
December 2011

Games and Automata:

From Boolean to Quantitative Verification

Mémoire d’Habilitation à Diriger des Recherches

Laurent DOYEN

CNRS

ÉCOLE NORMALE SUPÉRIEURE DE CACHAN

Laboratoire Spécification et Vérification

ÉCOLE NORMALE SUPÉRIEURE DE CACHAN

Laboratoire Spécification et Vérification

Games and Automata:

From Boolean to Quantitative Verification

Mémoire d’Habilitation à Diriger des Recherches

Laurent DOYEN

CNRS

Thesis committee:

• Rajeev Alur (reviewer)

• Ahmed Bouajjani

• Alain Finkel

• Jean Goubault-Larrecq

• Rupak Majumdar

• Joël Ouaknine

• Moshe Y. Vardi (reviewer)

• Igor Walukiewicz (reviewer)

i

ii

Acknowledgments

The work presented in this manuscript has been carried out in the group of Tom
Henzinger at École Polytechnique Fédérale de Lausanne (Oct. 2006 - Dec. 2008),
in the group of Jean-François Raskin at Université Libre de Bruxelles (Jan. 2009 -
Sep. 2009), and in the Laboratoire Spécification et Vérification at ENS Cachan under
the auspices of Alain Finkel (since Oct. 2009). Great collaboration with Krishnendu
Chatterjee has also been possible through several visits to IST Austria.

I would like to warmly thank Tom, Jean-François, Alain, and Krishnendu, as well
as all my other co-authors:

• Dietmar Berwanger

• Thomas Brihaye

• Lubos̆ Brim

• Véronique Bruyère

• Jakub Chaloupka

• Aldric Degorre

• Martin De Wulf

• Marc Ducobu

• Herbert Edelsbrunner

• Gilles Geeraerts

• Raffaella Gentilini

• Hugo Gimbert

• Barbara Jobstmann

• Axel Legay

• Nicolas Maquet

• Nicolas Markey

• Thierry Massart

• Dejan Nic̆ković

• Joël Ouaknine

• Tatjana Petrov

• Sangram Raje

• Philippe Rannou

• Julien Reichert

• Mahsa Shirmohammadi

• Rohit Singh

• Szymon Toruńczyk

• James Worrell

I am also grateful to Rajeev Alur, Ahmed Bouajjani, Jean Goubault-Larrecq,
Rupak Majumdar, Joël Ouaknine, Moshe Vardi, and Igor Walukiewicz who have read-
ily agreed to serve as members of the jury.

iii

iv

Aux yeux qui brillent.

Table of Contents

Preamble 3

1 Introduction 5

1.1 Context . 5

1.2 Content . 8

1.3 Other Contributions . 10

2 Antichain Algorithms 13

2.1 Introduction . 13

2.2 Preliminaries . 16

2.3 Antichain Fixpoint Algorithms . 18

2.3.1 Antichains as a symbolic representation 18

2.3.2 Antichains of promising states 20

2.4 Applications . 23

2.4.1 Automata theory . 23

2.4.2 Partial-observation games . 29

2.4.3 QBF - Quantified Boolean Formulas 31

2.5 Tools . 34

2.6 Perspectives . 35

3 Quantitative Games 37

3.1 Introduction . 37

3.2 Definitions . 39

3.3 Energy and Mean-Payoff Games . 42

3.4 Partial-Observation Energy and Mean-Payoff Games 45

3.5 Energy Parity Games . 48

1

2 TABLE OF CONTENTS

3.6 Multi-Weighted Games . 50

3.7 Conclusion and Perspectives . 52

4 Quantitative Languages 55

4.1 Introduction . 55

4.2 Quantitative Languages . 60

4.3 The Complexity of Quantitative Decision Problems 65

4.3.1 Quantitative Emptiness, Universality, Language Inclusion and
Equivalence . 65

4.3.2 Quantitative Simulation . 66

4.4 The Expressive Power of Weighted Automata 68

4.4.1 Positive Reducibility Results . 68

4.4.2 Negative Reducibility Results 69

4.5 The Closure Properties of Weighted Automata 72

4.5.1 Closure under max . 73

4.5.2 Closure under min . 74

4.5.3 Closure under complement . 74

4.5.4 Closure under sum . 75

4.6 Mean-Payoff Automaton Expressions 76

4.6.1 Mean-Payoff Automaton Expressions are Robust 77

4.6.2 Mean-Payoff Automaton Expressions are Decidable 78

4.7 Conclusion and Perspectives . 82

5 Conclusion 85

5.1 Summary . 85

5.2 Perspectives . 86

Bibliography 89

Publication list 99

Preamble

This manuscript presents my results in three main research directions followed after
my PhD thesis (June 2006) on:

(i) practical algorithmic analysis of finite-state automata (antichain algorithms),

(ii) games for control and synthesis (including partial-observation and quantitative
games), and

(iii) theory of quantitative verification (quantitative languages, weighted automata,
and beyond).

The most important definitions and key ideas that we have developed towards these
results are given. Examples and tables summarize the key insights and results. The
intention is to give informal and accessible crisp exposition of the techniques, and to
provide a concise summary of the results. The full proofs and details can be found in
our papers and technical reports. All results in this thesis have been published (see the
publication list, page 99) although we omit systematic references. The results of other
authors are explicitly referenced. Furthermore, my own work is referenced in plain
numerical style (i.e., [1], [2], etc.) while other works are referenced in alpha-numerical
style (e.g., [ACC+10]).

We briefly present in the introductory chapter the main results obtained in other
lines of research that are not otherwise covered by this manuscript.

3

4

Chapter 1

Introduction

Patience et longueur de temps

Font plus que force ni que rage.

Jean de La Fontaine, Le lion et le rat.

1.1 Context

The background of this thesis is the problem of computer-aided verification. The
goal is to automatically construct a proof of correctness of a system design. This
problem involves three main dimensions: (i) a mathematical (i.e., precise and well-
defined) model of the system, (ii) a mathematical specification of the requirements
for the system, and (iii) a mathematical definition of the correctness relation between
models and specifications. While these dimensions are intertwined and their frontier
may not be that sharp in practical cases, it is convenient to make this distinction for
the theoretical study of the verification problem.

For example, in a concurrent program where several threads execute in parallel with
shared memory and lock-based resource access, the model could be the state-transition
graph of the concurrent program, and the specification be deadlock-avoidance defined
by a set of blocking states (e.g., states where two threads are mutually waiting for
a lock to be released by the other). Typically, the correctness relation in this case is
defined as a property of the set of executions of the program, stating that all executions
have to avoid the set of blocking states.

In some applications, it would make sense to consider that the model to verify is
just one thread of the program, and that the other threads are a specification of the
environment in which this thread is executed. Correctness would then require that the
parallel composition of the thread model with its environment satisfies the deadlock-
free property. This view is particularly useful when the different threads are developed
separately and independently. The environment may even be non-deterministic, and

5

6 CHAPTER 1. INTRODUCTION

the specification require that deadlock is avoided in all possible implementations of
the environment.

Concerning the third dimension (the correctness relation), while the simplest and
most common specifications reduce to safety properties (such as deadlock-avoidance),
it is also useful to consider liveness properties (e.g., to ensure that every lock request
be eventually granted). More generally, the semantics of the correctness relation is
often more complex. It may sometimes be viewed as part of the specification (e.g.,
given by a monitor that tracks the program execution), or sometimes as part of the
correctness relation (e.g., logic-based description of the correctness semantics).

Finally, this three-dimensional view needs to be extended with a parametric dimen-
sion, where each parameter may be universally or existentially quantified. A parameter
can be the model itself, with existential quantification: “does there exist a model that
satisfies the given specification ? If yes, provide such a model”. Framed in this way,
the verification question is called the synthesis problem. Parameters may also occur as
unknown value of constants (typically in the model), or as non-determinism (typically
in the specification). Assignments of values to the symbolic constants, and schedulers
(or policies) to resolve the non-determinism may be existentially quantified (design
parameters) or universally quantified (adversarial parameters).

From the above discussion, splitting the verification questions according to these
three (or even four) dimensions may appear arbitrary or artificial. This is partly true.
However, this view identifies the foundational milestones that need to be addressed by
the theoretical study of the verification question. One may consider various classes of
models (finite automata, pushdown automata, counter systems, etc.), various classes
of specifications (automata, logics, formal languages, etc.), and various notions of cor-
rectness (trace inclusion, (bi)simulation, etc.). The results presented in this thesis are
a contribution to this field, and are mostly about new algorithmic solutions to the veri-
fication question in games and automata theory, complexity results, and expressiveness
comparison.

In the first part of this thesis, we consider finite-state models (such as directed
graphs, automata, and games), linear-time logic specifications (LTL), and classical
notions of correctness defined as Boolean questions (with Yes/No answer).

For example, the satisfiability question for LTL specifications asks, given an LTL
formula ϕ, whether there exists an execution that satisfies ϕ, and the model-checking
question asks whether all executions of a given finite-state model satisfy the formula ϕ.
The same questions can be asked for automata-based specifications. In the context of
(two-player) games, the synthesis question asks whether there exists a strategy for
one player such that for all strategies of the other player, the resulting execution
satisfies a given specification (or objective). In the automata-based approach to ver-
ification [VW86], satisfiability questions typically reduce to emptiness of automata,
model-checking questions reduce to language inclusion, and synthesis questions reduce
to realizability, or simply game solving.

1.1. CONTEXT 7

The automata-based approach is essential for the design and analysis of computa-
tion systems [VW86, VW94]. While finite-state graphs and automata are relatively
simple models, they allow to capture important properties of complex systems (circuits,
networks, hierarchical designs, embedded systems, etc.). For example, the automata
on finite words are attractive as a model of computation for several reasons: they are
robust, in the sense that their expressive power is equivalent to most of their vari-
ants (e.g., with or without silent transitions, deterministic or not, etc.) as well as
to other natural formalisms like regular expressions or alternating automata; they are
closed under all Boolean operations, which is important for compositional design; their
decision problems (emptiness, universality, language inclusion) are decidable. The sit-
uation is similar for automata on infinite words, although the verification problems are
in general more difficult to solve in practice.

Games and the realizability problem have been studied for long as a fundamen-
tal theoretical problem [Chu62, BL69, Rab72, GH82], and for their connection with
logic [Rab69, EJ91]. Important theoretical results include the determinacy of two-
player games with Borel objective [Mar98] (if one player does not have a winning strat-
egy for a given objective, then the other player has a winning strategy for the comple-
mentary objective), and the deep connection of mu-calculus and parity games [EJ91].
Tight connections exist between games and automata [GTW02], and of special interest
in this context is the fact that language emptiness of finite automata is a special case
of one-player perfect-information game, while language inclusion (as well as language
universality) can be viewed as a two-player game with partial observation [38].

In the second part of this thesis, we present a line of research that aims at ex-
tending the traditional verification from a Boolean question to a quantitative question.
Traditional specifications describe the set of admissible behaviors, and a model sat-
isfies a specification if all its behaviors are admissible, which is a Yes/No question.
This classical approach can be extended to quantitative specifications that describe
not only the set of admissible implementations but also the value of each behavior,
in terms of weight or cost. For example, in a lock-placement problem for concurrent
programs, a typical requirement is that the locks are used in such a way that deadlocks
are avoided, and that all lock requests are eventually granted. However, this leaves
room for unrealistic and inefficient program implementations that for example acquire
and release all locks all together for each computation step, or schedulers that grant
lock requests with arbitrarily long delays. While designers would naturally tend to
minimize the number of locks, and try to reduce the delays, an automatic solver may
come up with such inefficient solutions. A quantitative specification that assigns a
cost to lock usage, and a solver that minimizes the cost of a solution reflect the fact
that among two correct programs, we prefer one that avoids unnecessary locks. In the
same way, the Boolean requirement that all lock requests are eventually granted can
be refined by the quantitative requirement that the (maximal, or average) waiting time
for a grant should be minimized.

The theoretical study of quantitative verification leads us to consider quantitative

8 CHAPTER 1. INTRODUCTION

generalizations of languages and automata, games with quantitative objective, and
either perfect information (corresponding the quantitative version of language empti-
ness) or partial information (corresponding the quantitative version of language inclu-
sion and universality), as well as games with combination of Boolean and quantitative
objectives.

Several previous works have suggested to use quantitative specifications [dAHM03,
HK97] or quantitative logics [DGJP03, LLM05, MM02], and have defined notions of
correctness based on quantitative simulation and metrics [dAFS04, DGJP99]. The
quantitative approach to verification and synthesis presented in this thesis was also
inspired by the work of Henzinger et al. [CdHS03, CHJ05, BCHJ09, Hen10].

1.2 Content

In Chapter 2, we present an overview of the antichain algorithms that we have in-
troduced in [39] with Martin De Wulf and Jean-François Raskin for solving partial-
observation games. Antichain algorithms are new efficient algorithms for solving clas-
sical problems in game theory, as well as in logics and automata theory: emptiness,
universality, and language inclusion for finite and Büchi automata, LTL satisfiability
and model-checking, partial-observation games, and evaluation of quantified Boolean
formulas. The implementation of antichain algorithms in our tools Alaska [45] and
Alpaga [44] show dramatic performance improvements (by orders of magnitude) over
state-of-the-art tools.

Recently, it has come to our knowledge that analogous ideas have been outlined
independently in [RHN00] for universality of finite word automata, and in [TH03] for
language containment of finite tree automata. In this chapter, we present a more
general view of antichain algorithms, and we present a range of applications beyond
finite words and finite trees. Most of the material presented in Chapter 2 appeared
in [9, 12, 25] and consists of a survey of the results in [6, 34, 36, 37, 38, 39, 44, 45].

In Chapter 3, we study algorithmic problems for games with quantitative objective,
motivated by applications in modeling of embedded systems with resource constraints.
We consider two-player games played on a weighted graph, with energy and mean-
payoff objectives. In an energy game, the weights represent resource consumption and
the objective of the game is to maintain the sum of weights always nonnegative. In a
mean-payoff game, the objective is to optimize the limit-average usage of the resource.

First, we present a new pseudo-polynomial algorithm for deciding the winner in
energy games, and since energy games are log-space equivalent to mean-payoff games,
and memoryless optimal strategies exist, we obtain a new algorithm for mean-payoff
games, improving the best known worst-case complexity of [ZP96] for this problem
from O(|E| · |Q|2 ·W) to O(|E| · |Q| ·W) where E is the set of edges in the game, Q is
the set of states, and W is the largest weight (in absolute value) in the game.

1.2. CONTENT 9

Second, we show that partial-observation games are much more complicated: infi-
nite memory may be required for mean-payoff games, whereas finite memory suffice for
energy games. We show that the problem of deciding the winner in partial-observation
energy games is undecidable but co-r.e., while partial-observation mean-payoff games
are neither r.e. nor co-r.e.

Third, when the energy objective is combined with a parity objective we show that
exponential memory is required in general, still the problem of deciding the winner
in energy parity games is in NP ∩ coNP. We present a conceptually simple algorithm
to solve energy parity games, and we show that it can be used to solve mean-payoff
parity games by establishing polynomial-time equivalence of the two problems. This
equivalence is not obvious because winning strategies in mean-payoff parity games
require infinite memory in general, while finite memory suffices in energy parity games.
It follows that mean-payoff parity games can be solved in NP ∩ coNP.

Finally, we consider generalized mean-payoff and energy games which replace in-
dividual weights by tuples, and require that the limit average (resp., running sum) of
each coordinate be (resp., remain) nonnegative. We give an optimal coNP-complete
bound for solving generalized energy games, while the previously best known upper
bound was EXPSPACE, and no non-trivial lower bound was known.

The results in Chapter 3 have been published in [2, 23, 18, 22].

