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Abstract. The first step in the verification of cryptographic protocols
is to decide the intruder deduction problem, that is the vulnerability to
a passive attacker. We extend the Dolev-Yao model in order to model
this problem in presence of the equational theory of a commutative
encryption operator which distributes over the exclusive-or operator.
These operators are frequently used in cryptographic protocols. For in-
stance the well-known RSA encryption is a commutative encryption, and
the exclusive-or is used in several cryptographic protocols. The interac-
tion between the commutative distributive law of the encryption and
exclusive-or offers more possibilities to decrypt an encrypted message
than in the non-commutative case. We prove decidability of the intruder
deduction problem for a commutative encryption which distributes over
exclusive-or with a DOUBLE-EXP-TIME procedure.

1 Introduction

Today, the number of interactive services proposed on internet blows up. Most
of them use cryptographic protocols to guarantee some level of security. For in-
stance they are employed in internet banking, video on demand services, wireless
communications, etc. They can be seen as relatively simple programs which are
executed in an untrusted environment.

There are different approaches for modeling cryptographic protocols and an-
alyzing their security properties. One of them is the approach of Dolev and
Yao [10], which consists in modeling the attacker capabilities by a deduction
system. This model is often used to analyze the security of protocols against
a passive attacker, i.e an intruder which obtains some informations by eaves-
dropping on the network the communication between honest participants and
deduces some information from these messages using the deduction system. The
question whether a passive attacker gets a certain information from observed
messages on the network is called the intruder deduction problem.
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Usually the capabilities of the intruder are based on the so-called perfect
cryptography assumption, i.e. it is impossible to obtain any information about
an encrypted message without knowing the exact key necessary to decrypt this
message. Unfortunately, this perfect cryptography assumption is too idealistic:
There are protocols which can be proved secure under the perfect cryptography
assumption, but which are in reality insecure since an attacker can use properties
of the cryptographic primitives in combination with the protocol rules to learn
some secret informations (see [7] for a survey). It is necessary to relax this
assumption by increasing the deductive power of the intruder. One possibility
is to add the capability to take into account some algebraic properties to model
an intruder in more realistic way, which may find new attacks.

Solutions to the intruder deduction problem modulo an equational theory
are known for the cases of exclusive-or, of Abelian groups [5, 2], of a homomor-
phism symbol alone [6], and of combinations of these theories [11, 8]. We have al-
ready studied the case of non-commutative encryption which distributes over the
exclusive-or symbol in [12]. In this paper we investigate the case of commutative
encryption, i.e. {{u}k1}k2 = {{u}k2}k1, which distributes over the exclusive-or
symbol i.e. {x⊕y}k = {x}k⊕{y}k. The commutativity of encryption requires to
define new notions and to find new proof transformations, since one encrypted
message can be partially decrypted by several different keys. This raises some
difficulties to design a normalization of proof. In the non-commutative case it
is enough to consider the applications of the exclusive-or symbol as early as
possible. In the case of the commutative encryption we have to apply as early
as possible the decryption and after as early as possible the exclusive-or. We
obtain a decision procedure in DOUBLE-EXP-TIME for the intruder deduc-
tion problem with the equational theory of the exclusive-or and commutative
distributive encryption over this operator. The combination algorithm proposed
in [4] can not be applied since the equational theories of the ⊕ operation and of
the commutative encryption operation are not disjoint.

2 Preliminaries

We referee the reader to [9, 1] for an overview of rewriting.
Let Σ be a signature. T (Σ,X) denotes the set of terms over the signature Σ
and the set of variables X, that is the smallest set such that:

1. X ⊆ T (Σ,X);
2. if t1, . . . , tn ∈ T (Σ,X), and f ∈ Σ has arity n ≥ 0, then f(t1, . . . , tn) ∈

T (Σ,X).

We abbreviate T (Σ, ∅) as T (Σ); elements of T (Σ) are called Σ-ground terms.
The set of variables occurring in a term t is denoted by V(t).

The set of occurrences of a term t is defined recursively as O(f(t1, . . . , tn)) =
{ε}∪

⋃
i=1...n i·O(ti). For instance, O(f(a, g(b, x))) = {ε, 1, 2, 21, 22}. The size |t|

of a term t is defined as its number of occurrences, that is |t| = cardinality(O(t)).
We extend the notion of size to a set of terms T by |T | = Σt∈T |t|. If o ∈ O(t)
then the subterm of t at position o is defined recursively by:



– t |ε= t
– f(t1, . . . , tn) |j·o= tj |o

A term r is a subterm of a term t if r is a subterm of t at some position of t.
A Σ-equation is a pair (l, r) ∈ T (Σ,X), commonly written as l = r. The

relation =E generated by a set of Σ-equations E is the smallest congruence on
T (Σ) that contains all ground instances of all equations in E.

A Σ-rewriting system R is a finite set of so-called rewriting rules l → r where
l ∈ T (Σ,X) and r ∈ T (Σ,V(l)). A term t is in normal form if there is no term
s with t → s. If t →∗ s and s is a normal form then we say that s is a normal
form of t, and write s = t ↓.

Let T be a set of terms, the mapping S : T → T is idempotent if for every
X ⊆ T : S(S(X)) = S(X). The mapping S is monotone if for all X,Y ⊆ T : if
X ⊆ Y then S(X) ⊆ S(Y ). S is transitive if for all X,Y,Z ⊆ T , X ⊆ S(Y ) and
Y ⊆ S(Z) implies X ⊆ S(Z). The following Proposition is straightforward.

