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Abstract

Lazy evaluation (or call-by-need) is widely used and well understood, partly thanks to a clear operational
semantics given by Launchbury. However, modern non-strict functional languages do not use plain call-by-
need evaluation: they also use optimisations like fully lazy λ-lifting or partial evaluation. To ease reasoning,
it would be nice to have all these features in a uniform setting. In this paper, we generalise Launchbury's
semantics in order to capture �complete laziness�, as coined by Holst and Gomard in 1991, which is slightly
more than fully lazy sharing, and closer to on-the-�y needed partial evaluation. This gives a clear, formal
and implementation-independent operational semantics to completely lazy evaluation, in a natural (or big-
step) style similar to Launchbury's. Surprisingly, this requires sharing not only terms, but also contexts, a
property which was thought to characterise optimal reduction.

1 Introduction

Lazy evaluation (also known as call-by-need) is an evaluation strategy for functional

languages providing some notion of sharing. The idea behind lazy evaluation is

intuitive: a subterm should be evaluated only if it is needed, and if so, it should

be evaluated only once. Since its introduction by Wadsworth [29], there have been

several e�orts, on one hand to improve its concrete implementation, e.g. [23,22], and

on the other, to improve its abstract formalisation: big-step operational semantics

of call-by-need have been given independently in [18] and [26]; small-step presenta-

tions based on contexts have been given in [2,21]. While all these works have their

own merits, Launchbury's natural semantics [18] certainly gives one of the clearest

accounts of the process of lazy evaluation.

Yet, lazy evaluation captures only the sharing of values. For example, evaluation

of the term (λf.fI(fI))(λw.(II)w) where I = λx.x will reduce the underlined redex

II twice, because the subterm λw.(II)w will be shared, then copied as a whole when

necessary, since it is already a value (the redex II is under a λ-abstraction). This is

indeed what happens in standard implementations of call-by-need [23,22,13].

This is not usually considered as a problem, because this term can also be trans-

formed into (λf.fI(fI))((λz.(λw.z w))(II)) in which the redex II will be shared

by a lazy interpreter, and evaluated only once, because it is no longer under a λ-
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abstraction. This transformation is called fully lazy λ-lifting and is used at compile-

time in compilers for non-strict languages [13,25,22].

Implementations allowing to share this kind of redexes are called fully lazy.

Wadsworth was the �rst to de�ne this notion: he noticed that the redex II should

not be copied since no occurrence of the bound variable w occurs in it [29]. But still,

the resulting redex I w will be evaluated twice by a fully lazy implementation, while

its evaluation could have been shared using partial evaluation [14]. In other words,

there is a notion of laziness, beyond full laziness, with the same sharing power as

partial evaluation. This notion has been coined �complete laziness� in [12] (and later

�ultimate sharing� in [1]), but seems to be otherwise unstudied, and in particular

lacks a suitable operational semantics.

Moreover, some recent works [27,28] are likely to implement completely lazy

evaluation, which is left as an open problem in [12], but there is no hope of proving

(or even stating) this formally without a proper operational semantics. This present

work thus also goes one step further in this direction.

In this paper, we de�ne a clear and implementation-independent operational

semantics for completely lazy evaluation. It is a natural (or big-step) semantics, in

a style similar to Launchbury's for lazy evaluation. This is both a formal and e�ective

de�nition of completely lazy evaluation, and a step towards a better understanding

of sharing in the λ-calculus.

2 Launchbury's Semantics

We �rst brie�y review Launchbury's semantics for lazy evaluation, as we will follow

the same approach for completely lazy evaluation in Section 3. It is de�ned on ex-

pressions of a λ-calculus enriched with recursive lets. As pointed out by Launchbury,

lets are useful in the input language as they allow to build explicitly cyclic struc-

tures. Without them, this would be more di�cult and some sharing could be lost.

This is in particular one of Launchbury's criticisms against the semantics of [26].

Lets are also useful in the intermediate language, as they play an important role in

the de�nition of the semantics.

Launchbury splits the presentation of the semantics in two distinct stages: a

static transformation into simpler expression (called normalisation), and a dynamic

semantics de�ned only on normalised expressions.

2.1 Normalising terms

First, every expression e is transformed into an expression ê in which all bound vari-

ables are renamed to completely fresh variables. This amounts to performing enough

α-conversions, so that expressions respect Barendregt's convention [4]. Expressions

are then normalised to obey the following syntax, where arguments of applications

are restricted to variables in order to share arguments with a let construct.

t, u ::= x | λx.t | t x | let x1 = u1, . . . , xn = un in t

v, w ::= λx.t

Values v, w, . . . are not used in this section, but will allow us to characterise
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precisely the result of evaluation in Section 2.2. Launchbury's semantics is only

de�ned on closed terms (or more precisely, on closed pairs of an environment and a

term), and the dynamic rules of Section 2.2 preserve closedness (that is, if the left-

hand side of the conclusion of a rule is closed, the left-hand side of all the premises

of this rule are closed as well). That is why, in Launchbury's semantics, values are

always λ-abstractions (and never of the form x t1 . . . tn).