In Chapter 4, we present quantitative generalizations of classical languages, which
assign to each word a real number instead of a Boolean value, and have applications
in modeling resource-constrained computation. We use weighted automata (finite au-
tomata with transition weights) to define several natural classes of quantitative lan-
guages over finite and infinite words; in particular, the real value of an infinite run
is computed as the maximum, limsup, liminf, limit average, or discounted sum of the
transition weights.

First, we define the classical decision problems of automata theory (emptiness, uni-
versality, language inclusion, and language equivalence) in the quantitative setting and
study their computational complexity. As the decidability of the language-inclusion
problem remains open for some classes of weighted automata, we introduce a notion
of quantitative simulation that is decidable and implies language inclusion.

Second, we give a complete characterization of the expressive power of the various
classes of weighted automata. In particular, we show that most classes of weighted
automata cannot be determinized.

Third, for quantitative languages L1 and L2, we consider the operations max(L1, L2),
min(L1, L2), and 1−L1, which generalize the Boolean operations on languages, as well
as the sum L1 + L2. We establish the closure properties of all classes of quantitative
languages with respect to these four operations.

Finally, we introduce a new class of quantitative languages, defined by mean-payoff
automaton expressions, which is robust and decidable: it is closed under the four point-

10 CHAPTER 1. INTRODUCTION

wise operations, and we show that all decision problems are decidable for this class.
Mean-payoff automaton expressions subsume deterministic mean-payoff automata, and
we show that they have expressive power incomparable to nondeterministic and alter-
nating mean-payoff automata. We also present for the first time an algorithm to com-
pute the distance between two quantitative languages, and in our case the quantitative
languages are given as mean-payoff automaton expressions. The material presented in
Chapter 4 appeared in [4, 5, 19, 27, 33].

1.3 Other Contributions

We briefly outline other research directions and results that are not presented in this
manuscript.

Timed and hybrid systems. The algorithmic verification of timed and hybrid
systems was the topic of my phD thesis. Timed and hybrid automata extend finite-state
automata with variables that evolve continuously with time, according to differential
equations (or differential constraints).

I have kept a sharp interest in real-time systems, and contributed the following
recent results. In [30] we study the realizability problem for specifications of reactive
systems expressed in real-time linear temporal logics. The logics we consider are subsets
of MITL (Metric Interval Temporal Logic), a logic for which the satisfiability and
validity problems are decidable, a necessary condition for the realizability problem to
be decidable. On the positive side, we show that the realizability of LTL extended with
past real-time formulas is decidable in 2EXPTIME, with a matching lower bound. On
the negative side, we show that a simple extension of this decidable fragment with
future real-time formulas leads to undecidability. In particular, our results imply that
the realizability problem is undecidable for ECL (Event Clock Logic), and therefore
also for MITL.

In [13] we investigate the time-bounded version of the reachability problem for
hybrid automata. The problem asks, given an hybrid automaton, a target state q, and
a rational time bound T , whether the automaton can reach the state q within T time
units. In contrast to the classical (unbounded) reachability problem, we show that the
timed-bounded version is decidable for rectangular hybrid automata provided only non-
negative rates are allowed for the continuous variables. We also show that the problem
becomes undecidable if either diagonal constraints or both negative and positive rates
are allowed.

Markov decision processes (MDP). With Tom Henzinger and Jean-François
Raskin, we have developed a new algorithm to decide the problem of probabilistic

1.3. OTHER CONTRIBUTIONS 11

trace equivalence between labeled Markov chains [8]. Two Markov chains are equiva-
lent if they produce every finite trace with the same probability. The decidability of
this question for MDPs (say with existentially quantified scheduler) is open.

We have obtained several results on partially-observable MDPs. In [20], we present
a complete picture of the computational complexity of the qualitative analysis problem
for partially-observable MDPs with parity objectives and its subclasses: safety, reach-
ability, Büchi, and coBüchi objectives. We establish several upper and lower bounds
that were not known in the literature. We also give optimal bounds (matching upper
and lower bounds) for the memory required by pure and randomized observation-based
strategies for each class of objectives. In [21], we present a complete characterization
for the classes of stochastic games and MDPs where randomness is not helpful in:
(a) the transition function (probabilistic transition can be simulated by deterministic
transition); and (b) strategies (pure strategies are as powerful as randomized strate-
gies). As a consequence of our characterization we obtain new undecidability results
for these games, as for example that deciding the existence of a strategy that is winning
with probability 1 (i.e., almost-surely) in turn-based partial-observation games with
coBüchi objective is undecidable even in the special case where the opponent player
has perfect observation.

With Thierry Massart and our student Mahsa Shirmohammadi, we consider in [16,
47] a new semantics for probabilistic automata where on an input word the automa-
ton produces a sequence of probability distributions over states. An infinite word is
accepted if the produced sequence is synchronizing, i.e. the sequence of the highest
probability in the distributions tends to 1. We show that this semantics generalizes the
classical notion of synchronizing words for deterministic automata. We consider the
emptiness problem, which asks whether some word is accepted by a given probabilistic
automaton, and the universality problem, which asks whether all words are accepted.
We provide reductions to establish the PSPACE-completeness of the two problems.

Partial-observation games. We mention some results about partial-observation
games in Chapter 2 (Section 2.4.2) and in Chapter 3 (Section 3.4). Partial-observation
games are an active research field of ours. Several results have been obtained, and
two surveys have appeared on this topic [1, 17]. Other results include the tool Alpaga

which solves parity games with partial observation, and constructs winning strategies.
The implementation is based on the algorithm presented in [31] and the tool itself was
presented in [44]. Finally, with Dietmar Berwanger we have shown that under partial
observation, parity games are polynomially reducible to safety games, showing that
these games are EXPTIME-complete even for a safety objective [32]. The existence of
such a reduction is a major open question for perfect observation.

Interfaces and sequential circuits. Interfaces describe the possible interactions
of a component (e.g., a subroutine) with its environment (e.g., the calling program),

12 CHAPTER 1. INTRODUCTION

specifying an input assumption that the environment is expected to satisfy (general-
izing the classical pre-condition) and an output guarantee provided by the component
to the environment (generalizing the classical post-condition).

General theories of interfaces have been proposed, in both static (or combinatorial)
and dynamic (or temporal/sequential) frameworks [dAH01b, dAH01a, LX01]. Such
theories support incremental design and independent implementability. Incremental
design means that the compatibility checking of interfaces can proceed for partial sys-
tem descriptions, without knowing the interfaces of all components. Independent im-
plementability means that compatible interfaces can be refined separately, maintaining
compatibility.

In [35], we show that these interface theories provide no formal support for com-
ponent reuse, meaning that the same component cannot be used to implement several
different interfaces in a design. For example, different interfaces for the same compo-
nent may refer to different aspects such as functionality, timing, and power consump-
tion. We add a new operation to interface theories in order to support such reuse. We
give both combinatorial and sequential examples for interface theories with component
reuse.

In this line of work, we studied in [24] the robustness of digital components em-
bedded in an environment that can provide inaccurate input data to the component.
Intuitively, a component is robust if the presence of a small change in the input se-
quence does not result in a drastic change in the output sequence. We introduce a
definition of robustness for sequential circuits as a form of continuity, and we charac-
terize the class of sequential circuits that are robust according to our definition. We
present an algorithm to decide whether a sequential circuit is robust or not.

Chapter 2

Antichain Algorithms

Etre raisonnable, toujours, en toutes circonstances ?!

Il faudrait être fou...

Raymond Devos, Un jour sans moi.

2.1 Introduction

Finite state-transition systems play a central role in the design and verification of
program and circuit models. One of the essential model-checking questions is the
reachability problem which asks, given an initial state s and a final state s′, if there
exists a (finite) path from s to s′. For reactive (non-terminating) programs, the repeated
reachability problem asks, given an initial state s and a final state s′, if there exists an
infinite path from s that visits s′ infinitely often.

The (repeated) reachability problem underlies important verification questions. For
example, in the automata-based approach to model-checking [VW86, VW94], the cor-
rectness of a program A with respect to a specification B (where A and B are finite
automata) is defined by the language inclusion L(A) ⊆ L(B), that is all traces of the
program (executions) should be traces of the specification. The language inclusion
problem is equivalent to the emptiness problem “is L(A) ∩ Lc(B) empty ?” where
Lc(B) is the complement of L(B). If G is a transition system (or an automaton) de-
fined as the product of A with an automaton Bc obtained by complementation of B,
then the emptiness problem can be viewed as a reachability question on G for au-
tomata on finite words, and as a repeated reachability question for Büchi automata
on infinite words. Note that complementation procedures resort to exponential subset
constructions [MS72, Saf88, KV01]. Therefore, while the (repeated) reachability prob-
lem, which is NLogSpace-complete, can be solved in linear time in the size of G, the
language inclusion problem, which is PSpace-complete, requires exponential time (in
the size of B). In practice, implementations for finite words give reasonably good re-

13

14 CHAPTER 2. ANTICHAIN ALGORITHMS

dk.brics.automaton

Antichains

Number of states

E
x
ec

u
ti

on
ti

m
e

(s
)

40003500300025002000150010005000

12

10

8

6

4

2

0

Figure 2.1: Average execution time for the antichain and classical algorithms.

sults (see e.g. [TV05]), while the complementation constructions for infinite words are
difficult to implement (even if they have been improved recently [Sch09]) and automata
with more than around ten states are intractable [GKSV03, TV07].

Recently, dramatic performance improvements have been obtained by so-called an-
tichain algorithms for the reachability and repeated reachability problems on the subset
construction and its variants for infinite words [38, BHH+08, 6, FV10, ACC+11]. Fig-
ure 2.1 shows the execution time of an antichain algorithm for deciding universality of
a family of randomly generated finite automata of increasing size, as compared to the
best previously known implementation for this problem [38].

The main idea of antichain algorithms is to exploit the special structure of the
subset constructions. As an example, consider the classical subset construction for the
complementation of automata on finite words. States of the complement automaton
are sets of states of the original automaton, that we call cells and denote by si. Set
inclusion between cells is a partial order that turns out to be a simulation relation
for the complement automaton: if s2 ⊆ s1 and there is a transition from s1 to s3,
then there exists a transition from s2 to some s4 ⊆ s3. This structural property
carries over to the sets of cells manipulated by reachability algorithms: if s2 ⊆ s1

and a final cell can be reached from s1, then a final cell can also be reached from s2.
Therefore, in a breadth-first search algorithm with backward state traversal, if s1 is
visited by the algorithm, then s2 is visited simultaneously: the algorithm manipulates
⊆-downward closed sets of cells that can be canonically and compactly represented
by the antichain of their ⊆-maximal elements. Antichains serve as a symbolic data-
structure on which efficient symbolic operations can be defined. Antichain algorithms

2.1. INTRODUCTION 15

have been implemented for automata on finite words [38], on finite trees [BHH+08], on
infinite words [6, FV09], and for other applications where exponential constructions are
involved such as model-checking of linear-time logic [34], partial-observation games [9,
31], and synthesis of linear-time specifications [FJR09]. They outperform explicit and
BDD-based algorithms by orders of magnitude [45, 44, FJR09].

In Section 2.3, we present an abstract theory to justify the correctness of antichain
algorithms. For backward state traversal algorithms, we first show that forward simu-
lation relations (such as set inclusion in the above example) are required to maintain
closed sets in the algorithms. This corresponds to view antichains as a suitable sym-
bolic data-structure to represent closed sets (as above). Then, we develop a different
view in which antichains are sets of promising states in the (repeated) reachability
analysis. This view is justified by mean of backward simulation relations. In our ex-
ample, it turns out that set inclusion is also a backward simulation which implies that
if s2 ⊆ s1 and s2 is reachable, then s1 is also reachable. Therefore, an algorithm which
traverses the state space in a backward fashion need not to explore the predecessors of
s2 if s1 has been visited previously by the algorithm. We say that s1 is more promis-
ing1 than s2. As a consequence, the algorithms can safely drop non-⊆-maximal cells,
hence keeping ⊆-maximal cells only. While the two views coincide when set inclusion
is used for finite automata, we show that provably better antichain algorithms are ob-
tained when coarser (hence improved) simulation relations are used: fixed points can
be reached in fewer iterations, and the antichains that are manipulated are smaller.
Dual results are obtained for forward state traversal algorithms.

In Section 2.4, we revisit classical problems of automata theory: the universality
problem for nondeterministic automata, the emptiness problem for alternating au-
tomata on finite and infinite words, and the emptiness of a product of automata. In
such applications, the transition systems to explore are of exponential size and thus
they are not constructed prior to the reachability analysis, but explored on-the-fly.
And consequently, simulation relations needed by the antichain algorithms should be
given without any computation on the transition system itself (which is the case of set
inclusion for the subset construction). However, we show that by computing a simu-
lation relation on the original automaton, coarser simulation relations can be induced
on the exponential constructions. On the way, we introduce a new notion of backward
simulation for alternating automata. Finally, we mention applications of antichain
algorithms for solving partial-observation games, and evaluating quantified Boolean
formulas.

1Note that this is not a heuristic: if s1 is more promising that s2, then the exploration of the
predecessors of s2 can be omitted without spoiling the correctness of the analysis.

16 CHAPTER 2. ANTICHAIN ALGORITHMS

2.2 Preliminaries

Relations A pre-order over a finite set V is a binary relation �⊆ V × V which is
reflexive and transitive. If v1 � v2, we say that v1 is smaller than v2 (or v2 is greater
than v1). A pre-order �′ is coarser than � if for all v1, v2 ∈ V , if v1 � v2, then v1 �

′ v2.
The �-upward closure of a set S ⊆ V is the set Up(�, S) = {v1 ∈ V | ∃v2 ∈ S : v2 � v1}
of elements that are greater than some element in S. A set S is �-upward-closed if it is
equal to its �-upward closure, and Min(�, S) = {v1 ∈ S | ∀v2 ∈ S : v2 � v1 → v1 � v2}
denotes the minimal elements of S. Note that Min(�, S) ⊆ S ⊆ Up(�, S). Analogously,
define the �-downward closure Down(�, S) = {v1 ∈ V | ∃v2 ∈ S : v1 � v2} of S, and
Max(�, S) the set of maximal elements2 of S.

A set S ⊆ V is a quasi-antichain if for all v1, v2 ∈ S, either v1 and v2 are �-
incomparable, or v1 � v2 and v2 � v1. The sets Min(�, S) and Max(�, S) are quasi-
antichains. A partial order is a pre-order which is antisymmetric. For partial orders,
the sets Min(�, S) and Max(�, S) are antichains, i.e., sets of pairwise �-incomparable
elements. By abuse of language, we call antichains the sets of minimal (or maximal)
elements even if the pre-order is not a partial order, and denote by A the set of
antichains over 2V .

Antichains can be used as a symbolic data-structure for �-upward-closed sets. An
�-upward-closed set S is represented by S̃ = Min(�, S). Operations on antichains are
defined as follows. The membership question “given v and S, is v ∈ S ?” becomes
“given v and S̃, is there ṽ ∈ S̃ such that ṽ � v ?”; the emptiness question is unchanged
as S = ∅ iff S̃ = ∅; the relation of set inclusion S1 ⊆ S2 becomes S̃1 ⊑ S̃2 defined
by ∀v1 ∈ S̃1 · ∃v2 ∈ S̃2 : v2 � v1. If 〈V,�〉 is a semi-lattice with least upper bound
lub, then 〈A,⊑〉 is a complete lattice (the lattice of antichains) where the intersection

S1 ∩ S2 is represented by S̃1 ⊓ S̃2 = Min(�, {lub(v1, v2) | v1 ∈ S̃1 ∧ v2 ∈ S̃2}) and

the union S1 ∪ S2 is represented by S̃1 ⊔ S̃2 = Min(�, S̃1 ∪ S̃2). Analogous definitions
exist for antichains of �-downward-closed sets if 〈V,�〉 is a semi-lattice with greatest
lower bound. Other operations mixing �-upward-closed sets and �-downward-closed
set can be defined over antichains (such as mixed set inclusion, or emptiness of mixed
intersection).