Proposition 1 Let S be a mapping from sets of terms to sets of term. If S is
idempotent and monotone then S is transitive.

3 A Dolev-Yao Model for Rewriting Modulo AC

We consider the classic model of deduction rules introduced by Dolev and Yao [10]
in order to model the deductive capacities of a passive intruder. We present an
extension of this model with the equational theory XCDE (eXclusive-or with a
Commutative Distributive Encryption over ⊕).

The knowledge of the intruder is represented by terms built over a finite
signature Σ = {〈·, ·〉, {·}·,⊕} + Σ0, where Σ0 is a set of constant symbols. The
term 〈u, v〉 represents the pairing of the two terms u and v. The term {u}K

represents the encryption of the term u by a finite multiset of keys K and
we consider that {u}∅ = u. For the sake of simplicity we here only consider
symmetric commutative encryption.

The equational theory XCDE is represented by the following convergent
rewriting system R: 0⊕x → x; x⊕x → 0; {0}z → 0; {x⊕y}z → {x}z ⊕{y}z. R
is terminating and confluent modulo associativity and commutativity of ⊕, and
such that for all terms t, s ∈ T (Σ) we have that t =E s if and only if t ↓ =AC s ↓.
The deduction system of Figure 1 corresponds to the deductive capabilities of
an attacker considering the equational theory XCDE.

Definition 1 A proof P of T , w is a finite tree such that:

– every leaf of P is label by v ∈ T .
– every node of P with n sons (n ≥ 1) labeled with T , v1, . . . , T , vn, is

labeled with T , v such that
T , v1 . . . T , vn

T , v
(R) is an instance of the

rule of Figure 1.
– the root of P is labeled with T , w.



A sub-proof P ′ of a proof P is a sub-tree of P . The size of a proof P is the
number of nodes in P , denoted by |P |.

(A)
u ∈ T

T " u ↓

(P )
T " u T " v

T " 〈u, v〉 ↓

(CK)
T " u T " K

T " {u}K ↓

(DK)
T " r T " K

T " u ↓
if r =E {u}K

(UL)
T " r

T " u ↓
if 〈u, v〉 = r

(UR)
T " r

T " v ↓
if 〈u, v〉 = r

(GX)
T " u1 . . . T " un

T " u1 ⊕ . . . ⊕ un ↓

Fig. 1. A Dolev-Yao proof system working on normal forms by a rewrite system R
modulo AC for a commutative encryption, where K = {kα1

1 , . . . , kαn
n }is a multiset of

keys, where αi represents the multiplicity of the keys ki in K.

This proof system is composed of the following rules: (A) the intruder may
use any term which is in his initial knowledge, (P) the intruder can build a pair
of two messages, (UL, UR) he can extract each member of a pair, (C) he can
encrypt a message u with a multiset K of keys, (D) if he knows a multiset K of
keys then he can decrypt a message encrypted by K. Let K = {kα1

1
, . . . , kαn

n }
be a multiset of keys, the sequent T , K is short for: α1 times the sequent
T , k1, . . . , αn times the sequent T , kn. Sometimes, we shall annotate the rules
(C) and (D) by the multiset of keys that they use, yielding rules (CK) and (DK).
Because of the algebraic properties of the ⊕ operator, we add a family of rules
(GX) which allows the intruder to build a new term from an arbitrary number
of already known terms by using the ⊕ operator.

In fact, this proof system is equivalent in deductive power to a variant of the
system in which terms are not automatically normalized, but in which arbitrary
equational proofs are allowed at any moment of the deduction. The equivalence
of the two proof systems has been shown in [6] without AC axioms; in [11] this
has been extended to the case of a rewrite system modulo AC. We assume that
all terms are normalized terms, we will omit the symbol ↓.

4 Locality Result and Complexity

Our starting point is the locality technique introduced by McAllester [13]. He
considers deduction systems which are represented by finite sets of Horn clauses.
He shows that there exists a polynomial-time algorithm to decide the deducibility
of a term w from a finite set of terms T if the deduction system has the so-called
locality property. A deduction system has the locality property if any proof can
be transformed into a local proof, that is a proof where all nodes are syntactic
subterms of T ∪ {w}. The idea of the proof is to check existence of a local proof



by a saturation algorithm which computes all syntactic subterms of T ∪{w} that
are deducible from T. In [12] we generalize McAllester’s approach, we just recall
the definition of a local proof and the locality Theorem. In the rest of the paper
we denote T ∪ {w} by T,w.

Definition 2 Let S be a function which maps a set of terms to a set of terms.
A proof P of T , w is S-local if all nodes are labeled by some T , v with
v ∈ S(T,w). A proof system is S-local if whenever there is a proof of T , w then
there is also a S-local proof of T , w.

Theorem 1 Let S be a function mapping a set of terms to a set of terms, and
P a proof system. Let T be a set of terms, let w be a term and let n be |T,w|. If:

1. one-step deducibility of S , u in P is decidable in time g(|S, u|) for any term
u and set of terms S,

2. the set S(T,w) can be constructed in time f(n),
3. P is S-local,

then provability of T , w in the proof system P is decidable in time f(n)+f(n)∗
f(n) ∗ g(f(n)) (non-deterministic if one of (2), (1) is non-deterministic).

