|x ∈

D} ∩∁ (T−1

B
(Csplit, i))) are both simultaneously either empty or not, be-

causeΨ is an onto map. (But not necessary with the same cardinal at the
opposite of the proof of lemma 1).

– the two sets{x ∈ QA|x ∈ D} ∩ (T−1

A
(Csplit, i)) and {x ∈ QB|x ∈

D}∩(T−1

B
(Csplit, i)) generate in both executions a new class with the same

index which is added toL. Moreover,

Ψ−1({x ∈ QB|x ∈ D} ∩ (T−1

B (Csplit, i))) =

{x ∈ QA|x ∈ D} ∩ (T−1

A (Csplit, i))

and the execution of thesplit_refine procedure preserves the invariant.�
We can now conclude the proof of the proposition 3 since lemma 2 proves that
min1 is idempotent (min12 = min1).