The restriction on application means that arguments are already explicitly named

closures, ready to be shared. This normalisation stage thus already contributes to

capture sharing. It is de�ned precisely by the following function (·)∗ from standard,

unconstrained λ-terms with recursive lets to terms t, u obeying the syntax above.

x∗ = x

(λx.t)∗ = λx.t∗

(t u)∗ =

{
t∗ u if u is a variable,

let x = u∗ in t∗ x otherwise (x is a fresh variable)

(let x1 = u1, . . . , xn = un in t)∗ = let x1 = u∗1, . . . , xn = u∗n in t∗

2.2 Dynamic semantics

The semantics is not de�ned on terms alone; some data must be added to actually

represent sharing. Launchbury's choice is to use heaps or environments (written Γ,
∆, Θ), which are de�ned as �nite mappings from variables to terms (or equivalently

as unordered association lists binding distinct variable names to terms).

Evaluation is only de�ned on closed pairs Γ : t, meaning that the free variables

in t have to be bound in the environment Γ. Evaluation judgements are of the form

Γ : t ⇓L ∆ : v, to be read �the term t in the environment Γ reduces to the value

v together with the new environment ∆�, and are de�ned by the set of deduction

rules in Figure 1.

The only rule where sharing is indeed captured is VarL. To evaluate a variable

x, the heap must contain a binding x 7→ t, otherwise x has a direct dependency on

itself and evaluation should fail. Then t is evaluated to a value v, in a heap where

the binding for x has been removed, in order to avoid direct dependencies. The

binding for x in the environment is then updated with the value v, in order to avoid

a possible recomputation if x is needed several times, and the evaluation returns v̂,

i.e. v with fresh names for all its bound variables. It is the only rule where renaming

occurs and this is su�cient to avoid all unwanted name capture [18]. An example is

given in Figure 4 (An is de�ned in Section 4.2).

3 Modelling Complete Laziness

In lazy evaluation, only closed terms are shared; e.g., in (λf.fI(fI))(λw.(II)w),
lazy evaluation will share (λw.(II)w), but will reduce II twice. To obtain complete

laziness (and reduce II only once), we need to share the body (II)w as well. In

other words, to realise complete laziness, open terms need to be shared as well. More

precisely, in an abstraction λx.t, we do not want to share t as a whole, because,

when x would be instantiated, the shared representation of t would be updated,
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LamL
Γ : λx.t ⇓L Γ : λx.t

Γ : t ⇓L ∆ : λy.t′ ∆ : t′{y := x} ⇓L Θ : v
AppL

Γ : t x ⇓L Θ : v

Γ : t ⇓L ∆ : v
VarL

(Γ, x 7→ t) : x ⇓L (∆, x 7→ v) : v̂

(Γ, x1 7→ u1, . . . , xn 7→ un) : t ⇓L ∆ : v
LetL

Γ : let x1 = u1, . . . , xn = un in t ⇓L ∆ : v

Fig. 1. Launchbury's semantics

thus preventing x from being instantiated by another argument. In fact, we exactly

want to share the part of t that does not depend on x. Speci�cally, if we write

t = C[x] where x does not appear in the context C[ ] (possibly with several instances

of the same hole), then C[ ] is exactly what should be shared. In the example

above, what should be shared is indeed (II) [ ]. The comparison with contexts is

helpful to emphasise that the free variables are not part of what should be shared,

but is otherwise misleading: there may be several occurrences of the same free

variable (hence the notion of hole is not adequate), and normal capture-avoiding

term-substitution should be used (instead of context-substitution [11]). It is really

more adequate to say that we need to share open terms.

We thus need variables to represent open subterms. Since we may have to

deal with several distinguished variables in these terms, it is just as simple to use

the concept and notation of metavariables taken from Combinatory Reduction Sys-

tems [15,16]. We will thus write for instance Z(x, y) (and we will call it a metavari-

able) for a variable representing an open term in which x and y denote the free

variables. Just any term t can be substituted for Z(x, y), but if x and y appear

in t (perhaps even several times), then the rules will be able to treat them in a

special way. It should also be noted that α-equivalence is extended in the obvious

way, with for instance λx.Z(x) =α λy.Z(y). There is no need for α-equivalence on

metavariables.

We follow Launchbury's approach and present the semantics in two phases: a

static transformation into simpler expression (again called normalisation), and a

dynamic semantics for normalised expressions.

3.1 Normalising terms

The normalisation stage has two purposes. The �rst one is to avoid name capture,

by renaming all (λ- and let-) bound variables to fresh variables. The second one is

to name explicitly with a let-construct any subterm that may need to be shared.