We say that u is one-step deducible from a set of hypotheses H if there

exists an instance
T , r1 . . . T , rn

T , r
(R) of some deduction rule such that r = u

and ri ∈ H. The one-step deducibility is decidable in polynomial time for the
equational theory XCDE. Observe first that all rules of deduction of Figure 1
are binary excepted the rule (GX) (rule (CK) (resp. (DK)) are shorts for finite
number of consecutive applications of rule (Cki

) (resp. (Dki
)). For all these

binary rules proving the one-step deducibility takes a polynomial time. For the
rule (GX) the problem can reduce to solve system of equations in Z/2Z as in [12].
We illustrate the idea of this reduction, with the following example.

Example 1 Let T = {a1 ⊕ a2 ⊕ a3, a1 ⊕ a4, a2 ⊕ a4} and w = a1 ⊕ a2, where
every ai contains no ⊕. We introduce one numerical variable x0, x1, x2 for each
element of T :

x0 for a1 ⊕ a2 ⊕ a3

x1 for a1 ⊕ a4

x2 for a2 ⊕ a4

For every element of the sum we create an equation, we get the equation system:



a1 : x0 ⊕ x1 = 1
a2 : x0 ⊕ x2 = 1
a3 : x0 = 0
a4 : x1 ⊕ x2 = 0

The system has a solution over Z/2Z if and only if w is deducible in one-step from
T by (GX). In this example the system has a solution: x0 = 0, x1 = 1, x2 = 1.



In the rest of the paper, to prove locality, we define a new notion of subterms
(Definition 6) and some transformations of proof which enable us to prove that
any proof can be transformed into a normal proof. Hence we prove that a normal
proof is in fact a local proof in Theorem 2, yielding the decidability of the intruder
deduction problem, using Theorem 1.

5 Terms and Subterms

Definition 3 Let u be a term in normal form, u is headed with ⊕ if u is of the
form u1 ⊕ . . . ⊕ un with n > 1. Otherwise u is not headed with ⊕. A term u in
normal form is called headed with {.}K if u is of the form u = {t}K . Otherwise
u is not headed with {.}K . We define the function atoms(u):

– If u = u1 ⊕ . . . ⊕ un, where each of the ui is not headed with ⊕, then
atoms(u) = {u1, . . . , un}. The ui’s are called the atoms of u.

– If u is not headed with ⊕ then atoms(u) = {u}.

Example 2 t1 = u ⊕ 〈v, w〉 is headed with ⊕, but t2 = 〈u, v ⊕ w〉 is not, hence
atoms(t2) = {t2} and atoms(t1) = {u, 〈v, w〉}.

The definition of atoms(T ) is generalized to sets of terms T in normal form
by setting atoms(T ) :=

⋃
t∈T atoms(t). According to the definition, the function

atoms is monotone and idempotent. P[K] denotes the set of all the partitions of
the set K.

Definition 4 Define the set of syntactic subterms of a term t as the smallest
set S(t) such that:

– t ∈ S(t).
– if 〈u, v〉 ∈ S(t) then u, v ∈ S(t).
– if {u}K ∈ S(t) and K = {kα1

1
, . . . , k

αp
p } then u ∈ S(t) and ki ∈ S(t) for all

i 1 ≤ i ≤ p.
– if u = u1 ⊕ . . . ⊕ un ∈ S(t) then atoms(u) ⊆ S(t).

The definition of S is extended to a set T of terms in normal form by setting
S(T ) :=

⋃
t∈T S(t). Since the encryption is commutative, the number of sub-

terms is exponential in the size of the set of keys of T (consider all the possible
combinations of keys for an encrypted term).

Example 3 If u = {a}k1,k2,k3 then
S(u) = {u, a, k1, k2, k3, {a}k1, {a}k2, {a}k3, {a}k1,k2, {a}k2,k3, {a}k1,k3}

In the definition of S(t) we do not take care of the distributivity of encryption.
Because we work only on normal forms the notion of a syntactic subterm ignores
the fact that the term {a}K ⊕ {b}K ⊕ {c}K is equal to {a ⊕ b ⊕ c}K , and that
a⊕ b⊕ c should be considered to be a subterm of {a}K ⊕{b}K ⊕{c}K and also
all sums encrypted with the set P[K].



Definition 5 For any term t, ST (t) is the smallest set such that:

– S(t) ⊆ ST (t).
– If n > 1, K = {kα1

1
, . . . , k

αp
p } and {u1}K ⊕ . . . ⊕ {un}K ∈ ST (t) then u1 ⊕

. . . ⊕ un ∈ ST (t).

By definition S(T ) ⊆ ST (T ). The definition is extended to a set T of terms
in normal form by setting ST (T ) :=

⋃
t∈T ST (t). As in Definition 4, Definition 5

considers also all the possible combinations of keys for an encrypted sum of
terms.

Proposition 2 For any set of terms M ⊆ TΣ, we have:

– atoms(M) ⊆ S(M) for any set of terms M ⊆ TΣ.
– atoms(ST (M)) ⊆ ST (M).
– S(S(M)) = S(M) and ST (ST (M)) = ST (M).

Proof. Obvious from the definitions of S, atoms and ST .

Definition 6 Define S⊕ as all combinations of terms of ST (T ) by ⊕:

S⊕(T ) :=
{

(
⊕
s∈M

s) ↓ | M ⊆ ST (T )
}

Note that the size of S⊕ is double-exponential in the size of T and ST (T ) ⊆
S⊕(T ): one exponential for the computation of S(T ) ⊆ ST (T ) and the second
exponential for all the partial sums.