Simulation relations Let G = (V,E, Init, Final) be a transition system with finite
set of states V , transition relation E ⊆ V × V , initial states Init ⊆ V , and final states
Final ⊆ V . We define two notions of simulation [Mil71]:

• a pre-order �f over V is a forward simulation for G (“v2 �f v1” reads v2 forward
simulates v1) if for all v1, v2, v3 ∈ V , if v2 �f v1 and E(v1, v3), then there exists
v4 ∈ V such that v4 �f v3 and E(v2, v4);

2We also denote this set by Max(�, S), and we equally say that a set is �-downward-closed or
�-downward-closed, etc.

2.2. PRELIMINARIES 17

• a pre-order �b over V is a backward simulation for G, (“v2 �b v1” reads v2

backward simulates v1), if for all v1, v2, v3 ∈ V , if v2 �b v1 and E(v3, v1), then
there exists v4 ∈ V such that v4 �b v3 and E(v4, v2).

The notations �f and �b are inspired by the fact that in the subset construction for
finite automata, ⊆ is a forward simulation and ⊇ is a backward simulation. Note that
a forward simulation for G is a backward simulation for the transition system with
transition relation E−1 = {(v1, v2) | (v2, v1) ∈ E}.

We say that a simulation over V is compatible with a set S ⊆ V if for all v1, v2 ∈ V ,
if v1 ∈ S and v2 (forward or backward) simulates v1, then v2 ∈ S. Note that a forward
simulation �f is compatible with S if and only if S is �f-downward-closed, and a
backward simulation �b is compatible with S if and only if S is �b-upward-closed. In
the sequel, we will be interested in simulation relations that are compatible with Init,
or Final, or with both.

Fixpoint algorithms Let G = (V,E, Init, Final) be a transition system and let
S, S ′ ⊆ V be sets of states. The set of predecessors and successors of S in one step are
denoted pre(S) = {v1 | ∃v2 ∈ S : E(v1, v2)} and post(S) = {v1 | ∃v2 ∈ S : E(v2, v1)}
respectively. We denote by pre∗(S) the set

⋃
i≥0 prei(S) where pre0(S) = S and

prei(S) = pre(prei−1(S)) for all i ≥ 1, and by pre+(S) the set
⋃

i≥1 prei(S). The
operators post∗ and post+ are defined analogously. A finite path in G is a sequence
v0v1 . . . vn of states such that E(vi, vi+1) for all 0 ≤ i < n. Infinite paths are defined
analogously. We say that S ′ is reachable from S if there exists a finite path v0v1 . . . vn

with v0 ∈ S and vn ∈ S ′.

The reachability problem for G asks if Final is reachable from Init, and the repeated
reachability problem for G asks if there exists an infinite path starting from Init and
passing through Final infinitely many times. To solve these problems, we can use the
following classical fixpoint algorithms:

1. The backward reachability algorithm computes the sequence of sets:

B(0) = Final and B(i) = B(i− 1) ∪ pre(B(i− 1)) for all i ≥ 1.

2. The backward repeated reachability algorithm computes the sequence of sets:

BB(0) = Final and BB(i) = pre+(BB(i− 1)) ∩ Final for all i ≥ 1.

3. The forward reachability algorithm computes the sequence of sets:

F(0) = Init and F(i) = F(i− 1) ∪ post(F(i− 1)) for all i ≥ 1.

4. The forward repeated reachability algorithm computes the sequence of sets:

FF(0) = Final ∩ post∗(Init) and FF(i) = post+(FF(i− 1)) ∩ Final for all i ≥ 1.

18 CHAPTER 2. ANTICHAIN ALGORITHMS

The above sequences converge to a fixpoint because the operations involved are
monotone. We denote by B∗, BB∗, F∗, and FF∗ the respective fixpoints. Note that
B∗ = pre∗(Final) and F∗ = post∗(Init).

Theorem 2.1 Let G = (V,E, Init, Final) be a transition system. Then,

(a) the answer to the reachability problem for G is Yes if and only if B∗ ∩ Init is
nonempty if and only if F∗ ∩ Final is nonempty;

(b) the answer to the repeated reachability problem for G is Yes if and only if BB∗

is reachable from Init if and only if FF∗ is nonempty.

2.3 Antichain Fixpoint Algorithms

In this section, we show that the sets in the sequences B, BB, F, and FF can be re-
placed by antichains for well chosen pre-orders. Two views can be developed: when
backward algorithms are combined with forward simulation pre-orders (or forward al-
gorithms with backward simulations), antichains are symbolic representations of closed
sets; when backward algorithms are combined with backward simulation pre-orders (or
forward algorithms with forward simulations), antichains are sets of promising states.
It may be surprising to consider algorithms for the reachability problem (which can
be solved in linear time), based on simulation relations (which can be computed in
quadratic time). However, such algorithms are useful for applications where the tran-
sition systems have a special structure for which simulation relations need not to be
computed. For example, the relation of set inclusion is always a forward simulation
in the subset construction for finite automata (see Section 2.4 for details and other
applications). We develop these two views below.

2.3.1 Antichains as a symbolic representation

2.3.1.1 Backward reachability

First, we show that the sets computed by the backward algorithm B are closed for all
forward simulations of the transition system G compatible with Final.

Lemma 2.2 Let G = (V,E, Init, Final) be a transition system. A pre-order �f over
V is a forward simulation in G if and only if pre(S) is �f-downward-closed for all
�f-downward-closed sets S ⊆ V .

Lemma 2.3 Let G = (V,E, Init, Final) be a transition system. If �f is a forward
simulation in G compatible with Final, then B(i) and BB(i) are �f-downward-closed
sets for all i ≥ 0.

2.3. ANTICHAIN FIXPOINT ALGORITHMS 19

Since the sets in the backward algorithms B and BB are �f-downward-closed, we can
use the antichain of their maximal elements as a symbolic representation, and adapt
the fixpoint algorithms accordingly. Given a forward simulation �f in G compatible
with Final, the antichain algorithm for backward reachability is as follows:

• B̃(0) = Max(�f , Final);

• B̃(i) = Max(�f , B̃(i− 1) ∪ pre(Down(�f , B̃(i− 1)))), for all i ≥ 1.

Lemma 2.4 For all i ≥ 0, B̃(i) = Max(�f ,B(i)) and B(i) = Down(�f , B̃(i)).

Corollary 2.5 For all i ≥ 0, B(i+ 1) = B(i) if and only if B̃(i+ 1) = B̃(i).

Using Theorem 2.1, we get the following result.

Theorem 2.6 B∗ ∩ Init 6= ∅ if and only if Down(�f , B̃
∗) ∩ Init 6= ∅, and therefore the

answer to the reachability problem for G is Yes if and only if Down(�f , B̃
∗)∩ Init 6= ∅.

So the antichain algorithm for backward reachability computes exactly the same
information as the classical algorithm and the two algorithms reach their fixpoint after
exactly the same number of iterations. However, the antichain algorithms can be more
efficient in practice if the symbolic representation by antichains is significantly more
succinct and if the computations on the antichains can be done efficiently. In particular,
the predecessors of the �f-downward-closure of B̃(i− 1) needed to obtain B̃(i) should

be computed in a way that avoids constructing the �f-downward-closure of B̃(i − 1).
For applications of the antichain algorithms in automata theory (see also Section 2.4),
it can be shown that this operation can be computed efficiently (see e.g. [38, 6]).

Remark Antichains as a data-structure have been used previously for representing the
sets of backward reachable states in well-structured transition systems [ACJT96, FS01].

So, the sequence B̃ converges also when the underlying state space is infinite and �f

is a well-quasi order.

2.3.1.2 Backward repeated reachability

Given a forward simulation �f in G compatible with Final, the antichain algorithm for
repeated backward reachability is as follows:

• B̃B(0) = Max(�f , Final);

• B̃B(i) = Max(�f , pre
+(Down(�f , B̃B(i− 1))) ∩ Final), for all i ≥ 1.

20 CHAPTER 2. ANTICHAIN ALGORITHMS

Note that a symbolic representation of pre+(Down(�f , B̃B(i − 1)) can be computed

using the antichain algorithm B̃ by taking B̃(0) = Max(�f , pre(Down(�f , B̃B(i− 1)))).
Using Lemma 2.3, we get the following result and corollary.

Lemma 2.7 B̃B(i) = Max(�f ,BB(i)) and BB(i) = Down(�f , B̃B(i)) for all i ≥ 0.

Corollary 2.8 For all i ≥ 0, BB(i+ 1) = BB(i) if and only if B̃B(i+ 1) = B̃B(i).

Using Theorem 2.1, we get the following result.

Theorem 2.9 BB∗ is reachable from Init if and only if Down(�f , B̃B
∗
) is reachable

from Init, and therefore the answer to the repeated reachability problem for G is Yes if

and only if Down(�f , B̃B
∗
) is reachable from Init.

2.3.1.3 Forward algorithms

For the forward algorithms F and FF, results that are dual of Lemma 2.2 and Lemma 2.3
can be obtained, as well as antichain algorithms using backward simulations. The
details can be found in [25].

2.3.2 Antichains of promising states

We show that instead of using forward simulations to obtain backward antichain algo-
rithms (or backward simulations for the forward algorithms), we can also use backward
simulations to obtain new backward antichain algorithms (or forward simulations to
obtain new forward antichain algorithms). These new antichain algorithms do not
compute the same information as the original algorithms. In particular, we show that
convergence is reached at least as soon as in the original algorithms, but it may be
reached sooner. On this basis, we define in Section 2.4 new antichain algorithms that
are provably better than the antichain algorithms of [38, 6].

2.3.2.1 Backward reachability

Let �b be a backward simulation relation compatible with Init. The sequence of an-
tichains of backward promising states is defined as follows:

• B̂(0) = Max(�b, Final);

• B̂(i) = Max(�b, B̂(i− 1) ∪ pre(B̂(i− 1))), for all i ≥ 1.

2.3. ANTICHAIN FIXPOINT ALGORITHMS 21

B(0) = {1} bB(0) = {1} = bB♮

B(1) = {1, 2} bB(1) = {1, 2}

B(2) = {1, 2, 3} bB(2) = {1, 2}

.123n

0

�b

�b

�b�b�b

. . .

Figure 2.2: Backward reachability with Final = {1}.

Note that while in the sequence B̃ we took the �f-downward-closure of B̃(i− 1)
before computing pre, this is not necessary here. And note that the original sets B(i)

are �f-downward-closed (and represented symbolically by B̃(i)), while they are not

necessarily �b-downward-closed (here, B̂(i) ⊆ B(i) is a set of most promising states
in B(i)). The correctness of this algorithm is justified by monotonicity properties. De
define ⊑b⊆ 2V × 2V as follows: S1 ⊑b S2 if ∀v1 ∈ S1 · ∃v2 ∈ S2 : v2 �b v1. We write
S1 ≈b S2 if S1 ⊑b S2 and S2 ⊑b S1.

Lemma 2.10 The operators pre, Max(�b, ·), and ∪ (and their composition) are ⊑b-
monotone.

Lemma 2.11 For all i ≥ 0, B̂(i) ≈b B(i).

Corollary 2.12 (Early convergence) For all i ≥ 0, (a) if B(i + 1) = B(i), then

B̂(i+ 1) ≈b B̂(i), and (b) B(i) ∩ Init 6= ∅ if and only if B̂(i) ∩ Init 6= ∅.

Denote by B̂♮ the value B̂(i) for the smallest i ≥ 0 such that B̂(i) ≈b B̂(i+ 1). Corol-

lary 2.12 ensures that convergence (modulo ≈b) on the sequence B̂ occurs at the latest
when B converges. Also, as �b is compatible with Init, if B(i) intersects Init then we

know that B̃(i) also intersects Init. So, for both positive and negative instances of

the reachability problem, we never need to compute more iterations in the B̂ sequence
than of in the B sequence. We establish the correctness of the B̂ sequence to decide
the reachability problem, and using Theorem 2.1, we get the following result.

Theorem 2.13 (Correctness) B∗∩Init 6= ∅ if and only if B̂♮∩Init 6= ∅, and therefore

the answer to the reachability problem for G is Yes if and only if B̂♮ ∩ Init 6= ∅.

Example 2.1 Consider the transition system in Figure 2.2 where Final = {1} and
Init = {0}. The classical backward reachability algorithm computes the sequence B(0) =
{1}, B(1) = {1, 2}, . . . , B(i) = {1, 2, . . . , i+ 1} and converges to {1, . . . , n} after O(n)
iterations. Consider the backward simulation �b as depicted on Figure 2.2. States
1 and 2 are mutually simulated by each other, and i �b i + 1 for all 1 ≤ i < n.

22 CHAPTER 2. ANTICHAIN ALGORITHMS

The antichain algorithm for backward reachability based on �b computes the sequence
B̂(0) = {1}, B̂(1) = {1, 2} and the algorithms halts since B̂(0) ≈b B̂(1), i.e. B̂♮ =

B̂(0). We get early convergence because state 1 is more promising than all other states,
yet is not reachable from Init.

2.3.2.2 Backward repeated reachability

Let �b be a backward simulation relation compatible with both Final and Init. Using
such a relation, we define the sequence of antichains of backward repeated promising
states as follows:

• B̂B(0) = Max(�b, Final);

• B̂B(i) = Max(�b, pre
+(B̂B(i− 1)) ∩ Final), for all i ≥ 1.

Note that the computation of Si = pre+(B̂B(i−1)) can be replaced by algorithm B̂

with B̂(0) = Max(�b, pre(B̂B(i−1))). This yields B̂♮ ≈b Si which is sufficient to ensure
correctness of the algorithm. We have required that �b is compatible with Final to
have the following property.

Lemma 2.14 The operator λS · S ∩ Final is ⊑b-monotone.

Lemma 2.15 For all i ≥ 0, B̂B(i) ≈b BB(i).

Corollary 2.16 (Early convergence) For all i ≥ 0, if BB(i + 1) = BB(i) then

B̂B(i) ≈b B̂B(i+ 1).

Denote by B̂B
♮
the value B̂B(i) for the smallest i ≥ 0 such that B̂B(i) ≈b B̂B(i+1).

Using Theorem 2.1, we get the following result.

Theorem 2.17 (Correctness) BB∗ is reachable from Init if and only if B̂B
♮
is reach-

able from Init, and therefore the answer to the repeated reachability problem for G is

Yes if and only if B̂B
♮
is reachable from Init.

2.3.2.3 Forward reachability and repeated reachability algorithm

As before, we refer to [25] for the forward algorithms.

Remark In antichain algorithms of promising states, if �1 is coarser than �2, then the
induced relation ≈1 on sets of states is coarser than ≈2 which entails that convergence
modulo ≈1 occurs at the latest when convergence modulo ≈2 occurs, and possibly
earlier. This will be illustrated in Section 2.4.

2.4. APPLICATIONS 23

2.4 Applications

In this section, we present applications of the antichain algorithms to solve classical
(and computationally hard) problems in automata theory, partial-observation games,
and QBF evaluation (quantified Boolean formulas).

2.4.1 Automata theory

We consider automata running on finite and infinite words.

An alternating automaton is a tuple A = (Q, qι,Σ, δ, α) where:

• Q is a finite set of states;

• qι ∈ Q is the initial state;

• Σ is a finite alphabet;

• δ : Q×Σ → 22Q
is the transition relation that maps each state q and letter σ to

a set {C1, . . . , Cn} where each Ci ⊆ Q is a choice;

• α ⊆ Q is the set of accepting states.