For lazy evaluation, it is enough to do this for arguments in applications. Here, for

completely lazy evaluation, we also need to do this for bodies of abstractions. We

will thus assume that expressions t, u, . . . belong to a new set, de�ned as follows,
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where we write Z(~x) for Z(x1, . . . , xn). We also de�ne values v, w, . . . in this context,

which will be used in Section 3.2 to characterise precisely the result of evaluation.

b ::= x | Z(~x)
t, u ::= b | λx.b | t b | let b1 = u1, . . . , bn = un in t

v, w ::= λx.b | x b1 . . . bn

Similarly to Launchbury's semantics, the completely lazy semantics will also

be de�ned only on closed terms. However, in the course of evaluation, we may

have to evaluate an open term (this happens in the �rst premise of rule MVar in

Figure 2, which will be explained later), and this evaluated open term will be used

to update the binding of a metavariable. Therefore, it is important to allow open

terms of the form x b1 . . . bn as values, contrarily to Section 2.1. However, terms

of the form Z(~x) b1 . . . bn are not values, for the same reason as x t1 . . . tn was not

a value in Section 2.1: because the completely lazy semantics is only de�ned on

pairs environments/terms which are meta-closed, i.e. in which all metavariables are

bound (either by lets or by the environment), and this property is preserved by the

rules. The situation is really reminiscent of what happens in Combinatory Reduction

Systems, where metavariables essentially play the same role as variables in �rst-order

systems.

Standard λ-expressions with lets can be translated into this form by the follow-

ing normalisation function, which takes an auxiliary list of variables as an extra

argument (written as a subscript). The semantics is only de�ned on closed terms

and this list should initially be empty. The normalisation function takes terms from

an unconstrained λ-calculus with recursive lets and without metavariables to terms

t, u obeying the syntax above.

(x)∗~z = x

(λx.t)∗~z =

{
λx.t if t is a variable,

let Z(~z, x) = (t)∗~z,x in λy.Z(~z, y) otherwise

(t u)∗~z =

{
(t)∗~z u if u is a variable,

let Z(~z) = (u)∗~z in (t)∗~z Z(~z) otherwise

(let x1 = u1, . . . , xn = un in t)∗~z
= let Z1(~z) = (u1)∗~z, . . . , Zn(~z) = (un)∗~z,

x1 = Z1(~z), . . . , xn = Zn(~z) in (t)∗~z

All variable and metavariable names created by the function (·)∗ are assumed to

be fresh. The purpose of the auxiliary list ~z is to remember which variables are bound

by outer λ's (and not by let constructs), because these are exactly the variables

that could be instantiated by di�erent terms in di�erent copies. The normalisation

function seems to introduce many indirections, but this is necessary in order to

preserve sharing. For instance, in the case for let expressions, a new binding with

a metavariable Zi(~z) is introduced to share the evaluation of ui when the variables

~z are free (that is, when it is considered as an open term), but it is still necessary

to have a binding for xi (which may appear in t or any uj), in order to share the
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evaluation of ui when the variables of ~z are bound to some expressions. When ~z is

empty, nothing special happens, although we may want to simply write Z instead

of Z(). It is not safe in general to replace such metavariables by normal variables.

This is discussed on an example in Section 4.3. The procedure could be re�ned

to save some indirections and minimise the number of variables bound by the new

metavariables, however the present formulation su�ces for our purpose.

3.2 Dynamic semantics

As in Launchbury's semantics, we use heaps to model sharing. Now heaps specify

bindings from distinct variable or metavariable names to terms. Again, evaluation is

only de�ned for meta-closed (see above) pairs Γ : t in which all bound variables are

distinct, and it is speci�ed by the deduction rules in Figure 2. We observe that the

result of evaluation is a pair ∆ : v where v is a value (a term in weak head normal

form, i.e. of the form λx.b or x b1 . . . bn).

The �rst four rules are exactly those of Launchbury's semantics (in fact of a

variant already considered in [18, p. 8], which is equivalent). The MVar rule is

called when it is needed to evaluate a shared, possibly open subterm. Completely

lazy sharing is obtained here: t is evaluated, and Z(~x) is updated with the result.

There would be a risk that t would be evaluated too much, if the variables in ~x

were instantiated. This does not happen, because of the normalisation procedure,

which ensures that variables bound by λ-abstractions are fresh and do not appear

in let-bindings for metavariables (this property is preserved during evaluation, cf.

Proposition 5.1). Then, the evaluation goes on with the right variable names, thanks

to the substitution of x1 by y1, . . . , xn by yn, written {~x := ~y}, in v̂ (that is, v with

all its bound variables renamed to fresh variables). However, Z(~x) should not be

further updated, since the variables in ~y are likely to be bound in the environment.

In this second phase, we keep the binding for Z(~x) in the environment so that this

shared open term can be used with di�erent instantiations of its free variables. The

last two rules just deal with open terms in a natural way. The same rules would

make sense in Launchbury's semantics to deal with open terms or constants.

Evaluation may fail in rule MVar only, if there is no binding for Z(~x) in the

environment. This happens for example if Z(~x) has a direct dependency on itself.

This allows us to detect some non-terminating programs (but of course not all of

them). The same happens in Launchbury's semantics in the Var rule (here, for a

variable, Var1 or Var2 is always applicable).