Proposition 3 Let A and B be two sets of terms in normal form, the mappings
S, ST and S⊕ are monotone and have the property:

– S(A ∪ B) = S(A) ∪ S(B).
– ST (A ∪ B) = ST (A) ∪ ST (B).
– S⊕(A) ∪ S⊕(B) ⊆ S⊕(A ∪ B).

Proof. Monotonicity is obvious from the definitions of S(T ), ST (T ) and S⊕(T ).

Let A = {a} and B = {b}, S⊕(A) = {0, a} and S⊕(B) = {0, b} then S⊕(A)∪
S⊕(B) = {0, a, b} ⊆ S⊕(A∪B) = {0, a⊕b, a, b} but S⊕(A)∪S⊕(B) /= S⊕(A∪B).

The following Proposition is proved in Appendix.

Proposition 4 Let M be a set of terms then S⊕(S⊕(M)) = S⊕(M). The map-
pings S, ST and S⊕ are transitive.



6 Different Kinds of Proofs

Definition 7 Let P be a proof of T , w. P is flat if there is no (GX) (re-
spectively (C) and (D)) rule immediately above another (GX) (respectively (C)
and (D)) rule. P is simple if (1) each node T , v occurs at most once on each
branch, (2) each node T , v occurs at most once as hypothesis of a rule (GX),
(3) there is no consecutive application of (CK) and (DK′) (in either order) if
K ∩ K ′ /= ∅.

In any proof we can always merge two consecutive applications of a rule (CK)
(respectively (DK) and (GX)) and get a flat proof. Any proof can be transformed
into a simple proof since we can always cut some branch or piece of branch of
the proof.

Proposition 5 Let K and K ′ be two sets of keys such that K∩K ′ = ∅. Applying
the rule (DK) to a term u and then the rule (CK′) yields the same result as
applying the rule (CK′) to u and then the rule (DK).

Proof. The fact that K ∩ K ′ = ∅ is the key of this result.

Intuitively, in a D-eager proof the (D) rule is applied as early as possible and
in a ⊕-eager proof the (GX) rule is applied as early as possible.

Definition 8 Let P be a proof of T , w. P is a D-eager proof if: (1) there is
no hypothesis of a rule (GX) which is headed with {.}K and a rule (DK′) just
after a (GX) such that K ∩ K ′ /= ∅, (2) there is no (C) just above rule (D). P
is a ⊕-eager proof if all the rules (CKi

) immediately above a (GX) in P have
Ki ∩ Kj = ∅ for all i, j such that i /= j.

We precise S(T )-local proof instead of S-local, where T is the set of terms
on which S is applied. A normal proof consists of initial subproofs which are
S⊕(T )-local, followed by a proof tree consisting of the rules (GX), (C), (P) only.

Definition 9 Let P be a proof of T , u. P is a normal proof if :

– either u ∈ S⊕(T ) and P is an S⊕(T )-local proof,
– or P = C[P1, . . . , Pn] where every proof Pi is a normal proof of some T , vi

with vi ∈ S⊕(T ) and the context C is built using the inference rules (P),
(C), (GX) only.

7 Transformations of Proofs

Lemma 1 Let P be a simple and flat proof of T , w. Then there exists a proof
P ′ of T , w such that P ′ is a simple, flat and D-eager proof.

Proof. Let P be a simple and flat proof of T , w. We transform this proof into
a simple, flat and D-eager proof of T , w by induction on the number of nodes
of P . We consider the last rule of the proof, if it is:



– (A): the result holds.
– (GX), (P), (UR), (UL), (C): we apply the induction hypotheses on all direct

sub-proofs.
– (DK2

): we always apply the induction hypotheses on the key part of the rule
(DK2

), for the encrypted part we consider the rule above (DK2
) is :

• (A), (P), (UR), (UL) we apply the induction hypotheses on all direct
sub-proofs.

• (C): we can switch the two rules using Proposition 5 and simplicity (to
get a D-eager proof) and apply the induction hypotheses on the sub-
proofs.

• (GX) if all encrypted hypotheses of the (GX) are encrypted by sets of
keys Ki such that Ki ∩ K2 = ∅ then we apply the induction hypotheses
on the sub-proofs. Otherwise we consider that the hypotheses of the
rule (GX) can be split into smaller sums which all give an encrypted
term and we apply the transformation described in Figure 3. In certain
cases some additional transformations are required to preserve simplicity:
we cut the same hypotheses of the rule (GX) or branch of the proof
for the new nodes introduced. Moreover if a rule (GX) has just one
hypothesis, this rule can be deleted. Since K2 ∩ K1 /= ∅ and n ≥ 2, the
size of the initial proof is Σi=n

i=1 |πBi
| + |πK2

| + 2 is greater or equal than
Σi=n1

i=1
|πBi

|+ |πK2∩K1
|+ 2 the size of this sub-proof, hence we apply the

induction hypotheses on the sub-proof ended by the rule (DK2∩K1
).!

(GX)

(GX)
T " x1 . . . T " xn

T " x1 ⊕ . . . ⊕ xn
T " y1 . . . T " ym

T " x1 ⊕ . . . ⊕ xn ⊕ y1 ⊕ . . . ⊕ ym

⇓

(GX)
T " x1 . . . T " xn T " y1 . . . T " ym

T " x1 ⊕ . . . ⊕ xn ⊕ y1 ⊕ . . . ⊕ ym

Fig. 2. Transformation of (GX)-(GX) into (GX)

Proposition 6 The transformations of proofs given in Figures 2 and 4 decrease
the number of nodes of the initial proof.