In an alternating automaton, the input word w = σ0σ1 . . . over Σ is processed by
two players in a turn-based game played in rounds. Each round starts in a state of
the automaton, and the first round starts in qι. In round i, the first player makes a
choice C ∈ δ(qi, σi) where qi is the state in round i and σi is the ith letter of the input
word. Then, the second player chooses a state qi+1 ∈ C, and the next round starts in
qi+1. A finite input word is accepted by A if the first player has a strategy to force an
accepting state of A in the last round; an infinite input word is accepted by A if the
first player has a strategy to force infinitely many rounds to be in an accepting state
of A. A run of an alternating automaton corresponds to a fixed strategy of the first
player, and contains all possible outcomes that are consistent this strategy of the first
player.

Formally, a run of A over a (finite or infinite) word w = σ0σ1 . . . is a directed
acyclic graph Tw = 〈N,→〉 where:

• N = Q×N is the set of nodes. A node (q, i) represents the state q after the first
i letters of the word w have been processed. Nodes of the form (q, i) with q ∈ α
are called α-nodes ;

• and →⊆ V ×V is such that (i) if (q, i) → (q′, i′) then i′ = i+1 and (ii) for every
(q, i) ∈ V , there exists C ∈ δ(q, σi) such that C ⊆ {q′ | (q, i) → (q′, i+ 1)}. We
say that (q′, i + 1) is a successor of (q, i) if (q, i) → (q′, i + 1), and we say that
(q′, i′) is reachable from (q, i) if (q, i) →∗ (q′, i′).

24 CHAPTER 2. ANTICHAIN ALGORITHMS

A run Tw = 〈N,→〉 of A on an a finite word w is accepting if all nodes (q, i) with
i = |w| reachable from (qι, 0) are α-nodes; and a run Tw = 〈N,→〉 of A on an a
infinite word w is accepting if all paths from (qι, 0) visit α-nodes infinitely often (i.e.,
all paths satisfy a Büchi condition). A (finite or infinite) word w is accepted by A if
there exists an accepting run on w. Alternating automata on finite words are called
AFA, and alternating automata on infinite words are called ABW. The language of an
AFA (resp., ABW) A is the set L(A) of finite (resp., infinite) words accepted by A.

The emptiness problem for alternating automata is to decide if the language of
a given alternating automaton (AFA or ABW) is empty. This problem is PSpace-
complete for both AFA and ABW [MS72, SVW87]. For finite words, we also consider
the universality problem which is to decide if the language of a given AFA with alphabet
Σ is equal to Σ∗, and also PSpace-complete even for the special case of nondeterministic
automata. A nondeterministic automaton (NFA) is an AFA such that δ(q, σ) is a set
of singletons for all states q and letters σ.

We use antichain algorithms to solve the emptiness problem of AFA and ABW, as
well as the universality problem for NFA, and the emptiness problem for NFA specified
by a product of automata. In the case of NFA, it is more convenient to represent the
transition relation as a function δ : Q×Σ → 2Q where δ(q, σ) = {q1, . . . , qn} represents
the set of singletons {{q1}, . . . , {qn}}.

2.4.1.1 Universality problem for NFA

Let A = (Q, qι,Σ, δ, α) be an NFA, and define the subset constructionG(A) = (V,E, Init, Final)
as follows: V = 2Q, E(v1, v2) if there exists σ ∈ Σ such that δ(q, σ) ⊆ v2 for all q ∈ v1,
Init = {v ∈ V | qι ∈ v}, and Final = {v ∈ V | v ⊆ Q \ α}. A classical result shows that
L(A) 6= Σ∗ if and only if Final is reachable from Init in G(A), and thus we can solve
the universality problem for A using antichain algorithms for the reachability problem
on G(A).

Antichains as symbolic representation Consider the relation �F on the states
of G(A) defined by v2 �F v1 if and only if v2 ⊆ v1. Note that �F is a partial order.

Lemma 2.18 �F is a forward simulation in G(A) compatible with Final.

The antichain algorithm for backward reachability is instantiated as follows:

• B̃(0) = Max(⊆, Final) = {Q \ α};

• B̃(i) = Max(⊆, B̃(i− 1) ∪ pre(Down(⊆, B̃(i− 1)))), for all i ≥ 1.

Details about efficient computation of this sequence as well as experimental com-
parison with the classical algorithm based on determinization can be found in [38].

2.4. APPLICATIONS 25

Antichains of promising states Consider the relation �B such that v2 �B v1 if
v2 ⊇ v1. Note that v2 �B v1 iff v1 �F v2.

Lemma 2.19 �B is a backward simulation in G(A) compatible with Init.

The corresponding antichain algorithm for backward reachability is instantiated as
follows:

• B̂(0) = Max(⊇, Final) = {Q \ α};

• B̂(i) = Max(⊇, B̂(i− 1) ∪ pre(B̂(i− 1)))), for all i ≥ 1.

It should be noted that B̃(i) = B̂(i), for all i ≥ 0. In this particular case, the two
views coincide due to the special structure of the transition system G(A) (namely ⊆
is a forward simulation and its inverse ⊇ is a backward simulation).

In the rest of this section, we establish the existence of simulation relations for
various constructions in automata theory, and we omit the instantiation of the corre-
sponding antichain algorithms in the promising state view.

Coarser simulations We show that the algorithms based on antichains of promising
states can be improved using coarser simulations (obtained by exploiting the structure
of the NFA before subset construction). We illustrate this below for backward algo-
rithms and coarser backward simulations.

We construct a backward simulation coarser than �B, using a pre-order ≫b⊆ Q×Q
on the state space of A such that for all σ ∈ Σ, for all q1, q2, q3 ∈ Q, if q2 ≫b q1, then

(i) if q1 = qι, then q2 = qι, and

(ii) if q1 ∈ δ(q3, σ), then there exists q4 ∈ Q such that q2 ∈ δ(q4, σ) and q4 ≫b q3.

Such a relation ≫b is usually called a backward simulation relation for the NFA
A, and a maximal backward simulation relation (which is unique) can be computed in
polynomial time (see e.g. [HHK95]). Given ≫b, define the relation �B+ on G(A) as
follows: v2 �B+ v1 if ∀q2 6∈ v2 · ∃q1 6∈ v1 : q1 ≫b q2.

Lemma 2.20 �B+ is a backward simulation for G(A) compatible with Init.

Note that �B+ is coarser than �B because v2 ⊇ v1 is equivalent to say that for
all q2 6∈ v2, there exists q1 6∈ v1 such that q1 = q2 (which implies that q1 ≫b q2 since
≫b is a pre-order). Therefore, the antichains in the antichain algorithm based on �B+

are subsets of those based on �B. By Corollary 2.12, the number of iterations of the
algorithms based on �B+ and �B is the same when L(A) 6= Σ∗, and Example 2.2 below
shows that the algorithm based on �B+ may converge faster when L(A) = Σ∗.

26 CHAPTER 2. ANTICHAIN ALGORITHMS

using �B using �B+

B̂(0) =
{
{1}

} {
{1}

}

B̂(1) =
{
{1, 2}

} {
{1}, {1, 2}

}

B̂(2) =
{
{1, 2}

}
end

end

4

3

2 1

b

a a, b

a, b

a

b b

Figure 2.3: Improved antichain algorithm for the universality problem of NFA (Exam-
ple 2.2).

Example 2.2 Consider the nondeterministic finite automaton A with alphabet Σ =
{a, b} in Figure 2.3. Note that every word is accepted by A i.e., L(A) = Σ∗ (it suffices
to always go to state 3 from state 4). The backward antichain algorithm applied to the
subset construction G(A) (using �B) converges after 3 iterations, and the intersection

of B̂♮ = {{1, 2}} with the initial states of G(A) is empty. Now, let ≫b be the maximal
backward simulation relation for A. We have 3 ≫b 2, 3 ≫b 1, and q ≫b q for all q ∈
{1, 2, 3, 4}. The induced relation �B+ is such that {1} �B+ {1, 2} and {1, 2} �B+ {1}.

Therefore, B̂(0) ≈b B̂(1) and the backward antichain algorithm based on �B+ converges
faster, namely after 2 iterations.

2.4.1.2 Emptiness problem for AFA

In this section, we use a new definition of backward simulation for alternating automata
on finite words to construct an induced backward simulation on the subset construction
for AFA.

Let A = (Q, qι,Σ, δ, α) be an AFA. Define the subset constructionG(A) = (V,E, Init, Final)
where V = 2Q, E = {(v1, v2) ∈ V × V | ∃σ ∈ Σ · ∀q ∈ v1 · ∃C ∈ δ(q, σ) : C ⊆ v2},
Init = {v ∈ V | qι ∈ v}, and Final = {v ∈ V | q ⊆ α}.

As before, it is easy to see that L(A) 6= ∅ if and only if Final is reachable from Init

in G(A), and the emptiness problem for A can be solved using antichain algorithms
for the reachability problem in G(A) e.g., using the relation �B such that v2 �B v1 if
v2 ⊇ v1 which is a backward simulation in G(A) compatible with Init.

As in the case of the universality problem for NFA, the relation �B can be improved
using an appropriate notion of backward simulation relation defined on the AFA A. We
introduce such a new notion as follows. An backward alternating simulation relation for
an alternating automaton A = (Q, qι,Σ, δ, α) is a pre-order ≫b which is the reflexive
closure of a relation >b such that for all σ ∈ Σ, for all q1, q2, q3 ∈ Q, if q2 >b q1, then

(i) if q1 = qι, then q2 = qι, and

2.4. APPLICATIONS 27

(ii) if there exists C ∈ δ(q3, σ) such that q1 ∈ C, then there exists q4 ∈ Q such that
(a) q2 ∈ C ′ for all C ′ ∈ δ(q4, σ), and (b) q4 >b q3.

It can be shown that a unique maximal backward simulation relation exists for
AFA (because the union of two backward simulation relations is again a backward
simulation relation), and it can be computed in polynomial time using analogous
fixpoint algorithms for computing standard simulation relations [HHK95], e.g. the
fixpoint iterations defined by R0 = {(q1, q2) ∈ Q × Q | q1 = qι → q2 = qι} and
Ri = {(q1, q2) ∈ Ri−1 | ∀q3 ∈ Q : (∃C ∈ δ(q3, σ) : q1 ∈ C) → ∃q4 ∈ Q : (∀C ′ ∈
δ(q4, σ) : q2 ∈ C ′) ∧ (q3, q4) ∈ Ri−1} for all i ≥ 1. Note that for so-called universal
finite automata (UFA) which are AFA where δ(q, σ) is a singleton for all q ∈ Q and
σ ∈ Σ, our definition of backward alternating simulation coincides with ordinary back-
ward simulation for the dual of the UFA (which is an NFA with transition relation
δ′(q, σ) =

{
q ∈ C | δ(q, σ) = {C}

}
).

As before, given a backward alternating simulation relation ≫b for A, we define
the relation �B+ on G(A) as follows: v2 �B+ v1 if ∀q2 6∈ v2 · ∃q1 6∈ v1 : q1 ≫b q2.

Lemma 2.21 �B+ is a backward simulation in G(A) compatible with Init.

2.4.1.3 Emptiness problem for ABW

The emptiness problem for ABW can be solved using a subset construction due to
Miyano and Hayashi [MH84, 34, 6].

Given an ABW A = (Q, qι,Σ, δ, α), define the Miyano-Hayashi transition system
MH(A) = (V,E, Init, Final) where V = 2Q × 2Q, Init = {〈s,∅〉 | qι ∈ s ⊆ V } Final =
2Q × {∅}, and for all v1 = 〈s1, o1〉, and v2 = 〈s2, o2〉, we have E(v1, v2) if there
exists σ ∈ Σ such that ∀q ∈ s1 · ∃C ∈ δ(q, σ) : C ⊆ s2, and either (i) o1 6= ∅ and
∀q ∈ o1 · ∃C ∈ δ(q, σ) : C ⊆ o2 ∪ (s2 ∩ α), or (ii) o1 = ∅ and o2 = s2 \ α.

A classical result shows that L(A) 6= ∅ if and only if there exists an infinite path
from Init in MH(A) that visits Final infinitely many times. Therefore, the emptiness
problem for ABW can be reduced to the repeated reachability problem, and we can
use an antichain algorithm (e.g., based on forward simulation) for repeated reachability
to solve it. We construct a forward simulation for MH(A) using a classical notion of
alternating simulation.

A pre-order ≪f⊆ Q × Q is an alternating forward simulation relation [AHKV98]
for an alternating automaton A if for all σ ∈ Σ, for all q1, q2, q3 ∈ Q, if q2 ≪f q1, then

(i) if q1 ∈ α, then q2 ∈ α, and

(ii) for all C1 ∈ δ(q1, σ), there exists C2 ∈ δ(q2, σ) such that for all q4 ∈ C2, there
exists q3 ∈ C1 such that q4 ≪f q3.

28 CHAPTER 2. ANTICHAIN ALGORITHMS

�� ��� ��� ���
���

�

��

���

	�
������	�����������

��	�������

��	��������

����
�����

����
������

����� ��� �

��
�

�
��

�

Figure 2.4: Experimental comparison of antichain algorithms and the tool NuSMV
for LTL satisfiability.

Given a forward alternating simulation relation ≪f for A, define the relation �F+

on MH(A) such that 〈s2, o2〉 �F+ 〈s1, o1〉 if the following conditions hold: (a) ∀q2 ∈
s2 · ∃q1 ∈ s1 : q2 ≪f q1, (b) ∀q2 ∈ o2 · ∃q1 ∈ o1 : q2 ≪f q1, and (c) o1 = ∅ if and only if
o2 = ∅.

Lemma 2.22 �F+ is a forward simulation in MH(A) compatible with Final.

The result of Lemma 2.22 is particularly useful for the satisfiability and model-
checking problem for LTL (Linear Temporal Logic) because LTL formulas can be trans-
lated in polynomial time to ABW. However, the efficient implementation of antichain
algorithms for LTL requires some more care due to the fact that the produced ABW
have a symbolic alphabet (transitions are labeled by formulas of propositional logic)
and that forward exploration algorithms are much more efficient in practice. Details
and performance evaluation can be found in [34, 45]. An example of the performance
improvements obtained by antichain algorithm is shown in Figure 2.4 for a set of four
LTL formulas describing liveness properties for the Szymanski mutual exclusion proto-
col and for a variant of this protocol due to Pnueli [STV05]. We compare our prototype
with NuSMV [CCGR00] on these four formulas (pos) and their negation (neg).

2.4.1.4 Emptiness problem for a product of NFA

Consider NFAs Ai = (Qi, q
i
ι,Σ∪ {τi}, δi, αi) for 1 ≤ i ≤ n where τ1, . . . , τn are internal

actions, and Σ is a shared alphabet. The synchronized product A1 ⊗ A2 ⊗ · · · ⊗ An is
the transition system (V,E, Init, Final) where

• V = Q1 ×Q2 × · · · ×Qn;

• E(v1, v2) if v1 = (q1
1 , q

2
1, . . . , q

n
1), v2 = (q1

2, q
2
2, . . . , q

n
2) and either qi

2 ∈ δi(q
i
1, τi) for

all 1 ≤ i ≤ n, or there exists σ ∈ Σ such that qi
2 ∈ δi(q

i
1, σ) for all 1 ≤ i ≤ n;

2.4. APPLICATIONS 29

• Init = {(q1
ι , q

2
ι , . . . , q

n
ι)};

• Final = α1 × α2 × · · · × αn.

For each i = 1 . . . n, let ≪i
f ⊆ Qi × Qi be a forward simulation relation for Ai.

Define the relation �F such that (q1
2, q

2
2, . . . , q

n
2) �F (q1

1, q
2
1, . . . , q

n
1) if qi

2 ≪i
f q

i
1 for all

1 ≤ i ≤ n.

Lemma 2.23 �F+ is a forward simulation in A1 ⊗ · · · ⊗An compatible with Final.

2.4.2 Partial-observation games

We consider partial-observation games defined as follows.