4 Examples

In this section, we illustrate the behaviour of the semantics in order to give some

concrete evidence that it indeed captures completely lazy sharing. To make our point

more concrete, we assume given additional rules for the evaluation of arithmetical

expressions, as found in [18], for instance:

Γ : n ⇓ Γ : n

Γ : t1 ⇓ ∆ : n1 ∆ : t2 ⇓ Θ : n2

Γ : t1 + t2 ⇓ Θ : n1 + n2
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Lam
Γ : λx.b ⇓ Γ : λx.b

Γ : t ⇓ ∆ : λy.b′ (∆, y 7→ b) : b′ ⇓ Θ : v
App1

Γ : t b ⇓ Θ : v

Γ : t ⇓ ∆ : v
Var1

(Γ, x 7→ t) : x ⇓ (∆, x 7→ v) : v̂

(Γ, b1 7→ u1, . . . , bn 7→ un) : t ⇓ ∆ : v
Let

Γ : let b1 = u1, . . . , bn = un in t ⇓ ∆ : v

Γ : t ⇓ ∆ : v (∆, Z(~x) 7→ v) : v̂{~x := ~y} ⇓ Θ : w
MVar

(Γ, Z(~x) 7→ t) : Z(~y) ⇓ Θ : w

x 6∈ Γ
Var2

Γ : x ⇓ Γ : x

Γ : t ⇓ ∆ : x b1 . . . bn
App2

Γ : t b ⇓ ∆ : x b1 . . . bn b

Fig. 2. Completely lazy semantics

We will also omit some inessential details, for instance some super�uous bindings,

which could be avoided with a more clever normalisation procedure.

Following the tradition initiated by [18], we lay proofs out vertically, so as to

stress the sequential nature of evaluation. If Γ : t ⇓ ∆ : v, we write:

Γ : t

a sub-proof

another sub-proof

∆ : v

4.1 Simple examples

Let us begin with an example taken from [22, Chapter 15]:

let f = λx.sqrt 4 + x in f 1 + f 2.

This �rst example illustrates the sharing of a constant expression inside a λ-abstrac-

tion, which would already be achieved by fully lazy λ-lifting, but not by standard

lazy evaluation. For simplicity, let us omit some indirections and assume that it is

normalised as:

let Z(x) = sqrt 4 + x, f = λy.Z(y) in f 1 + f 2.
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{ } : let Z(x) = sqrt 4 + x, f = λy.Z(y) in f 1 + f 2

{Z(x) 7→ sqrt 4 + x, f 7→ λy.Z(y)} : f 1 + f 2

{Z(x) 7→ sqrt 4 + x, f 7→ λy.Z(y)} : f 1

{Z(x) 7→ sqrt 4 + x, f 7→ λy.Z(y)} : f

{Z(x) 7→ sqrt 4 + x} : λy.Z(y)

{Z(x) 7→ sqrt 4 + x} : λy.Z(y)

{Z(x) 7→ sqrt 4 + x, f 7→ λy.Z(y)} : λy′.Z(y′)

{Z(x) 7→ sqrt 4 + x, f 7→ λy.Z(y), y′ 7→ 1} : Z(y′)

{f 7→ λy.Z(y), y′ 7→ 1} : sqrt 4 + x

...

{f 7→ λy.Z(y), y′ 7→ 1} : 2 + x

{Z(x) 7→ 2 + x, f 7→ λy.Z(y), y′ 7→ 1} : 2 + y′ (?)

...

{Z(x) 7→ 2 + x, f 7→ λy.Z(y), y′ 7→ 1} : 3

{Z(x) 7→ 2 + x, f 7→ λy.Z(y), y′ 7→ 1} : 3

{Z(x) 7→ 2 + x, f 7→ λy.Z(y), y′ 7→ 1} : 3

{Z(x) 7→ 2 + x, f 7→ λy.Z(y), y′ 7→ 1} : f 2

{Z(x) 7→ 2 + x, f 7→ λy.Z(y), y′ 7→ 1} : f

{Z(x) 7→ 2 + x, y′ 7→ 1} : λy.Z(y)

{Z(x) 7→ 2 + x, y′ 7→ 1} : λy.Z(y)

{. . . , y′ 7→ 1} : λy′′.Z(y′′)

{. . . , y′ 7→ 1, y′′ 7→ 2} : Z(y′′)

{f 7→ λy.Z(y), y′ 7→ 1, y′′ 7→ 2} : 2 + x

...

{f 7→ λy.Z(y), y′ 7→ 1, y′′ 7→ 2} : 2 + x

{. . . , y′ 7→ 1, y′′ 7→ 2} : 2 + y′′

...

{. . . , y′ 7→ 1, y′′ 7→ 2} : 4

{Z(x) 7→ 2 + x, f 7→ λy.Z(y), y′ 7→ 1, y′′ 7→ 2} : 4

{Z(x) 7→ 2 + x, f 7→ λy.Z(y), y′ 7→ 1, y′′ 7→ 2} : 4

{Z(x) 7→ 2 + x, f 7→ λy.Z(y), y′ 7→ 1, y′′ 7→ 2} : 7

{Z(x) 7→ 2 + x, f 7→ λy.Z(y), y′ 7→ 1, y′′ 7→ 2} : 7

(a) Sharing of a constant subexpression

{ } : let f = λu.F (u), F (y) = g y 4,

g = λwv.sqrt v + w

in f 1 + f 2

{F (y) 7→ g y 4} : f 1 + f 2

{F (y) 7→ g y 4} : f 1

{F (y) 7→ g y 4} : f

{F (y) 7→ g y 4} : λu.F (u)

{F (y) 7→ g y 4} : λu.F (u)

{F (y) 7→ g y 4} : λu′.F (u′)

{F (y) 7→ g y 4, u′ 7→ 1} : F (u′)

{u′ 7→ 1} : g y 4

{u′ 7→ 1} : g y

{u′ 7→ 1} : g

{u′ 7→ 1} : λwv.sqrt v + w

{u′ 7→ 1} : λwv.sqrt v + w

{u′ 7→ 1} : λw′v′.sqrt v′ + w′

{u′ 7→ 1, w′ 7→ y} : λv′.sqrt v′ + w′

{u′ 7→ 1, w′ 7→ y} : λv′.sqrt v′ + w′

{u′ 7→ 1, w′ 7→ y} : λv′.sqrt v′ + w′

{u′ 7→ 1, w′ 7→ y, v′ 7→ 4} : sqrt v′ + w′

...