Proof. We denote by πx the subproof of P with root T , x. These transforma-
tions transform a proof with some hypotheses and a conclusion into a proof of
the same hypotheses and the same conclusion. Figure 2: It is obvious.
Figure 4: The number of nodes of the initial proof is:

αI = Σi=m
i=1 |πzi

| + |πx1
| + |πx2

| + |πK1
| + |πK2

| + 3
The number of nodes of the transformed proof is:
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αT = Σi=m
i=1 |πzi

| + |πx1
| + |πx2

| + |πK1\K2
| + |πK2\K1

| + |πK1∩K2
| + 5

Observe that |πK1
| = |πK1∩K2

| + |πK1\K2
| and |πK2

| = |πK1∩K2
| + |πK2\K1

|.

αI − αT = |πK1
| + |πK2

| − |πK1\K2
| − |πK2\K1

| − |πK1∩K2
| − 2

= |πK1∩K2
| + |πK1\K2

| + |πK2
| − |πK1\K2

| − |πK2\K1
| − |πK1∩K2

| − 2

= |πK1∩K2
| + |πK2\K1

| − |πK2\K1
| − 2

= |πK1∩K2
| − 2

Since K1∩K2 /= ∅, hence |πK1∩K2
| ≥ 2 and the number of nodes is decreasing.!

Lemma 2 If there is a simple, flat and D-eager proof of T , w then there is
also a simple, flat, D-eager and ⊕-eager of T , w.

Proof. Let P be a simple, flat and D-eager proof of T , w, we apply many
times the proof transformation rules given in Figures 2 and 4. The application
of these transformations terminates since Proposition 6 shows that they decrease
the number of nodes of a proof and the transformation of a proof into a simple
and flat proof decreases obviously the number of nodes. Moreover these trans-
formations do not make appear any rule (D) just after a rule (GX) and any rule
(D) just after a rule (C), hence the proof is again D-eager .!

8 Properties of Proofs

Lemma 3 shows that all nodes stemmed from a rule (UR)(UL) are in S(T ) for
simple proof. Lemma 4 proves that all nodes stemmed from a rule (D) have the
encrypted hypothesis in S⊕(T ) for a simple, flat, D-eager and ⊕-eager proof.
In Lemma 5 we prove that such a proof can be transformed in a normal proof
using Lemma 3 and Lemma 4. The proofs of these lemmata are in Appendix.

Lemma 3 Let P be a simple proof of T , u or T , v. If P is one of

(UL)

...

T , 〈u, v〉

T , u
(UR)

...

T , 〈u, v〉

T , v

then 〈u, v〉 ∈ S(T ).

Lemma 4 Let P be a simple, flat, D-eager and ⊕-eager proof of T , u. If P is

(DK)

(R)

...

T , {u}K ↓ = r

...

T , K ↓

T , u

then {u}K ∈ S⊕(T ).



Lemma 5 Let P be a flat, simple, ⊕-eager and D-eager proof of T , u. There
is a normal proof of T , u.

9 Locality Result

In this section, we prove Theorem 2 which says that a normal proof is equivalent
to a S⊕(T,w)-proof. Thanks to Theorem 1 we conclude that there is a DOUBLE-
EXP-TIME procedure complexity (computation of the set S⊕(T,w)) to decide
the intruder deduction problem in equational theory XCDE.

Theorem 2 Let P be a flat, simple, D-eager and ⊕-eager proof of T , w then
P is normal ⇔ P is S⊕(T,w)-local.

Proof. ⇐ Let us assume that P is S⊕(T,w)-local and prove that P is normal:

– If w ∈ S⊕(T ) then P is S⊕(T )-local i.e. P is normal.
– If w /∈ S⊕(T ) then we proceed by structural induction on P . The base case

(A) is trivial, consider the last rule:
• (UR), (UL), (D) impossible since Lemma 3 and Lemma 4 show that

w ∈ S⊕(T ) which contradicts the hypothesis.
• (P), (C), (GX) by induction hypothesis, the hypotheses wi of the rule

stem from normal proofs. Since the last rule is (P), (C),(GX) P is normal.

⇒ Let us assume that P is normal and prove that P is S⊕(T,w)-local:

– If w ∈ S⊕(T ): P is S⊕(T )-local, hence P is S⊕(T,w)-local.
– If w /∈ S⊕(T ) we proceed by structural induction on P . The base case is

trivial, consider the last rule:
• (UR), (UL), (D): impossible by definition of normal proof.

• (P), (C) are similar, we just give the proof for (C). P is s.t.
T , w1 T , w2

T , {w1}w2

By definition for i = 1, 2 wi ∈ S⊕(T,wi), wi ∈ ST ({w1}w2
) = ST (w) ⊆

S⊕(w), and induction hypothesis which guarantees that all nodes of the
sub-proof are in S⊕(T,wi), we conclude that P is S⊕(T,w)-local.

• (GX) P is s.t. (GX)

(R1)
T , B1

T , B′
1

. . . (Rn)
T , Bn

T , B′
n

T , w
. We will prove

that all B′
i are in S⊕(T,w), consider the different cases for the (Ri):

∗ (A): by definition B′
i ∈ S⊕(T ),

∗ (UR), (UL), (D): by Lemma 3 and Lemma 4 we get B ′
i ∈ S⊕(T ).