A partial-observation game (or simply a game) is a tuple G = 〈Q, qι,Σ,∆,Obs〉,
where Q is a finite set of states, qι ∈ Q is the initial state, Σ is a finite alphabet,
∆ ⊆ Q × Σ × Q is a labeled transition relation which is total, i.e. for all q ∈ Q
and σ ∈ Σ, there exists q′ ∈ Q such that (q, σ, q′) ∈ ∆; and Obs ⊆ 2Q is a set of
observations that partition the state space. For each state q ∈ L, we denote by obs(q)
the unique observation o ∈ Obs such that q ∈ o; and for s ⊆ L and σ ∈ Σ, we denote by
postGσ (s) = {q′ ∈ Q | ∃q ∈ s : (q, σ, q′) ∈ ∆} the set of σ-successors of s. A game with
perfect observation is such that Obs = {{q} | q ∈ Q}, i.e. every state is observable.
We omit the set Obs in perfect-observation games.

Games are played in rounds in which player 1 chooses an action σ ∈ Σ, and player 2
chooses a σ-successor of the current state. However, player 1 does not see the states
chosen by player 2, but only their observation.

The first round starts in the initial state qι. A play in G is an infinite sequence
π = q0σ0q1σ1 . . . such that q0 = qι and (qi, σi, qi+1) ∈ ∆ for all i ≥ 0. The prefix up to
qn of the play π is denoted by π(n). The set of plays in G is denoted Plays(G) and the
set of corresponding prefixes is written as Prefs(G). The observation sequence of π is
the sequence obs(π) = obs(q0)σ0obs(q1)σ1 . . .

A strategy (for player 1) in G is a function α : Prefs(G) → Σ such that α(ρ) = α(ρ′)
for all prefixes ρ, ρ′ ∈ Prefs(G) with obs(ρ) = obs(ρ′). A play ρ = q0σ0q1 · · · ∈ Plays(G)
is consistent with α if σi = α(π(i)) for all i ≥ 0.

An objective for G is a set ϕ of infinite sequences of states and actions, that is,
ϕ ⊆ (Q × Σ)ω. A strategy α of player 1 is winning for ϕ if π ∈ ϕ for all plays π
consistent with α. We only consider observable objectives such that if ρ ∈ ϕ and
obs(ρ) = obs(ρ′), then ρ′ ∈ ϕ. We consider reachability objectives defined by a set
T ⊆ Obs of target observations, and parity objectives defined by a priority function
p : Obs → N that requires that the minimal priority visited infinitely often be even.
Formally, ReachG(T) = {π = q0σ0q1 · · · | ∃i ≥ 0 : obs(qi) ∈ T }, and ParityG(p) = {π =

30 CHAPTER 2. ANTICHAIN ALGORITHMS

q0σ0q1 · · · | min{p(obs(q)) | ∀i · ∃j ≥ i : qj = q} is even }. When the game G is clear
form the context, we omit the subscript in the objective name.

We are interested in deciding there exists a winning strategy for player 1 in a given
game G.

The standard solution for deciding the existence of a winning strategy for player 1
in a given game G with reachability objective is to construct from G an equivalent
game of perfect observation GK obtained using a subset construction [Rei84]. Each
state in GK is a set of states of G that represents the knowledge of player 1, i.e. the
set of states in which the game can be currently. In the worst case, the size of GK is
exponentially larger than the size of G.

Given a partial-observation game G = 〈Q, qι,Σ,∆,Obs〉, we define the knowledge-
based subset construction of G as the following game structure of perfect information:

GK = 〈S, {qι},Σ,∆
K〉,

where S = {s ∈ 2Q\{∅} | ∃o ∈ Obs : s ⊆ o}, and (s1, σ, s2) ∈ ∆K iff there exists an
observation o ∈ Obs such that s2 = PostG

σ (s1)∩o and s2 6= ∅. Notice that for all s ∈ S
and all σ ∈ Σ, there exists a set s′ ∈ S such that (s, σ, s′) ∈ ∆K.

Given a reachability objective ϕ defined on G by a set T of target observations,
we construct a reachability objective ϕK on GK using the same set T , which is well
defined since every state in s ∈ S is naturally associated to a unique observation o
such that s ⊆ o. A result of [9] shows that player 1 has a winning strategy in a partial-
observation game G with reachability objective ϕ if and only if player 1 has a winning
strategy in the perfect-observation game GK with the reachability objective ϕK.

The techniques developed in this chapter can be extended from reachability analysis
in simple transition systems to reachability in games (i.e., alternating reachability)
using alternating simulation relations instead of classical simulations, and the fixpoint
algorithms for reachability and repeated reachability can also be generalized to the
parity condition [9]. A symbolic solution for partial-observation game with parity
objective can be obtained by evaluating a µ-calculus formula over GK using antichains
as a symbolic representation of ⊆-downward-closed sets, using the following lemma.

Lemma 2.24 ⊆ is an alternating forward simulation in GK compatible with all pri-
ority sets {s ∈ S | p(o) = k where o is the unique observation such that s ⊆ o} (for
k ∈ N).

We have chosen the simplest definition of partial-observation games, with the as-
sumptions that the observations form a partition of the state space, that the objective
is observable, and that only player 1 has partial observation. These assumptions can
be dropped without drastically changing the results and techniques presented here.
Overlapping observations are addressed in [9], non-observable parity objectives are ad-
dressed in [17], and partial observation for player 2 has no effect on the existence of
winning strategies for player 1 [9].

2.4. APPLICATIONS 31

2.4.3 QBF - Quantified Boolean Formulas

In verification and automata theory, a typical PSPACE-complete problem is the uni-
versality problem for nondeterministic finite automata (see Section 2.4.1.1). Since
antichain algorithms are really efficient in practice on this problem (Figure 2.1), it
is natural to explore analogous ideas for the problem of evaluating the truth value
of a quantified Boolean formula (QBF), one of the most popular PSPACE-complete
problems.

We present below the main ingredients to obtain antichain algorithms by exploiting
the underlying structure of QBF to define subsumption relations, yielding compact
symbolic representations, as well as sound pruning of the search space. Algorithms
and preliminary performance evaluation can be found in [12].

Notations and QBF problem Let V = {x1, x2, . . . , xm} be a set of m Boolean
variables, we use X,X1, X2, . . . to denote subsets of V . A literal ℓ is either a variable
x ∈ V or the negation x̄ of a variable x ∈ V , and a clause c is a disjunction of literals,
or equivalently a set of literals. We use notations such as ℓ ∈ c, x̄ ∈ c, etc. A CNF
formula is a conjunction of clauses, or equivalently a set of clauses. The empty CNF
formula is denoted by 1, and the empty clause by 0. In the figures we use the notations
∅ and ⊥ instead of 1 and 0 respectively. Given a set X ⊆ V and a CNF formula ψ
over V , we denote by πX(ψ) the projection of ψ over X, with πX(ψ) = {πX(c) | c ∈ ψ}
and πX(c) = {l ∈ c | (l = x ∨ l = x)such that x ∈ X}.

A quantified Boolean formula (QBF) is an expression Q1X1 ·Q2X2 · · ·QnXn ·ψ where
each Qi ∈ {∃, ∀} for 1 ≤ i ≤ n, the sets X1, . . . , Xn (called blocks) form a partition of
V , and ψ is a CNF formula over V . We also write Q1x1 · Q2x2 · · ·Qnxn · ψ when each
block Xi contains one variable (Xi = {xi}). Since ψ is in CNF we assume w.l.o.g. that
the last block is existential (i.e., Qn = ∃). The truth value of a QBF formula is defined
as usual. The QBF evaluation problem is to decide whether a given QBF formula is
true or false. This problem is PSPACE-complete [Pap94].

A valuation for X ⊆ V is a function v : X → {0, 1}. The domain of v is dom(v) =
X. If X = {x1, . . . , xk}, a valuation v : X → {0, 1} can be identified with a word
a1a2 · · ·ak ∈ {0, 1}|X| such that al = v(xl) for all 1 ≤ l ≤ k. The empty word ǫ
corresponds to dom(v) = ∅. Given a partition P = X1 ∪X2 ∪ · · · ∪Xn of V , let X≤i

be the set of variables X1 ∪ X2 · · · ∪ Xi (with X≤0 = ∅), and let X≥i = V \ X≤i−1.
Given the valuations v : X≤i−1 → {0, 1} and w : Xi → {0, 1}, let vw be the valuation
identified with the concatenation of the words representing v and w.

A clause c is satisfied by a valuation v (written v |= c) if there exists x ∈ dom(v)
such that either x ∈ c and v(x) = 1, or x̄ ∈ c and v(x) = 0. Given a CNF formula ψ,
we denote by satv(ψ) the set of clauses c ∈ ψ such that v |= c. We denote by ψ[v] the
CNF formula obtained by replacing in ψ each variable x ∈ dom(v) by its value v(x).
Formula ψ[v] is supposed to be simplified using the laws c ∨ 1 = 1, c ∨ 0 = c with c

32 CHAPTER 2. ANTICHAIN ALGORITHMS

being a clause, and ϕ ∧ 1 = ϕ, ϕ ∧ 0 = 0 with ϕ being a CNF formula.

Let ψ be an unsatisfiable CNF formula. An unsatisfiable core ψ′ of ψ is any subset
of clauses of ψ, minimal for the inclusion, such that ψ′ is still unsatisfiable.

QBF problem as a game It is classical to view the QBF evaluation problem as
reachability in an And-Or graph, or equivalently as a two-player reachability game [Pap94].
For the formula f = Q1x1 · Q2x2 · · ·Qmxm · ψ over V = {x1, x2, . . . , xm}, the game is
played in m rounds (numbered 1, . . . , m) by the existential player P∃ and the universal
player P∀. In round i, the truth value of the variable xi is chosen by player PQi

. After
m rounds, the players have constructed a valuation v : V → {0, 1}, and player P∃ wins
if ψ[v] = 1 (all clauses are satisfied by v), otherwise player P∀ wins. It is easy to see
that P∃ has a winning strategy in this game iff the formula f is true. Note that instead
of having one round for each variable, we can also consider a game with one round for
each block of variables, such that the blocks correspond to quantifier alternations in f .
The players then choose a valuation for all the variables in the block at once, and the
number of rounds is equal to the number of quantifier alternations. As the algorithms
proposed in this paper are based on this game metaphor, we present the And-Or graph
on which the game is played.

Let P = X1 ∪ X2 ∪ · · · ∪ Xn be a partition of V = {x1, x2, . . . , xm}, and let
f = Q1X1 ·Q2X2 · · ·QnXn · ψ be a QBF formula over V . We define the And-Or graph
Gf = (S, S∃, S∀, s0, E, F) where:

• S = {ψ[v] | dom(v) = X≤i−1, for i, 1 ≤ i ≤ n+ 1};

• S∃ = {ψ[v] | dom(v) = X≤i−1 ∧ Qi = ∃, for i, 1 ≤ i ≤ n} is the set of P∃ nodes;

• S∀ = {ψ[v] | dom(v) = X≤i−1 ∧ Qi = ∀, for i, 1 ≤ i ≤ n} is the set of P∀ nodes;

• s0 = ψ is the initial node;

• E = {(ψ[v], ψ[vw]) | dom(v) = X≤i−1 ∧ dom(w) = Xi, for i, 1 ≤ i ≤ n} is the set
of edges;

• F = {ψ[v] ∈ S | ψ[v] = 1} is the set of final nodes.

The set S is naturally partitioned into levels as follows: S = Level1∪Level2∪· · ·∪Leveln+1

where Leveli = {ψ[v] | dom(v) = X≤i−1} for each 1 ≤ i ≤ n+1. The objective of player
P∃ is to reach the set F of nodes ψ[v] such that all clauses of ψ are satisfied by v. The
game starts in node s0 and player PQ (Q ∈ {∃, ∀}) chooses the successor of node s if
s ∈ SQ. Thus if s = ψ[v] ∈ S∃ and dom(v) = X≤i−1, then player P∃ chooses one of
the 2|Xi| possible successors of s in E, corresponding to a valuation w : Xi → {0, 1}.
A node s is winning for player P∃ if he has a strategy to force reaching a node in F
from s, no matter the choices of P∀; otherwise it is losing. We denote by W the set of

2.4. APPLICATIONS 33

winning nodes for player P∃, and by L = S \W the set of losing nodes for P∃. We say
that P∃ is winning the game if s0 ∈ W . In the sequel, we use the notations Wi (resp.,
Li) to denote W ∩ Leveli (resp., L ∩ Leveli).

Lemma 2.25 A QBF formula f is true iff player P∃ is winning the game Gf .

Note that in the graph Gf , each node ψ[v] with dom(v) = X≤i−1 can be associated
with the formula Formula(ψ[v]) ≡ QiXi · · ·QnXn · ψ[v], and we can strengthen the
previous lemma as follows.

Lemma 2.26 Given a QBF formula f , the set of winning nodes in the graph Gf is
W = {ψ[v] ∈ S | Formula(ψ[v]) is true}, and the set of losing nodes is L = {ψ[v] ∈ S |
Formula(ψ[v]) is false}.

Structure in the And-Or graph and antichains The antichain algorithm to solve
the game played on Gf exploits the following subsumption relation on QBF formulas.
We write f1 ⊑ f2 if f1 = QiXi · · ·QnXn · ψ1 and f2 = QiXi · · ·QnXn · ψ2 are two
QBF formulas with the same quantifier prefix, and ψ1 ⊆ ψ2. Intuitively, f1 is more
promising than f2 for player P∃ because all strategies that are winning from ψ2 are
also winning from ψ1.

Lemma 2.27 Suppose that f1 ⊑ f2. If f2 is true, then f1 is true; and if f1 is false,
then f2 is false.

As a direct consequence of Lemmas 2.26 and 2.27, we obtain the next corollary.

Corollary 2.28 In the graph Gf , for all nodes s1, s2 ∈ Leveli such that s1 ⊆ s2, i.e.
Formula(s1) ⊑ Formula(s2), if s2 ∈Wi, then s1 ∈Wi; and if s1 ∈ Li, then s2 ∈ Li.

Hence, Wi is ⊆-downward closed and Li is ⊆-upward closed. The set of ⊆-maximal
elements of Wi, noted ⌈Wi⌉, is an antichain for the partial order ⊆ that canonically
and compactly represents Wi. Similarly, the set of ⊆-minimal elements of Li, noted
⌊Li⌋, is an antichain that canonically and compactly represents Li. A prototype im-
plementation of an antichain algorithm based on such compact representations is pre-
sented in [12]. Although the finely tuned state-of-the-art QBF solvers [GNT04, LB10,
NPPT09] remain faster on most examples, the preliminary results are promising and
show the feasibility of the approach.

34 CHAPTER 2. ANTICHAIN ALGORITHMS

2.5 Tools

Since their introduction in 2006, the antichain algorithms we have presented have
been implemented in the tools Alaska [45] for applications in logics and automata,
and Alpaga [44] for applications in partial-observation games. We briefly present these
tools below. The antichain approach has been further developed by other teams for
LTL synthesis (Acacia [FJR09, FJR10], Unbeast [Ehl10]) and automata-based verifica-
tion [BHH+08, ACH+10, FV10].

• Our tool Alaska implements antichain algorithms to solve the emptiness problem
for alternating finite automata (AFA) and alternating Büchi automata (ABW).
Using the well-known translation from LTL to alternating automata, Alaska solves
the satisfiability, validity, and model-checking problems for LTL over finite and
infinite words.

While several tools (notably NuSMV [CCGR00], and Spin [RH04]) have ad-
dressed the satisfiability and model-checking problems for LTL [RV07], Alaska

uses new antichain algorithms that are often more efficient, especially over large
LTL formulas. Moreover, to the best of our knowledge, Alaska was the first pub-
licly available tool that provides a direct interface to efficient algorithms for the
emptiness of ABW and AFA. Alaska is intended as an open and documented
library of antichain-based verification algorithms.