{u′ 7→ 1, w′ 7→ y, v′ 7→ 4} : 2 + y

{u′ 7→ 1, w′ 7→ y, v′ 7→ 4} : 2 + y

{. . . , v′ 7→ 4, F (y) 7→ 2 + y} : 2 + u′ (?)

...

{. . . , v′ 7→ 4, F (y) 7→ 2 + y} : 3

{. . . , v′ 7→ 4, F (y) 7→ 2 + y} : 3

{u′ 7→ 1, w′ 7→ y, v′ 7→ 4, F (y) 7→ 2 + y} : 3

{ . . . , F (y) 7→ 2 + y} : f 2

...

{ . . . , F (y) 7→ 2 + y, u′′ 7→ 2} : F (u′′)

...

{ . . . , F (y) 7→ 2 + y, u′′ 7→ 2} : 4

{ . . . , F (y) 7→ 2 + y, u′′ 7→ 2} : 4

{. . .} : 7

{. . .} : 7

(b) Partial application

Fig. 3. Simple examples

The evaluation derivation of this example is sketched in Figure 3(a). We can observe

in line (?) that sqrt 4 is indeed evaluated only once, and that Z(x) is indeed updated

with 2 + x (in particular, we evaluate sqrt 4 + x �rst, rather than sqrt 4 + y′).

However, such constant subexpressions may also be created dynamically, as in

the following program, taken from [22, Chapter 15] as well (the translation is again

simpli�ed).
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 let f = λy.g y 4,
g = λyx.sqrt x+ y

in f 1 + f 2


∗

=
let f = λu.F (u), F (y) = g y 4,

g = λwv.sqrt v + w

in f 1 + f 2.

During evaluation, the bindings for f and g will not be modi�ed, since they

are already bound to values, we thus omit them for conciseness: all environments

implicitly contain f 7→ λu.F (u) and/or g 7→ λwv.sqrt v +w. In this example again,

shown in Figure 3(b), sqrt 4 is evaluated only once, even though this redex is only

generated on the �y by a partial application. This can be seen from the fact that

F (y) is updated with 2+y in line (?). This example is further discussed in Section 6.

4.2 E�ciency

We can also give a striking example, adapted from [10,9,1], to demonstrate that

completely lazy reduction can perform exponentially better than lazy evaluation.

Consider the family of terms:

A0 = λx.I

An = (λh.(λw.w h (ww))An−1) ≡ let Z(h) = (λw.w h (ww))An−1 in λh′.Z(h′)

An has exactly one redex (λw. . . .)An−1, which is under a λ-abstraction, hence

will not be shared by lazy evaluation. Consequently, evaluation of An I using call-

by-need requires a number of steps in O(2n) [10,9]. In Launchbury's semantics, this

can be seen on the evaluation sketch in Figure 4 (only some signi�cant steps are

shown), where T (n) denotes the number of steps necessary to evaluate An x (this is

indeed independent from x). Overall, T (n) = O(2 · T (n− 1)), hence T (n) = O(2n)
with standard lazy evaluation. The point is that the Ai's are shared using w,w′, . . .,

but no signi�cant update will ever happen since they already are weak head normal

forms (the redex is under an abstraction).

Now, with the completely lazy semantics, reduction will proceed as shown in

Figure 5. The T (n−1) �rst steps in this example are similar to the evaluation using

call-by-need, except that not only w,w′, . . . are updated, but also Z(h), Z ′(h), . . .
corresponding to the body under the outermost λ in w,w′, . . . Then, in the second

phase, almost no computation has to be performed since Z ′(h) is already bound to

the identity (independently of h). Overall, T (n) = O(T (n−1)), hence T (n) = O(n).
Completely lazy evaluation of An is linear in n.

This example shows that, although some bookkeeping (indirections essentially) is

added, completely lazy evaluation may be exponentially better than lazy evaluation,

which is a very strong statement. As a matter of fact, the same improvement can be

obtained by fully lazy λ-lifting on this example, but Section 6 will make clear that

complete laziness has strictly more �sharing power� than full laziness. Note that all

steps are taken into account: the bookkeeping due to the indirections is linear in

n in this example. The exact details of implementation are fortunately not part of

the semantics, but this means that however bad the implementation is, it will still

perform better than any cutting-edge lazy interpreter on certain terms. In other

9
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{ } : An I

{h 7→ I} : (λw.w h (ww))An−1

{h 7→ I, w 7→ An−1} : wh (ww)

{h 7→ I, w 7→ An−1} : wh

{h 7→ I, w 7→ An−1} : (λw′.w′ h (w′ w′))An−2

{h 7→ I, w 7→ An−1, w′ 7→ An−2} : w′ h (w′ w′)

...