∗ (GX): impossible since P is flat.
∗ (P): if B′

i ∈ S⊕(T ) the claim holds, otherwise B′
i /∈ S⊕(T ). Either B′

i

is not canceled in a sum, then B′
i ∈ ST (w) ⊆ S⊕(w), or otherwise

B′
i is canceled by another element of the sum B′

j . Since B′
i is a pair



B′
j can not be deduced from a rule (C) neither a rule (P) since P is

simple. Hence it stems from one of the rules (A), (UL), (UR) or (D)
and B′

i ∈ ST (B′
j). According to Lemma 3 and Lemma 4 B′

j ∈ S⊕(T ),
hence we get the result by transitivity of S⊕.

∗ (CK): if B′
i ∈ S⊕(T ) the claim holds, otherwise B′

i /∈ S⊕(T ). Note
that B′

i can be partially canceled in a sum. There are two possibilities
for the atoms of B′

i: to be present in w, in which case atoms(B′
i) ∈

atoms(ST (w)) ⊆ atoms(S⊕(w)), or to be canceled by other ele-
ments B′

j of the sum, in which case atoms(B′
i) ∈ atoms(S⊕(B′

j)) ⊆
atoms(S⊕(T )). In the latter case, since B′

i is encrypted by the set
of keys K, B′

j can not be the result of a rule (CK′) with K ′ /= K,
nor the result of the rule (C ′

K) with K ′ ∩ K /= ∅ since P is ⊕-
eager , nor (P), hence it stems from one of the rules (A), (UL), (UR)
or (D). Thanks to Lemma 3 and Lemma 4 B′

j ∈ S⊕(T ), we con-
clude with the transitivity of S⊕. In summary, for all i we get that
atoms(B′

i) ∈ atoms(S⊕(T,w)), that is B′
i ∈ S⊕(T,w)). Hence P is

S⊕(T,w)-local.!

10 Conclusion

Related works. The result of McAllester of locality was firstly used in the
analysis of cryptographic protocols in [14], and later on by [5, 2]. In [11], we
studied the case of a homomorphic operator that distributes over some binary
operation ⊕ which is a free associative-commutative operator, the exclusive-or
operator, or the addition of an Abelian group. The EXP-TIME result that we
obtained for the intruder deduction problem for the theory of exclusive-or and a
homomorphism has been strengthened in [8] to get a PTIME decision procedure
(unfortunately the same method cannot be applied in XCDE case). In [12] we
obtain a decision procedure EXP-TIME for the intruder deduction problem with
the equational theory of the exclusive-or and a non-commutative distributive en-
cryption over this symbol. Our contribution is to get a DOUBLE-EXP-TIME
decision procedure in the same theory when the encryption is commutative i.e.
{{x}y}z = {{x}z}y. The commutativity of the encryption requires to consider
all combinations of keys in the subterms and to be more attentive in the nor-
malization of proof.
Further work. Now we have a decision procedure for this equational theory,
the next stage will be to find the exact complexity of this problem. Analyzing
the intruder deduction problem is the first step in the verification of protocols
cryptographic, the second step is verifying the case of an active intruder. The
active case without equational theory but with a commutative encryption was
shown decidable by [3]. Although it seems that the problem is decidable for an
active intruder with a homomorphic operation which is not the encryption. In the
case of the equational theory of the exclusive-or and commutative distributive
encryption over this operator, it seems not possible to reduce the problem into
equations system as usually.
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Appendix A Proofs of Lemmata

Lemma 6 Let T be a set of terms then ST (S⊕(T )) = S⊕(T )

Proof. By definition 5, S⊕(T ) ⊆ ST (S⊕(T )). We prove the converse inclusion
by induction on the number of applications of the rule for ⊕ in the construction
of ST (S⊕(T )) (step (ii) in Definition 5). Let u ∈ ST (S⊕(T )), and let n be the
number of applications of the rule for ⊕. By induction hypothesis, we assume
that each term u′ ∈ ST (S⊕(T )) obtained with less than n applications of the
rule for ⊕ is in S⊕(T ).

Base case n = 0: u ∈ ST (v) for some v ∈ S⊕(T ), where v = v1 ⊕ . . . ⊕ vp

and all vi ∈ ST (T ). If u = v then u ∈ S⊕(T ). Otherwise u /= v. In this case
u ∈ S(vi) ⊆ ST (vi) for some i (since vi ∈ ST (T ) and S(ST (T )) = ST (T )). Since
v ∈ S⊕(T ) there exists a ti ∈ T such that vi ∈ ST (ti). Therefore vi ∈ ST (ti) ⊆
ST (T ) with ti ∈ T , hence u ∈ ST (ST (T )) = ST (T ) ⊆ S⊕(T ) by idempotence of
ST .

Induction step: let u = u1⊕ . . .⊕un be obtained from {u1}K ⊕ . . .⊕{un}K ∈
ST (S⊕(T )). By induction hypothesis {u1}K ⊕ . . .⊕{un}K ∈ S⊕(T ). Hence there
exists a partition I1 ∪ . . . ∪ Iq = {1, . . . , n} such that for every j, 1 ≤ j ≤ q,
wj = ⊕i∈Ij

{ui}K ∈ ST (tj). Hence, ⊕i∈Ij
ui ∈ ST (tj) by definition of ST . As a

consequence, u ∈ S⊕(T ).!

Proposition 4 Let M be a set of terms then S⊕(S⊕(M)) = S⊕(M). The map-
pings S, ST and S⊕ are transitive.