Promising experimental results have been obtained by Alaska as illustrated by
the example of Section 2.4.1.3. Detailed performance evaluation and comparison
can be found in [34, 45].

• Our tool Alpaga solves parity games with partial observation. Given the descrip-
tion of a game, the tool determines whether the partial-observation player has
a winning strategy for the parity objective and, if this is the case, it constructs
such a winning strategy.

Alpaga implements antichain algorithms based on symbolic fixed-point computa-
tions using a compact representation of sets [9], and compact representation of
strategies [31]. The symbolic algorithm evaluates a µ-calculus fixpoint formula
defined using the controllable predecessor operator that returns the states from
which a player can force the play into a given target set in one round. As no
polynomial algorithms is known for computing this operator, we propose a new
symbolic implementation based on BDDs to avoid a naive enumerative procedure.

To the best of our knowledge, this is the first implementation of a tool for solving
parity games with partial observation. Details and performance evaluation can
be found in [31, 44].

2.6. PERSPECTIVES 35

2.6 Perspectives

Currently, we are exploring the following applications of antichain algorithms in veri-
fication:

• with Marc Ducobu et al. [12], we continue the development of a solver for QBF,
based on the game interpretation presented in Section 2.4.3. Subsumption is a
new and simple idea that gives promising results, and should further be evaluated
in QBF solving.

• we are exploring antichain algorithms for solving parity games, using a reduction
to safety games [1]. The reduction is exponential, but it induces a partial order
on the state space that can be used in principle to define antichain algorithms.

• a quivering research direction is the practical algorithmic solution of partial-
observation games. We have presented tools and algorithms for solving partial-
observation games with parity objectives (Section 2.4.2). What is missing is
the efficient algorithmic solution of partial-observation games with stochastic
transitions, randomized strategies, and partial observation for both players.

36 CHAPTER 2. ANTICHAIN ALGORITHMS

Chapter 3

Quantitative Games

Il n’y a que deux manières de gagner la partie: jouer cœur ou tricher.

Jean Cocteau, Lettre à Jacques Maritain.

3.1 Introduction

In classical model-checking, the aim is to formally verify that an implementation of
a system (circuit, protocol, embedded software, etc.) satisfies a given specification.
Fully automatic and exhaustive verification is typically undecidable, and therefore
the formal analysis typically considers simplified model of the system (abstraction)
for which certain properties can be expressed and are decidable (deadlock avoidance,
reactivity, fairness, etc.).

We consider extensions of the classical model-checking framework, in two direc-
tions. First, all or some part of the implementation may not be given (such as syn-
chronization policy in lock-based concurrent systems, or termination condition of a
loop, etc.) and then the formal analysis should be aimed at synthesizing a correct im-
plementation. Synthesis is naturally viewed as a game, the interactive generalization
of automata where one player (the implementation) tries to satisfy an objective (the
specification) no matter the behavior of the second player (the external uncontrollable
environment). Second, the correctness of an implementation may not be formulated
as a purely Yes/No question, but as a measure of its quality (such as response time,
or energy consumption), and the properties of interest may not be expressed as classi-
cal qualitative properties (such as standard trace inclusion in ω-regular specifications).
Quantitative notions of correctness, and quantitative properties generalize the classical
theory of games and automata [Hen10].

In this chapter, we study quantitative games where the quantitative aspect is a
natural model for the amount of resource (such as energy usage, or buffer size) used by
an implementation, or for the quality measure or distance to correctness of a model.

37

38 CHAPTER 3. QUANTITATIVE GAMES

Quantitative games for synthesis have been studied in several previous works (see
e.g. [CdHS03, CdF+06, BCHJ09]). We consider the model of energy games [CdHS03,
BFL+08] where the value of a run of the system is the sum of the weights along the
run, reminiscent of the energy consumption (and recharging) of an embedded system.
Energy games have been relatively little studied, as compared to mean-payoff and
discounted games where the value of a run is the long-run average of the weights, or the
discounted sum of the weights [EM79, ZP96]. Mean-payoff and discounted games have
fascinating connections with parity games and simple stochastic games: parity games
(and the model-checking problem for the modal mu-calculus [Koz83]) reduce to mean-
payoff games [GH82, EJS93], which reduce to discounted games [ZP96], themselves
reducing to simple stochastic games [Con92, ZP96]. All reductions are in polynomial
time, and all these problems are in NP ∩ coNP. It is a long-standing open question to
know whether these problems are in P.

It follows from the results of [BFL+08] that energy games are surprisingly log-space
equivalent to mean-payoff games. Since energy games are conceptually simpler than
mean-payoff games, their structure and algorithmic solution provide new insights on
problems related to classical games (mainly mean-payoff games) as we show in this
chapter.

In an energy game, given an initial credit c ∈ N, the objective of player 1 is
to maintain the sum of the weights (the energy level) always positive. The decision
problem for energy games asks, given a weighted game graph and state q, if there exists
an initial credit for which player 1 wins from q. It is known that memoryless strategies
are sufficient for energy games, and that player 1 essentially needs to ensure that all
cycles that can be formed by player 2 have nonnegative weight.

First, we present a direct fixpoint algorithm to compute the minimum initial credit
when it exists. In combination with the log-space equivalence with mean-payoff games,
it improves on the algorithmic solutions to solve mean-payoff games.

Second, we consider mean-payoff and energy games with partial observation. In
applications of games for controller synthesis, the players may not have a complete
knowledge of the history of the execution (e.g., because the private variables of other
players are not visible, or because the sensors have poor accuracy). The log-space
equivalence between mean-payoff and energy games breaks in the setting of partial-
observation games, and we show that winning strategies may require infinite memory
for mean-payoff games, while finite memory is sufficient for energy games, in contrast
with games of perfect observation where memoryless strategies suffice in both cases.
We show that under partial observation, energy games with fixed initial credit are
decidable, while both energy games with unknown initial credit, and mean-payoff games
are undecidable.

Third, we consider energy parity games as a model for the design of reactive sys-
tems that work in resource-constrained environment. The desired system must respect
both a quantitative specification (e.g., constraining resource usage such as power con-

3.2. DEFINITIONS 39

sumption) and a qualitative specification (constraining the functional requirement).
Only recently objectives combining both qualitative and quantitative specifications
have been considered [CdHS03, CHJ05, BCHJ09]. The qualitative specification is a
parity condition, a canonical way to express the ω-regular objectives [Tho97], and the
quantitative specification is the energy condition The main algorithmic question is to
decide if there exists an initial credit (or initial energy level) such that one player has a
strategy to maintain the level of energy positive while satisfying the parity condition.

Energy parity games generalize both parity games and energy games. We obtain
the following results: (a) exponential-memory strategies are sufficient to win energy
parity games, and exponential memory may be required. Strategies of the opponent
need no memory at all (memoryless spoiling strategies exist); (b) while memoryless
strategies are not sufficient, we show that the problem of deciding the existence of an
initial credit which is sufficient to win an energy parity game is (perhaps surprisingly)
in NP ∩ coNP; (c) a conceptually simple algorithmic solution to compute the minimum
initial credit in energy parity games, and (d) the polynomial equivalence with mean-
payoff parity games, which provides as a corollary that the problem of deciding the
winner in mean-payoff parity games is also in NP ∩ coNP, and a new algorithm for
solving mean-payoff parity games with essentially the same complexity as in [CHJ05],
but with a conceptually simpler solution.

Finally, we study a multi-dimensional generalization of energy games as a model of
reactive systems with several resources. The main result shows that the decision prob-
lem of the existence of an initial credit vector is coNP-complete. In multi-dimensional
games, the log-space equivalence with mean-payoff games breaks as well.

3.2 Definitions

Game graphs. A game graph G = 〈Q,E〉 consists of a finite setQ of states partitioned
into player-1 states Q1 and player-2 states Q2 (i.e., Q = Q1∪Q2), and a set E ⊆ Q×Q
of edges such that for all q ∈ Q, there exists (at least one) q′ ∈ Q such that (q, q′) ∈ E.
A player-1 game is a game graph where Q1 = Q and Q2 = ∅. The subgraph of G
induced by S ⊆ Q is the graph G ↾ S = 〈S,E∩ (S×S)〉 (which is not a game graph in
general); the subgraph induced by S is a game graph if for all s ∈ S there exist s′ ∈ S
such that (s, s′) ∈ E.

Given a set of states U ⊆ Q, we denote by pre(U) the set of states having a successor
in U , i.e. pre(U) = {q | ∃q′ ∈ U : (q, q′) ∈ E}, and by post(U) the set of successors of
states in U , i.e. post(U) = {q′ | ∃q ∈ U : (q, q′) ∈ E}. For singleton U = {q} we write
pre(q) and post(q).

Plays and strategies. A game on G starting from a state q0 ∈ Q is played in rounds
as follows. If the game is in a player-1 state, then player 1 chooses the successor state
from the set of outgoing edges; otherwise the game is in a player-2 state, and player 2

40 CHAPTER 3. QUANTITATIVE GAMES

chooses the successor state. The game results in a play from q0, i.e., an infinite path
ρ = q0q1 . . . such that (qi, qi+1) ∈ E for all i ≥ 0. The prefix of length n of ρ is denoted
by ρ(n) = q0 . . . qn. A strategy for player 1 is a function σ : Q∗Q1 → Q such that
(q, σ(ρ · q)) ∈ E for all ρ ∈ Q∗ and q ∈ Q1. An outcome of σ from q0 is a play q0q1 . . .
such that σ(q0 . . . qi) = qi+1 for all i ≥ 0 such that qi ∈ Q1. Strategy and outcome for
player 2 are defined analogously.

Finite-memory strategies. A strategy uses finite-memory if it can be encoded by
a deterministic transducer 〈M,m0, αu, αn〉 where M is a finite set (the memory of
the strategy), m0 ∈ M is the initial memory value, αu : M × Q → M is an update
function, and αn : M × Q1 → Q is a next-move function. The size of the strategy is
the number |M | of memory values. If the game is in a player-1 state q and m is the
current memory value, then the strategy chooses q′ = αn(m, q) as the next state and
the memory is updated to αu(m, q). Formally, 〈M,m0, αu, αn〉 defines the strategy α
such that α(ρ · q) = αn(α̂u(m0, ρ), q) for all ρ ∈ Q∗ and q ∈ Q1, where α̂u extends
αu to sequences of states as expected. A strategy is memoryless if |M | = 1. For a
finite-memory strategy σ, let Gσ be the graph obtained as the product of G with the
transducer defining σ, where (〈m, q〉, 〈m′, q′〉) is a transition in Gσ if m′ = αu(m, q)
and either q ∈ Q1 and q′ = αn(m, q), or q ∈ Q2 and (q, q′) ∈ E. In Gσ, the expression
reachable from q stands for reachable from 〈q,m0〉.

Objectives. An objective for G is a set ϕ ⊆ Qω. Let p : Q→ N be a priority function
and w : E → Z be a weight function1 where positive numbers represent rewards. We
denote by W the largest weight (in absolute value) according to w. The energy level
of a prefix γ = q0q1 . . . qn of a play is EL(w, γ) =

∑n−1
i=0 w(qi, qi+1), and the mean-payoff

value of a play ρ = q0q1 . . . is is either MP(w, π) = lim supn→∞
1
n
· EL(w, π(n)) or

MP(w, π) = lim infn→∞
1
n
· EL(w, π(n)).

In the sequel, when the weight function w is clear from context we will omit it
and simply write EL(γ) and MP(ρ). We denote by Inf(ρ) the set of states that occur
infinitely often in ρ. We consider the following objectives:

• Safety and reachability objectives. Given a set T ⊆ Q of target states, the
reachability objective requires that the play visit the set T : Reach(T) = {ρ =
q0q1 · · · ∈ Plays(G) | ∃i ≥ 0 : qi ∈ T }, the dual safety objective requires the play
to stay within the set T : Safe(T) = {ρ = q0q1 · · · ∈ Plays(G) | ∀i ≥ 0 : qi ∈ T }.

• Parity objectives. The parity objective ParityG(p) = {ρ ∈ Plays(G) | min{p(q) |
q ∈ Inf(ρ)} is even } requires that the minimum priority visited infinitely often
be even. The special cases of Büchi and coBüchi objectives correspond to the
case with two priorities, p : Q→ {0, 1} and p : Q→ {1, 2} respectively.

1Sometimes we take the freedom to use rational weights (i.e., w : E → Q), while we always assume
that weights are integers encoded in binary for complexity results.

3.2. DEFINITIONS 41

• Energy objectives. Given an initial credit c0 ∈ N ∪ {∞}, the energy objective
PosEnergyG(c0) = {ρ ∈ Plays(G) | ∀n ≥ 0 : c0 + EL(ρ(n)) ≥ 0} requires that the
energy level be always positive.

• Mean-payoff objectives. Given a threshold ν ∈ Q, the mean-payoff objective
MeanPayoffG(ν) = {ρ ∈ Plays(G) | MP(ρ) ≥ ν} requires that the mean-payoff
value be at least ν. In Section 3.4, we distinguish between objectives defined by
MP(·) and MP(·) and with strict or non-strict threshold.

• Combined objectives. The energy parity objective ParityG(p) ∩ PosEnergyG(c0)
and the mean-payoff parity objective ParityG(p) ∩ MeanPayoffG(ν) combine the
requirements of parity and energy (resp., mean-payoff) objectives.

When the game G is clear form the context, we omit the subscript in objective names.

Winning strategies. A player-1 strategy σ is winning2 in a state q for an objective ϕ
if ρ ∈ ϕ for all outcomes ρ of σ from q. For energy and energy parity objectives with
unspecified initial credit, we also say that a strategy is winning if it is winning for some
finite initial credit.

Decision problems. We are interested in the following decision problems.

The initial credit problem asks, given an energy (parity) game 〈G, p, w〉 and a state
q, whether there exists a finite initial credit c0 ∈ N and a winning strategy for player 1
from q for the objective PosEnergyG(c0) (resp., ParityG(p) ∩ PosEnergyG(c0)). Given a
fixed initial credit c0 ∈ N, the fixed initial credit problem asks whether there exists a
winning strategy for player 1 from q for the objective PosEnergyG(c0).

The minimum initial credit in a state q0 ∈ Q is the least value of initial credit for
which there exists a winning strategy for player 1 in q0.

The mean-payoff threshold problem asks, given a mean-payoff (parity) game 〈G, p, w〉,
a state q, and a threshold ν ∈ Q, to decide whether there exists a winning strategy σ for
player 1 from q for the objective MeanPayoffG(ν) (resp., ParityG(p)∩MeanPayoffG(ν)).
It is sufficient to consider this problem with threshold 0 because the answer for the
instance (〈G, p, w〉, q, ν) is the same as the answer for (〈G, p, w − ν〉, q, 0) where
(w − ν)(e) = w(e) − ν for all edges e ∈ E.

The optimal mean-payoff value in a state q0 ∈ Q is the largest threshold for which
there exists a winning strategy for player 1 in q0.

A strategy for player 1 is optimal in a state q0 if it is winning from q0 with the
minimum initial credit (resp., the optimal mean-payoff value). The related problem of
strategy synthesis, which is to construct an optimal strategy, is discussed in [2].

2We also say that player-1 is winning, or that q is a winning state.

42 CHAPTER 3. QUANTITATIVE GAMES

Memory Memory
player 1 player 2

perfect Energy memoryless [CdHS03, BFL+08]
observation Mean-Payoff memoryless [EM79]
partial Energy finite counting
observation Mean-Payoff infinite counting
perfect Energy parity |Q|·d·W memoryless
observation Mean-Payoff parity infinite [CHJ05] memoryless [CHJ05]
perfect obs. Multi-energy finite [BJK10] memoryless [BJK10]

Table 3.1: Strategy complexity in energy and mean-payoff (parity) games.