)
T (n− 2) steps

{. . .} : I

{. . .} : I

{. . .} : I

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
T (n− 1) steps

{h 7→ I, w 7→ An−1, w′ 7→ An−2, . . .} : ww

...

)
T (n− 1) steps

{. . .} : I

{. . .} : I

{. . .} : I

{. . .} : I

Fig. 4. Call-by-need evaluation of An I

{ } : An I

{h′ 7→ I, Z(h) 7→ (λw.w h (ww))An−1} : Z(h′)

{h′ 7→ I, w 7→ An−1} : wh (ww)

{h′ 7→ I, w 7→ An−1} : wh

{h′ 7→ I, w 7→ An−1} : w

{h′ 7→ I, w 7→ λh.Z′(h), Z′(h) 7→ (λw′.w′ h (w′ w′))An−2} : λh′′.Z′(h′′)

{h′ 7→ I, w 7→ λh.Z′(h), Z′(h) 7→ (λw′.w′ h (w′ w′))An−2} : Z′(h)

{h′ 7→ I, w 7→ λh.Z′(h), w′ 7→ An−2} : w′ h (w′ w′)

...

)
T (n− 2) steps

{h′ 7→ I, w 7→ λh.Z′(h), w′ 7→ λh.Z′′(h), . . . Z′′(h) 7→ I} : I

{h′ 7→ I, w 7→ λh.Z′(h), w′ 7→ λh.Z′′(h), . . . , Z′′(h) 7→ I, Z′(h) 7→ I} : I

{h′ 7→ I, w 7→ λh.Z′(h), w′ 7→ λh.Z′′(h), . . . , Z′′(h) 7→ I, Z′(h) 7→ I} : I

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

T (n− 1) steps

{h′ 7→ I, w 7→ λh.Z′(h), w′ 7→ λh.Z′′(h), . . . , Z′′(h) 7→ I, Z′(h) 7→ I} : ww

{h′ 7→ I, w 7→ λh.Z′(h), w′ 7→ λh.Z′′(h), . . . , Z′′(h) 7→ I, Z′(h) 7→ I} : w

{h′ 7→ I, w 7→ λh.Z′(h), w′ 7→ λh.Z′′(h), . . . , Z′′(h) 7→ I, Z′(h) 7→ I} : λh′′.Z′(h′′)

{h′′ 7→ w, h′ 7→ I, w 7→ λh.Z′(h), w′ 7→ λh.Z′′(h), . . . , Z′′(h) 7→ I, Z′(h) 7→ I} : Z′(h′′)

{h′′ 7→ w, h′ 7→ I, w 7→ λh.Z′(h), w′ 7→ λh.Z′′(h), . . . , Z′′(h) 7→ I, Z′(h) 7→ I} : I

{. . .} : I

{. . .} : I

{. . .} : I

{. . .} : I

Fig. 5. Completely lazy evaluation of An I

{ } : let Z = x, x = Z in x

{Z 7→ x, x 7→ Z} : x

{Z 7→ x} : Z

{ } : x

failure

Fig. 6. Recursion with a direct dependency

10
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words, the amount of bookkeeping necessary for completely lazy reduction is not

comparable to what is gained from the better sharing (on this example; this should

also be studied in general). This contrasts with optimal reduction, where the cost

of bookkeeping ruins the bene�ts of optimality [19].

This means that completely lazy evaluation, hence the semantics we are putting

forward, should be considered as a promising basis for an implementation: it achieves

much better sharing than call-by-need, yet does not fall into the well-known problems

of optimal reduction, namely that it is complex to understand and implement, and

that it is ine�cient in practice.

4.3 Recursion

Finally, with respect to recursion, the situation is very similar to that in Launch-

bury's semantics. For instance, let x = x in x is normalised to let Z = x, x = Z in x.

Evaluation of this programs fails as shown in Figure 6. This illustrates why there

is an extra indirection compared to the same program in Launchbury's framework:

evaluation should not fail on a variable (because in completely lazy evaluation we

need to perform reductions on open terms); it may only fail on a metavariable.

If we directly feed this example, without (·)∗-translation, into the completely

lazy semantics, we obtain: { } : let x = x in x ⇓ {x 7→ x} : x. In other words, we

obtain a meaningless value, whereas the right behaviour is to fail. This illustrates

that it is unsafe in general to replace metavariables (even without arguments) by

normal variables. The converse is also unsafe: imagine we want to normalise the

term let x = λy.x in x by replacing the let-bound variable x by a metavariable. The

problem is that x appears both in a context where it is a closed term, and could

be represented by Z, and in a context where it is potentially open, and should be

represented by Z(y). This is essentially why the normalisation procedure keeps a

binding for x.

5 Properties

5.1 Well-formedness

The �rst important property to check is that the semantics is indeed well de�ned.

Since it is de�ned only on terms of a particular form, as produced by the normal-

isation procedure of Section 3.1, we should check that the result of evaluation has

the correct form as well. The property that arguments of applications and bodies of

abstractions are variables or metavariables is clearly preserved, since we only ever

substitute variables for variables. The naming property is also preserved, as we will

now show.