Proof. The first point is a consequence of Lemma 6 and Proposition 2. The
second is a consequence of the first point and Propositions 1 and 2.!

Lemma 7 Let P be a simple proof of the form:

P =




P1 . . . Pn

T , w

If T , u does not occur in any of P1, . . . , Pn and 〈u, v〉 ∈ S(w) then there is at
least one Pi and there exists w′ such that 〈u, v〉 ∈ S(w′) and either the root of
Pi is T , w′ or w′ ∈ T .

Proof. We consider all possible rules for the root of P :

– The last rule is (A): obvious since all elements of T are normalized.
– The last rule is (UL) or (UR): 〈u, v〉 ∈ S(w) by hypothesis, we denote w′ =

〈u1, u2〉 and by construction w ∈ S(〈u1, u2〉). We deduce by transitivity of
the subterm relation that 〈u, v〉 ∈ S(w′) and conclude with the induction
hypothesis.



– The last rule is (D): 〈u, v〉 ∈ S(w) by hypothesis, we denote w′ = {u1}u2
and

by construction w ∈ S({u1}u2
). We deduce by transitivity of the subterm

relation that 〈u, v〉 ∈ S(w′) and conclude with the induction hypothesis.
– The last rule is (GX): 〈u, v〉 ∈ S(w) by hypothesis and w = (u1⊕ . . .⊕un) ↓.

Hence by definition of the subterm relation 〈u, v〉 ∈ ∪iS(ui), more precisely
there exists i such that 〈u, v〉 ∈ S(ui), because 〈u, v〉 is not headed with ⊕
and conclude with the induction hypothesis.

– The last rule is (P): since T , u can not occur in P we have that w =
〈w1, w2〉 /= 〈u, v〉. But 〈u, v〉 ∈ S(w) by hypothesis so 〈u, v〉 ∈ S(〈w1, w2〉). It
is a subterm of w1 or of w2 and we conclude with the induction hypothesis.

– The last rule is (C): We have that w = {w1}w2
/= 〈u, v〉. But 〈u, v〉 ∈ S(w)

by hypothesis so 〈u, v〉 ∈ S({w1}w2
). It is a subterm of w1 or of w2 and we

conclude with the induction hypothesis. !

Lemma 3 Let P be a simple proof of T , u or T , v. If P is one of

(UL)

...

T , 〈u, v〉

T , u
(UR)

...

T , 〈u, v〉

T , v

then 〈u, v〉 ∈ S(T ).

Proof. Let us assume that the last rule is (UL), the case (UR) is similar.

P =




P1 . . . Pn

T , 〈u, v〉

T , u

P is simple so T , u does not occur in any of P1, . . . , Pn. Hence, we can apply

Lemma 7 to
P1 . . . Pn

T , 〈u, v〉
. Either 〈u, v〉 ∈ T , or there is some Pi with root T , w

such that 〈u, v〉 ∈ S(w) and T , u does not occur in Pi. Lemma 7 can be applied
again and the iteration of this reasoning finally leads to 〈u, v〉 ∈ T .!

Lemma 4 Let P be a simple, flat, D-eager and ⊕-eager proof of T , u. If P is

(DK)

(R)

...

T , {u}K ↓ = r

...

T , K ↓

T , u

then {u}K ∈ S⊕(T ).



Proof. The proof is by structural induction on P .
Base case: obvious.
Induction step: we perform a case analysis on the last rule (R) used in the

subproof of P with root {u}v ↓

– (R) is (A), (UL), (UR): the result is true by definition (rule (A)) or Lemma 3
(rule (UL), (UR)).

– (R) is some rule (P): this cannot happen since {u}K ↓ is not a pair.
– (R) is some rule (CK′): P is D-eager by consequence it is impossible.
– (R) is some rule (DK′) impossible since P is flat.
– (R) is (GX). The last deductions in the proof P are described in Figure 5 and

we discuss the different cases according to the rules (Ri) and the structure
of {u}K ↓.

(DK)

(GX)

(R1)
T " B1

T " B′
1

... (Rn)
T " Bn

T " B′
n

T " {u}K ↓

...

T " K ↓

T " u ↓

Fig. 5. Illustration of the case (DK) in Lemma 4

We will show that every atom of {u}K ↓ is in fact an element of ST (T ). Let
a ∈ atoms({u}K ↓). Note that a is necessarily of the form {a′}K , and that
there is an i such that a ∈ atoms(B′

i). We consider different possible cases
for the rule (Ri):
• (Ri) is (A) (UL) or (UR). By definition or Lemma 3, B′

i ∈ S⊕(T ).

• (Ri) is (DK′) s.t. (DK′)
T , {w1}K′ T , K ′

T , w1 = B′
i

By induction hypothesis

{w1}K′ ∈ S⊕(T ), therefore w1 = B′
i ∈ S⊕(T ).

• (Ri) is (P): B′
i = 〈w1, w2〉, B′

i cannot occur in {u}K ↓ by consequence B′
i

is canceled by another hypotheses B′
j of (GX) such that B′

i ∈ ST (B′
j). B′

j

can not be the result of a rule (P) by simplicity, neither a rule (C) since
it is a pair, neither (GX) since the proof is flat. In the other cases B ′

j

stems from a rule (A), (UL), (UR) or (D) by consequence B ′
j ∈ S⊕(T ).

We deduce that B′
i ∈ S⊕(T ).