Computational Algorithmic
complexity complexity

perfect Energy NP ∩ coNP [CdHS03, BFL+08] O(|E|·|Q|·W)
observation Mean-Payoff NP ∩ coNP [EM79] O(|E|·|Q|·W)
partial Energy undecidable
observation Mean-Payoff undecidable
perfect Energy parity NP ∩ coNP O(|E|·d·|Q|d+2·W)
observation Mean-Payoff parity NP ∩ coNP O(|E|·d·|Q|d+3·W)
perfect obs. Multi-energy coNP-complete

Table 3.2: Computational and algorithmic complexity of energy and mean-payoff (par-
ity) games.

3.3 Energy and Mean-Payoff Games

We consider the decision problems for energy and mean-payoff games with perfect
observation.

It is known from the works of Ehrenfeucht and Mycielski that memoryless optimal
strategies exist for mean-payoff games [EM79]. From this result, it is easy to show
that the decision problem for mean-payoff games lies in NP ∩ coNP, and that either
definitions of mean-payoff (defined as lim sup or lim inf) are equivalent for perfect-
observation games. Despite large research efforts [GKK88, ZP96, Pis99, Con93, DG06,
LP07, BV07], no polynomial time algorithm is known for that problem. A pseudo-
polynomial time algorithm has been proposed by Zwick and Paterson [ZP96] with
complexity O(|E|·|Q|2·W).

For energy games, it is known that the initial credit problem can be solved in
NP ∩ coNP because memoryless strategies are sufficient to win such games [CdHS03,
BFL+08]. The following characterizations establish the log-space equivalence of the
decision problems for energy and mean-payoff games.

3.3. ENERGY AND MEAN-PAYOFF GAMES 43

Lemma 3.1 ([EM79, BV07]) A memoryless strategy σ for player 1 is winning from
a state q in a mean-payoff game G with threshold ν if and only if all cycles reachable
from q in Gσ have average weight at least ν.

Lemma 3.2 ([EM79, LP07, BFL+08]) A memoryless strategy σ for player 1 is
winning from a state q in an energy game G if and only if all cycles reachable from q
in Gσ are nonnegative.

Corollary 3.3 ([BFL+08]) Energy games are log-space equivalent to mean-payoff games.
Given a game G, a state q, a weight function w, and a threshold ν, a strategy σ for
player 1 is winning in the mean-payoff game (G,w) with threshold ν if and only if σ
is winning in the energy game (G,w − ν).

Once a memoryless winning strategy is fixed, the minimum initial credit in a win-
ning state q can be computed as follows: for each state q′, let c(q′) be the weight of the
cheapest path from q to q′. By Lemma 3.2, the cheapest paths are acyclic and thus
their weight is at most M = |V | ·W . The minimum initial credit in q is maxq′ c(q

′)
and this value is at most M (if it is finite).

The algorithmic solution of energy game consists in computing the minimum ini-
tial credit f(q) in each state q by a fixpoint iteration which computes successive (un-
der)approximations of the minimum initial credit. Initially, let f0(q) = 0 for all states
q ∈ Q. Then, we update the function f0 in each state q using the operator Lift(·)
defined by:

Lift(f)(q) =

{
max{0,min {f(q′) − w(q, q′) | (q, q′) ∈ E}} if q ∈ Q0

max{0,max{f(q′) − w(q, q′) | (q, q′) ∈ E}} if q ∈ Q1

Intuitively, the value f(q′) − w(q, q′) is the energy level needed in state q in order
to take the edge (q, q′) and ensure energy level at least f(q′) in the successor state q′.
If q ∈ Q0 is a player-0 state, then player 0 can choose the cheapest successor of q,
therefore Lift(f)(q) computes min{f(q′)−w(q, q′) | (q, q′) ∈ E}; if q ∈ Q1 is a player-1
state, then player 1 needs to survive all successors of q, therefore Lift(f)(q) computes
max{f(q′) − w(q, q′) | (q, q′) ∈ E}.

In the fixpoint iterations fi+1 = Lift(fi), whenever the value fi(q) in some state q
gets larger than M we know by the above argument that the state q is not winning for
player 0. Therefore, the values above M are equivalent, and we can stop the fixpoint
iterations when the condition ⌈fi(q)⌉M = ⌈fi+1(q)⌉M holds for all q ∈ Q where:

⌈k⌉M =

{
k if x ≤ M
∞ if x ≥ M

This implies that the functions fi have essentially a finite range ({0, . . . ,M} ∪
{∞}) and thus the fixpoint algorithm terminates. In a clever implementation of this
algorithm, we need to update the value in a state q only when the value a successor q′

of q has been updated previously. In fact, whenever the value in a state q′ is updated,

44 CHAPTER 3. QUANTITATIVE GAMES

q r

s t u

4

−5

1

2 −5 3

−1

q

0

r

0

s

0

t

6

u

2

3

−6

0

1 −6 2

−2

Figure 3.1: Solving mean-payoff games (on the left) using energy games (on the right).

we check which predecessors q ∈ pre(q′) need to be updated and include them in a list.
For q ∈ Q0, the condition is that f(q)+w(q, q′) < Lift(f)(q′). For q ∈ Q1, the condition
is slightly more tricky because it is not sufficient that f(q) + w(q, q′) < Lift(f)(q′) as
there may (or may not) be other states q′′ ∈ post(q) such that f(q) + w(q, q′′) =
f(q′′). The algorithm keeps a counter for each state q ∈ Q1 and decrement it when
f(q) + w(q, q′) < Lift(f)(q′). The state q is inserted in the list when the counter is
equal to 0. The implementation details [2] yield the following complexity analysis. The
value of each state is updated at most M+ 1 times, and each update requires looking
up the sets of predecessors and of successors, hence the time complexity is

∑
q∈Q(|pre(q)| + |post(q)|) · (M + 1) =

O(|Q| ·W ·
∑

q∈Q(|pre(q)| + |post(q)|))

= O(|E| · |Q| ·W).

This improves the complexity of the algorithm proposed by Zwick and Pater-
son [ZP96] which has O(|E| · |Q|2 ·W) complexity. The results of this section are
summarized in the first two lines of Table 3.2.

Example 3.1 Consider the mean-payoff game shown on the left of Figure 3.1, where
round states controlled by player 1, and diamond states by player 2.

Player 1 can ensure a mean-payoff value 1 from all states by reaching the cycle
(ru). By Corollary 3.3, this game is equivalent to the energy game on the right of
Figure 3.1 where the weights are decreasing by 1. Player 1 has a strategy to confine
the play into the nonnegative cycle (ru) and win the energy game (the minimum initial
credit is attached to each state on Figure 3.1). Therefore, the same strategy ensures
mean-payoff value 1 in the original mean-payoff game.

3.4. PARTIAL-OBSERVATION ENERGY AND MEAN-PAYOFF GAMES 45

3.4 Partial-Observation Energy and Mean-Payoff

Games

We recall the definition of partial-observation game from Section 2.4.2.

A partial-observation game is a tuple G = 〈Q, qι,Σ,∆,Obs〉, where Q is a finite
set of states, qι ∈ Q is the initial state, Σ is a finite alphabet, ∆ ⊆ Q × Σ × Q
is a labeled transition relation which is total, i.e. for all q ∈ Q and σ ∈ Σ, there
exists q′ ∈ Q such that (q, σ, q′) ∈ ∆; and Obs ⊆ 2Q is a set of observations that
partition the state space. For each state q ∈ L, we denote by obs(q) the unique
observation o ∈ Obs such that q ∈ o; and for s ⊆ L and σ ∈ Σ, we denote by
postGσ (s) = {q′ ∈ Q | ∃q ∈ s : (q, σ, q′) ∈ ∆} the set of σ-successors of s. A game with
perfect observation is such that Obs = {{q} | q ∈ Q}, i.e. every state is observable.
We omit the set Obs in perfect-observation games. Games with one observation (i.e.,
Obs = {Q}) are called blind games.

Recall that partial-observation games are played in rounds in which player 1 chooses
an action σ ∈ Σ, and player 2 chooses a σ-successor of the current state. For perfect-
observation games, this model is equivalent to the model presented in Section 3.2 [1].
Related definitions of plays, prefixes, energy level, etc. are adapted from Section 2.4.2.

A strategy (for player 1) in a partial-observation game G is a function function
σ : Prefs(G) → Σ such that for all prefixes ρ, ρ′ ∈ Prefs(G), if obs(ρ) = obs(ρ′), then
α(ρ) = α(ρ′). We emphasize this property of strategies by calling them observation-
based.

In the rest of this section, we consider mean-payoff objectives defined as lim sup or
lim inf, and with strict or non-strict threshold, because our results crucially depend on
this distinction.

Refined mean-payoff objectives. Given a threshold ν ∈ Q, and ∼∈ {>,≥}, the
mean-payoff objectives are MeanPayoffSup∼(ν) = {ρ ∈ Plays(G) | MP(ρ) ∼ ν} and
MeanPayoffInf∼(ν) = {ρ ∈ Plays(G) | MP(ρ) ∼ ν}.

Example 3.2 Consider the blind game of Figure 3.2. All states are indistinguishable
(i.e., Obs = {Q}), and an initial nondeterministic choice determines the state q1 or q′1
in which the game loops forever.

We claim that player 1 has an observation-based winning strategy for the objec-
tive MeanPayoffSup≥(0), but not for MeanPayoffInf≥(0). Note that in blind games,
observation-based strategies can be viewed as infinite words. A winning strategy for the
limsup version consists in playing sequences of a’s and b’s of increasing length in order
to ensure a mean-payoff value MP equal to 0 in both states q1 and q′1. For example,
playing sequences of a’s and b’s such that the length of the i-th sequence is i times the
length of the prefix played so far. This ensures that in q1 and q′1, for all i > 0 there

46 CHAPTER 3. QUANTITATIVE GAMES

q0

q1

q′1

a, 0
b, -1

a, -1
b, 0

Σ, 0

Σ, 0

Figure 3.2: A blind mean-payoff game.

are infinitely many positions such that the average of the weights is greater than −1
i
,

showing that the limsup is 0 in all outcomes.

We show that for every word w ∈ {a, b}ω, the mean-payoff value according to MP is
at most −1

2
. Let ni and mi be the numbers of a’s and b’s in the prefix of length i of w.

Either ni ≤ mi for infinitely many i’s, or ni ≥ mi for infinitely many i’s. In the first
case, the average of the weights (in state q1) is infinitely often at most −1

2
. The same

holds in the second case using state q′1. Therefore the lim inf of the weight averages is
at most −1

2
, and player 1 has no winning strategy for the mean-payoff objective defined

using lim inf and threshold 0.

Note that infinite memory is required to achieve mean-payoff value 0 (according
to MP). Indeed, for all finite-memory strategies (which can be viewed as ultimately
periodic words), the mean-payoff value of an outcome is min{− n

n+m
,− m

n+m
} ≤ −1

2

where n and m are the numbers of a’s and b’s in the cycle of the strategy.

For partial-observation energy games, we show that when the initial credit is fixed
the winner of the game can be decided, and finite-memory strategies are sufficient to
win.

Theorem 3.4 The fixed initial credit problem is decidable.

It follows that the initial credit problem is r.e. (by enumerating the initial credit
values). A reduction from the halting problem of 2-counter machines shows that the
initial credit problem is undecidable (thus not co-r.e.).

Theorem 3.5 The unknown initial credit problem for partial-observation energy games
is undecidable, even for blind games.

3.4. PARTIAL-OBSERVATION ENERGY AND MEAN-PAYOFF GAMES 47

The proof of Theorem 3.4 relies an the construction of an equivalent perfect-
observation game, and an argument based on well-quasi-order. The state space of
the perfect-observation game is the set of functions f : Q → Z ∪ {⊥} which store
as their support is supp(f) = {q ∈ Q | f(q) 6= ⊥} the possible current states of the
game G together with their worst-case energy level. Initially, if q0 is the initial state,
and c0 is the initial credit, then we have fc0(q0) = c0 and fc0(q) = ⊥ for all q 6= q0.
Functions are ordered by the relation � such that f1 � f2 if supp(f1) = supp(f2) and
f1(q) ≤ f2(q) for all q ∈ supp(f1).

For σ ∈ Σ and γ ∈ Obs, the (σ, γ)-successor of f1 is the function f2 such that
supp(f2) = postGσ (supp(f1)) ∩ γ and f2(q) = min{f1(q

′) + w(q′, σ, q) | q′ ∈ supp(f1) ∧
(q′, σ, q) ∈ ∆} for all q ∈ supp(f2).

The perfect-information game has the form of an unraveling tree in which the leaves
are the nodes with a �-smaller ancestor. The game has a safety objective defined by
the target states f such that f(q) ≥ 0 for all q ∈ Q. Over the target states, the relation
� is a well-quasi-order, and by König’s Lemma [Kön36]) and Dickson’s lemma [Dic13]
this tree is finite, yielding decidability as well as existence of finite-memory winning
strategies.

Corollary 3.6 Finite-memory strategies are sufficient to win partial-observation en-
ergy games.

Technical adaptations of the proof of Theorem 3.5 give the undecidability results for
partial-observation mean-payoff games. However, the results do not hold for all mean-
payoff objectives, and the proof that the problem is not r.e. requires two observations
in the game, and it crucially relies on using non-strict inequality in the objective and
on the mean-payoff value being defined using lim sup. The cases of lim inf and blind
games remain open.

Theorem 3.7 The threshold problem for partial-observation mean-payoff games and
objective MeanPayoffSup>(0) (or MeanPayoffInf>(0)) is undecidable (it is not co-r.e.),
even for blind games.

Theorem 3.8 The threshold problem for partial-observation mean-payoff games and
objective MeanPayoffSup≥(0) is undecidable (it is not r.e.).

It follows from Example 3.2 that infinite memory is required in general to win
partial-observation mean-payoff games.

Corollary 3.9 Finite-memory strategies are not sufficient in general to win partial-
observation mean-payoff games.

The results on partial-observation energy and mean-payoff games are summarized
in Table 3.1 Table 3.2.

48 CHAPTER 3. QUANTITATIVE GAMES

0 1 . . . 1 1

1

−W

−W

−W

−W

−W

−W

−W

−W

Figure 3.3: A family of 1-player energy parity games where player 1 needs memory of
size 2 · (n− 1) ·W and initial credit (n− 1) ·W . Edges are labeled by weights, states
by priorities.

3.5 Energy Parity Games

The main result about energy parity games is that on the one hand exponential memory
is required in general for winning strategies of player 1, and on the other hand the
winner can be decided in NP ∩ coNP. The NP upper bound may look surprising, while
the coNP upper bound follows from the fact that memoryless strategies are sufficient
for player 2.

We provide some intuition of the results for energy Büchi games.

Theorem 3.10 (Strategy Complexity) For all energy parity games, the following
assertions hold: (1) winning strategies with memory of size n · d ·W exist for player 1;
(2) memoryless winning strategies exist for player 2.

Example 3.3 (Memory requirement) In Figure 3.3, we present a family of player-
1 games in which memory of size 2 · (n − 1) ·W + 1 is necessary to win. Note that
the weights are encoded in binary, and thus W is exponential in the input size. To
satisfy the parity condition, the play has to visit the initial state infinitely often, and to
maintain the energy positive, the play has to visit the state with the positive-weighted
self-loop. Since the paths between these two state have weight −(n− 1) ·W , it is easy
to see that initial credit (n − 1) · W is necessary, and the self-loop has to be taken
M = 2 · (n− 1) ·W times requiring memory of size M + 1.

While exponential memory may be necessary to win, we show that winning strate-
gies in energy Büchi games can be decomposed into two memoryless strategies: an
attractor strategy which forces to reach a Büchi state, and a good-for-energy strategies
defined below. The cycle decomposition of an infinite path ρ is defined as follows: we
push the states of ρ onto a stack. Whenever we push a state already in the stack, a
cycle γi is formed and we remove it from the stack. The cycle decomposition of ρ is
the sequence γ1, γ2, . . . of cycles so obtained.