Following [18], we say that Γ : t is distinctly named if all bound variables and

metavariables are distinct. There are three standard types of binding: by a let

construct, by a λ-abstraction, by a top-level binding in the heap. However, there is

a last type of binding here: if Z(~x) 7→ t is a binding (for Z) in Γ, we also consider

that it is a binding for the variables in ~x. In particular, it is crucial that these

variables are distinct from other bound variables in rule MVar.

11
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Proposition 5.1 If Γ : t ⇓ ∆ : v and Γ : t is distinctly named, then every heap/term

pair in the evaluation proof tree is also distinctly named.

Proof. In general, the rules preserve bound variables. The rules Var1 and MVar

copy a term, which may contain binders, but, one of the copies is renamed with

fresh variables. 2

It is thus su�cient to perform α-conversion in rules Var1 and MVar alone to keep

all bound variables distinct. In the remainder of this paper, pairs Γ : t are always

assumed to be distinctly named.

5.2 Correctness

Now that we know that the semantics does nothing wrong syntactically, we should

also prove that it does nothing wrong semantically; that is to say that evaluation

preserves the denotational semantics of terms.

We de�ne a readback function (·)◦ from pairs Γ : t to λ-terms (in fact, to po-

tentially in�nite λ-terms in case of cycles, but this is not really important) that

removes the shared variables and metavariables. For every binding Z(~x) 7→ u or

let Z(~x) = u, the readback substitutes every metavariable Z(~y) by û{~x := ~y}, and
then removes the binding for Z(~x), and similarly for the bindings for variables. This

is possible thanks to the distinct naming.

Lemma 5.2 (i) If Γ : t ⇓ ∆ : v, then (Γ : t)◦ →∗β (∆ : v)◦.

(ii) When a β-reduction is performed during evaluation, (a copy of) the correspond-

ing redex after readback is the leftmost outermost.

Proof sketch. The rule App1 is the only one where β-reduction is performed. The

other rules do not have any e�ect after readback, in the sense that, for every rule

(exceptMVar), the readback of the left-hand side of each premise is exactly the read-

back of the left-hand side of the conclusion. For MVar, ((Γ, Z(~x) 7→ t) : Z(~y))◦ =
((Γ, Z(~x) 7→ t) : t{~x := ~y})◦ and since the variables in ~x are not bound in the en-

vironment (thanks to Proposition 5.1), the redexes in the readback of the left-hand

side of both premises of the MVar rule are already present in the left hand-side of

its conclusion. Now for rule App1, let us take the notations of Figure 2. The �rst

premise of rule App1 focuses on the left subterm of an application while outermost

β-reduction is performed in the second one: (∆ : (λy.b′) b)◦ →β ((∆, y 7→ b) : b′)◦.2

The previous lemma gives an idea of what happens during evaluation. In par-

ticular evaluation will always terminate on (even in�nite) terms which have a weak

head normal form (the strategy is normalising). However the semantics does not

exactly coincide with call-by-name (⇓CBN): a redex shared in our semantics may

correspond to two di�erent β-redexes, one evaluated by call-by-name, and the other

not (for example, under a λ). In more realistic functional languages with types and

constants, programs are closed terms of base type (e.g. integers). The semantics

coincide on these �basic observables�:

Theorem 5.3 If t is a program, then Γ : t ⇓ ∆ : v i� (Γ : t)◦ ⇓CBN (∆ : v)◦.
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5.3 Sharing

Now that we know that the operational semantics given in Section 3 is correct with

respect to its result, we should also give some evidence that it captures the sharing

expected from complete laziness, which is de�ned in [12, Section 3.1] as follows:

De�nition 5.4 An evaluation is completely lazy if all needed redexes are evaluated

exactly once.

This sounds very much like optimal reduction, but it is weaker: optimal reduction

also requires that potential redexes [20,17] are evaluated at most once. For instance,

in the term (λx.x I)(λy.∆ (y I)), the subterm y I is not an actual redex, but it is

a potential one since it may (and will) become an actual redex after substitution

of y by I. We think that most of the conceptual and practical di�culty of optimal

reduction comes from the requirement to share such subterms, which justi�es the

interest of complete laziness as a framework with as much sharing as possible, but

excluding potential redexes. This is discussed further in Section 6.

Theorem 5.5 Let r be a β-redex in t. Then in the derivation of Γ : t ⇓ ∆ : v, r is

reduced at most once.

Proof sketch. The normalisation binds every non-trivial subexpression to a meta-

variable. There is thus a subterm of t of the form let Z(~x) = r∗ in t′. If r is reduced,

rules Let and MVar must have been used, and Z(~x) is indeed updated with a value

where r has been �red. No occurrence of r thus remains in the expression, hence r

cannot be reduced more than once. 2

The proposed semantics thus captures completely lazy sharing, in a more direct

and operational way than in [12], where complete laziness is formalised as a meta-

interpreter implemented in a fully lazy language.