• (Ri) is (C), since P is D-eager we get that B′
i is headed with {.}K′ such

that K ∩ K ′ = ∅. By consequence B′
i is canceled by another hypotheses

B′
j of (GX) such that B′

j ∈ ST (B′
i). B′

j can not be the result of a rule
(P) since it is an encrypted term, neither another rule (C) since P is ⊕-
eager , neither (GX) since the proof is flat. In the other cases the copy B ′

j

stems from a rule (A), (UL), (UR) or (D) by consequence B ′
j ∈ S⊕(T ).

We deduce that B′
i ∈ S⊕(T ).

Therefore in all cases {u}K ↓ =
⊕

i=1,...,n B′
i ↓ =

⊕
{ti}K where {ti}K ∈

S⊕(T )∩(∪i=1,...,natoms(Bi)) since all atoms of B′
i are in S⊕(T ) or canceled.!



Lemma 5 Let P be a flat, simple, ⊕-eager and D-eager proof of T , u. There
is a normal proof of T , u.

Proof. Consider first the case where u ∈ S⊕(T ). We proceed by structural in-
duction on the proof P and case distinction of the last rule (R) of P :

– (R) is (A): P is obviously a normal proof.

– (R) is some rule (UL) or (UR) s.t.
T , 〈u1, u2〉

T , u
The induction hypothesis

gives that there exists a normal proof of 〈u1, u2〉. P is simple, we apply
Lemma 3 and get 〈u1, u2〉 ∈ S(T ) ⊆ S⊕(T ) then the normal proof of 〈u1, u2〉
is S⊕(T )-local so P is normal since u ∈ S⊕(T ).

– (R) is some rule (D) s.t.
T , {u}K T , K

T , u
The induction hypothesis gives

that there exists a normal proof of {u}K . P is flat, simple, D-eager and
⊕-eager with Lemma 4 we get {u}K ∈ S(T ) ⊆ S⊕(T ) and then the normal
proof of {u}K is S⊕(T )-local so we deduce that P is normal since u ∈ S⊕(T ).

– (R) is some rule (P), (C) are similar. We only give the proof for u = {u1}u2
.

(R) is some (C) s.t.
T , u1 T , u2

T , {u1}u2

Since {u1}u2
= u ∈ S⊕(T ) we deduce

that u1 ∈ S⊕(T ) and u2 ∈ S⊕(T ). Hence applying the induction hypothesis
there are normal proofs of u1 and u2 that are S⊕-local, hence P is normal.

– (R) is some rule (GX) s.t. (GX)

(R1)
T , B1

T , B′
1

...(Rn)
T , Bn

T , B′
n

T , u
We will

show that for every (Ri) we have that B′
i ∈ S⊕(T ). We discuss the different

cases for the rules (Ri)’s:

• (Ri) is not (GX) since P is flat.
• (Ri) is (A), (UL), (UR) or (D) with the definition or Lemma 3 or

Lemma 4 then B′
i ∈ S⊕(T ). Applying the induction hypothesis there

is a normal proof of B′
i which is S⊕(T )-local.

• (Ri) is (P), there are two possibilities: B′
i is in ST (u) or not.

∗ B′
i ∈ ST (u) ⊆ S⊕(T ) we can apply the induction hypothesis and get

a normal proof of B′
i which is S⊕(T )-local.

∗ B′
i /∈ ST (u) hence B′

i is canceled by some other elements B′
j . B′

j can
not come from a rule (P) since P is simple, from a rule (C) since a
pair is not headed with {.}.. So B′

j come from a rule (A), (UL), (UR)
or (D) with the definition or Lemma 3 or Lemma 4 then B ′

j ∈ S⊕(T ).
More precisely

⊕
B′

j ∈ S⊕(T ), since B′
i ∈ S⊕(

⊕
B′

j) we deduce that
B′

i ∈ S⊕(T ). we can apply the induction hypothesis and get a normal
proof of B′

i which is S⊕(T )-local.
• (Ri) is (CK), this case is similar to the previous case. There are two

possibilities: B′
i is in ST (u) or not:



∗ B′
i ∈ ST (u) ⊆ S⊕(T ) we can apply the induction hypothesis and get

a normal proof of B′
i which is S⊕(T )-local.

∗ B′
i /∈ ST (u) hence B′

i is canceled by some other elements B′
j . B′

j

can not stem from a rule (P) since a pair is not headed with {.}.,
from a rule (CK′) with K ′ /= K since B′

i not headed with {.}K

and not from another rule (CK′) where K ′ ∩ K /= ∅ since P is ⊕-
eager . So B′

j come from a rule (A), (UL), (UR) or (D) with the
definition or Lemma 3 or Lemma 4 then B′

j ∈ S⊕(T ). More precisely⊕
B′

j ∈ S⊕(T ), since B′
i ∈ S⊕(

⊕
B′

j) we deduce that B′
i ∈ S⊕(T ).

we can apply the induction hypothesis and get a normal proof of B ′
i

which is S⊕(T )-local.
Since all the subproofs of T , B′

i are normal we can conclude that P is
normal.

In the second case, we assume that u /∈ S⊕(T ) and the proof is of the form
C[P1, . . . , Pn] where P1, . . . , Pn are maximal S⊕-local subproofs. We prove the
result by structural induction on P :

– If C is empty, then u ∈ S⊕(T )
– If the last rule is (UL) (UR) or (D) we use the definition and Lemma 3 and

Lemma 4 to get u ∈ S⊕(T ).
– In the others cases we apply the induction hypothesis.!