6 Related Work

In the λ-calculus, there is a tension between reduction of the leftmost outermost

redex (which is the only normalising choice in general), and reduction of other re-

dexes, which may endanger termination, but may also lead to shorter reduction

paths. In this last family of strategies, reduction of the rightmost outermost redex

(call-by-value) is the most traditional [24], but some have also studied the impact of

performing certain reductions under λ-abstractions, for example [9,7]. The situation

is nicely summed up in [8]:

There is evidently a subtle interplay among the issues of e�ciency, normalizability,

and redex sharing. The quandary is then to �nd a way to edge closer to the brink

of optimality without plunging into the abyss of non-normalizability.

This apparent tension can be resolved by sharing mechanisms: call-by-need resolves

the tension between call-by-name and call-by-value by providing a way to share the

evaluation of arguments. The framework we propose here generalises the approach,

and resolves the tension between call-by-name and strategies which may reduce

under λ's. We thus feel that this present work is a step forward in realising Field's

programme.
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There have been some works concerned with formal ways to express more than

usually lazy reduction. One notable attempt is [2, Section 6], where a fully lazy

calculus is given. This calculus can be viewed as a small step semantics for fully

lazy evaluation, where reduction is restricted to some cleverly designed classes of

contexts. However, the semantics performs on-the-�y λ-lifting, with one of the

axioms involving costly conditions about maximal free expressions. It thus seems

reasonable to say that this semantics is not e�ective, unless more details are given

about how to implement these conditions at a reasonable cost. In contrast, our

semantics does not perform any λ-lifting, it just has the right notion of sharing.

Fully lazy evaluation shares only the so-called maximal free expressions (MFE).

This leads to cumbersome situations, as pointed out in [22, pages 398�400]. For

instance, in the program

let g = λyx.y + sqrt x, f = λy.g y 4 in (f 1) + (f 2),

the computation of sqrt 4 is performed twice, because sqrt x is not an MFE of

any λ-expression. This problem can be avoided with a di�erent ordering of the

parameters of g, but there are terms in which no ordering of the parameters is right.

For instance, if the binding for g was in fact

g = λxy.sqrt x+ sqrt y,

then some sharing would be lost with any order of the arguments. We think that

this should be taken as a hint that full laziness is a too syntactic notion to give it a

reasonable semantics.

Our semantics indeed allows sharing expressions of this kind, as demonstrated

by the second example of Section 4, and thus captures completely, rather than fully,

lazy evaluation. In the case g = λxy.sqrt x + sqrt y, our semantics would share a

partial application indi�erently on the �rst or the second argument of g.

We do believe that complete laziness is the rational way to capture the spirit

of full laziness, abstracted away from syntactical consideration. Moreover, some

implementations [27,28] are likely to follow our semantics more faithfully than fully

lazy evaluation, because they do not use the very syntactic notion of fully lazy λ-

lifting. In any case, the present work provides a formal tool to reason more precisely

about �ne issues concerning sharing, which was missing until now.

Another theme highly related to this present work is of course optimality theory,

de�ned in [20] and implemented in [17]. In the introduction of [3], one may read:

Lamping's breakthrough was a technique to share contexts, that is, to share terms

with an unspeci�ed part, say a hole. Each instance of a context may �ll its holes

in a distinct way.

This is of course true of optimal reduction, but what we learn here is that it is also

true already for completely lazy reduction, which comes as a surprise. In other words,

optimal reduction needs yet something more than the ability to share contexts.

A simple example to show that the present semantics is not optimal is the term

(λx.x I)(λy.∆ (y I)) where I = λw.w and ∆ = λz.z z. The semantics will perform

the reduction ∆ (y I)→ (y I) (y I), while the optimal choice is to share the potential
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redex y I and reduce it only once when y is instantiated. It is beyond the scope of

this paper to develop this issue further, yet this present work also paves the way to

a better understanding of optimal reduction.

7 Conclusion

In this paper we have presented a natural semantics to model completely lazy eval-

uation. In contrast with Launchbury's work, this is not just a formalisation of a

well-known and commonly implemented evaluation strategy. It is rather one of the

�rst attempts to e�ectively de�ne completely lazy evaluation.

The semantics is not meant to provide a direct speci�cation for an abstract

machine, but rather to be a general framework to reason about laziness and study

various implementations. Since the framework is very simple compared to more

concrete ones, it is also a good basis to study di�erent extensions and properties,

such as space behaviour (rules for garbage collection could be added in the same

way as in [18]).

Besides a better understanding of the theoretical issues of sharing and e�ciency

in functional programming languages, this work aims at being used as a foundational

basis for implementations. Of course, the legitimacy of (various degrees of) laziness

has been decreasing along the years [19,5] and it may seem that our work is primarily

of theoretical interest. We do not believe this.

First, laziness is not always useless and there are techniques to combine the

advantages of strictness and laziness, such as static analyses [6] and optimistic eval-

uation [5]. There is no reason to think that these techniques cannot be adapted

to our framework. Moreover, proof assistants, like Coq, are an emerging class of

functional languages, where programs (proof terms) are built interactively, rather

than written directly, and may have a very unusual and intricate shape, for which

highly lazy strategies may be well-suited. We believe that the emergence of these

new paradigms, with their speci�c problems, is the occasion to take a fresh look at

the theory and practice of the implementation of programming languages.
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