Good-for-energy strategy. A strategy σ for player 1 is good-for-energy in state
q if for all outcomes ρ = q0q1 . . . of σ such that q0 = q, for all cycles γ in the cycle

3.5. ENERGY PARITY GAMES 49

decomposition of ρ, either EL(γ) > 0, or EL(γ) = 0 and γ is even (i.e., min{p(q) | q ∈ γ}
is even).

Attractor. The player-1 attractor of a given set S ⊆ Q is the set of states from which
player 1 can force to reach a state in S. It is defined as the limit Attr1(S) of the sequence
A0 = S, Ai+1 = Ai ∪{q ∈ Q1 | ∃(q, q′) ∈ E : q′ ∈ Ai}∪{q ∈ Q2 | ∀(q, q′) ∈ E : q′ ∈ Ai}
for all i ≥ 0. The attractor strategy for player 1 is defined as expected.

Using results of [BSV04], we can show that memoryless good-for-energy strategies
exist. It is well known that attractor strategies are memoryless. An NP algorithm
for energy Büchi games consist in guessing the set of winning states as well as the
good-for-energy and attractor strategies. A winning strategy for player 1 would play
the good-for-energy strategy until a large energy level is reached (say 2 · |Q| · W).
Note that if the energy never reaches that value, then by definition of good-for-energy
strategies the Büchi objectives is satisfied and player 1 wins. Otherwise, player 1
switches to the attractor strategy, and within |Q| steps reaches a Büchi state, with
decrease of energy level at most |Q| ·W . The remaining energy (at least |Q| ·W) is
sufficient to start over. Analogous arguments give the general result for energy parity
games.

Theorem 3.11 (Computational Complexity) The initial credit problem for en-
ergy parity games can be solved in NP ∩ coNP.

The structure of the proof naturally yields a fixpoint algorithm which generalizes
the classical algorithm of McNaughton [McN93] and Zielonka [Zie98] for solving parity
games [18].

Theorem 3.12 (Algorithmic Complexity) The problem of deciding the existence
of a finite initial credit for energy parity games can be solved in time O(|E|·d·|Q|d+2·W).

Finally, there is a tight relationship between energy parity games and mean-payoff
parity games. The work in [CHJ05] shows that optimal strategies in mean-payoff
parity games may require infinite memory in general, and whereas Theorem 3.10 shows
that finite memory is sufficient in energy parity games, we show that energy parity
games are polynomially equivalent to mean-payoff parity games, leading to NP ∩ coNP
membership of the problem of deciding the winner in mean-payoff parity games, and
leading to an algorithm for solving such games which is conceptually much simpler
than the algorithm of [CHJ05], with essentially the same complexity (linear in the
largest weight, and exponential in the number of states only).

Theorem 3.13 The mean-payoff threshold problem for mean-payoff parity game can
be decided in NP ∩ coNP.

50 CHAPTER 3. QUANTITATIVE GAMES

Theorem 3.14 The problem of deciding the winner in mean-payoff parity games can
be solved in time O(|E| · d · |Q|d+3 ·W · (|Q| + 1)).

The results on the complexity of energy and mean-payoff parity games are summa-
rized in Table 3.1 Table 3.2.

3.6 Multi-Weighted Games

In a multi-weighted game, the edges of the graphs are labeled with k-dimensional
vectors w of integer values, i.e., w ∈ Zk. The energy objective requires that, given an
initial credit v0 ∈ Nk, the sum of v0 and all the vectors labeling edges up to position i
in the play is nonnegative, for all i ∈ N. The mean-payoff objective is specified by a
vector of threshold values v ∈ Zk and requires that the mean values is at least v.

For multi-weighted energy games, we show that the unknown initial credit prob-
lem is coNP-complete. The result relies on the existence of memoryless strategies for
player 2 [BJK10], and on the fact that checking whether a multi-weighted graph (in
our case the graph obtained after fixing the strategy of player 2) contains a nonnega-
tive cycle can be done in polynomial time [KS88]. The lower bound is obtained by a
reduction from the complement of the 3SAT problem which is NP-complete [Pap94].

Consider a 3SAT formula ψ in CNF with clauses C1, C2, . . . , Ck over variables
{x1, x2, . . . , xn}, where each clause consists of disjunctions of exactly three literals
(a literal is a variable or its complement). Given the formula ψ, we construct a game
graph as shown in Figure 3.4: from the initial state, player 1 chooses a clause, then
player 2 chooses a literal that appears in the clause (i.e., makes the clause true). From
every literal the next state is the initial state. In the multi-weight function there is
a component for every literal. For edges from the initial state to the clause states,
and from the clause states to the literals, the weight for every component is 0. For
the edges from a literal y back to the initial state, the weight for the component of y
is 1, the weight for the component of the complement of y is −1, and for all the other
components the weight is 0.

Intuitively, if ψ is satisfiable, then player 2 wins by choosing in each clause a
literal set to true by a satisfying assignment. Indeed, consider an arbitrary strategy
for player 1: the resulting infinite play must visit some literal x infinitely often. The
complement literal x is never visited, and every time literal x is visited, the component
corresponding to x decreases by 1. It follows that the play is winning for player 2 for
every finite initial credit.

On the other hand, if ψ is not satisfiable, then it suffices to show that there is no
memoryless winning strategy for player 2. To every memoryless strategy for player 2
corresponds a (possibly partial) assignment of the variables. Since ψ is not satisfiable
it follows that this assignment is conflicting (it assigns the same truth value to some

3.6. MULTI-WEIGHTED GAMES 51

C1

C2

Ck

...

}

}

}

literal

literal

literal

Figure 3.4: Game graph construction for a 3SAT formula (Lemma 3.15).

qa qb

(2, 0) (0, 2)
(0, 0)

(0, 0)

Figure 3.5: A multi-weighted mean-payoff game where infinite memory is necessary to
win (Example 3.4).

literal x and its complement xi). Hence there must exist clauses Ci and Cj and variable
xk such that the strategy chooses the literal xk in Ci and the complement xk in Cj.
The strategy for player 1 that alternates between clause Ci and Cj spoils the strategy
of player 2 with initial credit 1 in each dimension.

Theorem 3.15 The unknown initial credit and the mean-payoff threshold problems
for multi-weighted two-player game structures are coNP-complete.

Observe that our hardness proof works with weights restricted to the set {−1, 0, 1}.

If we restrict our attention to finite-memory strategies for multi-weighted games,
then energy and mean-payoff games are equivalent.

Theorem 3.16 For all multi-weighted two-player game structures G with dimension
k, the answer to the unknown initial credit problem is Yes if and only if the answer
to the mean-payoff threshold problem (for finite memory) with threshold vector {0}k is
Yes.

However, in general infinite memory is required to win generalized mean-payoff
games.

52 CHAPTER 3. QUANTITATIVE GAMES

Example 3.4 Figure 3.5 shows a game where all states belong to player 1, and (a) for
MP, player 1 can achieve a threshold vector (1, 1), and (b) for MP, player 1 can achieve
a threshold vector (2, 2); (c) if we restrict player 1 to use a finite-memory strategy, then
it is not possible to win the multi mean-payoff objective with threshold (1, 1) (and thus
also not with (2, 2)). To prove (a), consider the strategy that visits n times qa and then
n times qb, and repeats this forever with increasing value of n. This guarantees a mean-
payoff vector (1, 1) for MP because in the long-run roughly half of the time is spent in
qa and roughly half of the time in qb. To prove (b), consider the strategy that alternates
visits to qa and qb such that after the nth alternation, the self-loop on the visited state q
(q ∈ {qa, qb}) is taken so many times that the average frequency of q gets larger than 1

n

in the current finite prefix of the play. This is always possible and achieves threshold
(2, 2) for MP. Note that the above two strategies require infinite memory. To prove (c),
notice that finite-memory strategies produce an ultimately periodic play and therefore
MP and MP coincide with MP. It is easy to see that such a play cannot achieve (1, 1)
because the periodic part would have to visit both qa and qb and then the mean-payoff
vector (v1, v2) of the play would be such that v1 + v2 < 2 and thus v1 = v2 = 1 is
impossible.

Theorem 3.17 In generalized mean-payoff games, infinite memory may be necessary
to win (finite-memory strategies may not be sufficient).

The mean-payoff threshold problem for generalized mean-payoff games with arbi-
trary (not necessarily finite-memory) strategies has been recently shown to be coNP-
complete [VR11].

3.7 Conclusion and Perspectives

Studying the energy objective in games on graphs has provided new insights and a
number of interesting results in the field. For example, the tight connection of energy
games with mean-payoff games lead to an improved bound for solving mean-payoff
games, and a new algorithm for solving mean-payoff parity games. A better under-
standing of the complexity of games on (multi-)counter systems is also arising.

Promising research directions to explore in the future include:

• solving the open questions related to energy games with partial-observation in
order to get a complete picture. For instance, the proof of Theorem 3.8 requires
two observations in the game. The question of blind games (with only one obser-
vation) is intriguing as it may still be decidable. To obtain a complete picture,
we would need to solve the question of Theorem 3.7 for non-strict threshold, and
the question of Theorem 3.8 for blind games, and for all combinations of strict
and non-strict threshold, and mean-payoff defined as lim inf or lim sup.

3.7. CONCLUSION AND PERSPECTIVES 53

• in multi-weighted games, a recent result shows that in two dimensions, energy
games are solvable in polynomial time [Cha10]. The question of the existence
of a polynomial-time algorithm for solving energy games in three dimensions, or
more generally in fixed dimension, remains open.

• the extension of the two-player games, to stochastic games is an active direction
of research. The questions arising in the various forms of energy stochastic games
are technical and seem to be really challenging.

• with Thierry Massart and our PhD student Mahsa Shirmohammadi, we are
studying new semantics for probabilistic automata, which gives a new class of
quantitative objectives in stochastic games (see also [47, 16] and the paragraph
on MDPs in the introduction of this manuscript).

• with Dietmar Berwanger and our PhD student Julien Reichert, we plan to study
the decidability frontier of various extensions of games with counters, and to ex-
plore connections with other quantitative frameworks such as regular cost func-
tions, distance automata, and their game extension [CL08, Col09].

54 CHAPTER 3. QUANTITATIVE GAMES

Chapter 4

Quantitative Languages

Je suis anarchiste au point de toujours traverser dans les clous pour ne pas

avoir à discuter avec la maréchaussée.

Georges Brassens.

4.1 Introduction

The automata-theoretic approach to verification is Boolean. To check that a system
satisfies a specification, we construct a finite automaton A to model the system and a
finite (usually nondeterministic) automaton B for the specification. The language L(A)
of A contains all behaviors of the system, and L(B) contains all behaviors allowed by
the specification. The language of an automaton A can be seen as a Boolean function
LA that assigns 1 (or true) to words in L(A), and 0 (or false) to words not in L(A). The
verification problem “does the system satisfy the specification?” is then formalized
as the language-inclusion problem “is L(A) ⊆ L(B)?”, or equivalently, “is LA(w) ≤
LB(w) for all words w?”. We investigate a natural generalization of this framework: a
quantitative language L is a function that assigns a real-numbered value L(w) to each
(finite or infinite) word w. With quantitative languages, systems and specifications
can be formalized more accurately. For example, a system may use a varying amount
of some resource (e.g., memory consumption, or power consumption) depending on its
behavior, and a specification may assign a maximal amount of available resource to each
behavior, or fix the long-run average available use of the resource. The quantitative
language-inclusion problem “is LA(w) ≤ LB(w) for all words w?” can then be used
to check, say, if for each behavior, the peak power used by the system lies below the
bound given by the specification; or if for each behavior, the long-run average response
time of the system lies below the specified average response requirement.

In the Boolean automaton setting, the value of a word w in L(A) is the maximal
value of a run of A over w (if A is nondeterministic, then there may be many runs of

55

56 CHAPTER 4. QUANTITATIVE LANGUAGES

A over w), and the value of a run is a function that depends on the class of automata:
for automata over finite words, the value of a run is true if the last state of the run
is accepting; for Büchi automata, the value is true if an accepting state is visited
infinitely often; etc. To define quantitative languages, we use automata with weights
on transitions. We again set the value of a word w as the maximal value of all runs
over w, and the value of a run r is a function of the (finite or infinite) sequence of
weights that appear along r. This approach is well-known from the theory of weighted
automata and in this work we consider several new ways for computing the values of
runs.

We consider functions, such as Max and Sum of weights for finite runs, and Sup,
LimSup, LimInf, limit average, and discounted sum of weights for infinite runs. For
example, peak power consumption can be modeled as the maximum of a sequence
of weights representing power usage; energy use can be modeled as the sum; average
response time as the limit average [CCH+05, CdHS03]. Quantitative languages have
also been used to specify and verify reliability requirements: if a special symbol ⊥ is
used to denote failure and has weight 1, while the other symbols have weight 0, one
can use a limit-average automaton to specify a bound on the rate of failure in the long
run [CGH+08, BCHJ09]. Alternatively, the discounted sum can be used to specify
that failures happening later are less important than those happening soon [dAHM03].
It should be noted that LimSup and LimInf automata generalize Büchi and coBüchi
automata, respectively. Functions such as limit average (or mean payoff) and dis-
counted sum are classical in game theory [Sha53]; they have been studied extensively
as quantitative objectives in the branching-time context of games played on graphs
[EM79, Con92, CdHS03, Gim06]. The linear-time setting of automata and languages
provides a uniform way to describe quantitative specifications (e.g., quantitative ob-
jectives as monitors in games) using the above functions, and allows to compare their
expressive power and study their reducibility relationship. It is therefore natural to
consider the same functions in the linear-time context of automata and languages that
have been widely studied in the branching-time context of games.

Example 4.1 We illustrate the use of limit-average automata to model the energy
consumption of a motor. Energy-aware design has emerged as an important topic in the
recent years, and our work could be used in that direction, as illustrated by the example.
Since we consider energy consumption in the long-run, it is natural to accumulate
the weights as limit-average (the total energy consumed is the sum of the amounts of
consumed energy). The automaton A in Figure 4.1(a) specifies the maximal allowed
energy consumption to maintain the motor on or off, and the maximal consumption
for a mode change. The specification abstracts away that a mode change can occur
smoothly with the slow command. A refined specification B is given in Figure 4.1(b)
where the effect of slowing down is captured by a third state. One can check that B
refines A, i.e. LB(w) ≤ LA(w) for all words w ∈ {on, off , slow}ω, hence the limit-
average consumption in B always satisfies the bound specified by A.

4.1. INTRODUCTION 57

OFF ON

off
0 on, slow

10

on
2

off, slow
10

(a) Limit-average automaton A.

OFF ON

SLOW

off
0 on, 10

slow
5

on
2

off, 10

slow
5

slow
1

off
5

on
5

(b) Limit-average automaton B.

Figure 4.1: Specifications for the energy consumption of a motor (B refines A).

We make the following remarks about this example. First, to check thatB refines A,
it would not be sufficient to check locally that transitions in B have smaller weight than
corresponding transitions in A. For instance, the word slow · onω visits the sequences
of weights 10, 2, 2, 2, . . . in A and 5, 5, 2, 2, . . . in B, the second weight in the sequences
being larger in B than in A. The algorithmic problem of deciding whether refinement
holds is discussed in Section 4.3 (for instance, Theorem 4.3 shows that refinement can
be decided in polynomial time for deterministic limit-average automata). Second, if
we would assign to an infinite run the supremum of its weights instead of the limit-
average, then the automaton B would still refine A as the word off ω would have
value 0 in both A and B, and for all other words w, we would have LA(w) = 10 and
LB(w) ≤ 10. Now, if we assign weight 4 to the transition from ON to OFF in A,
then the refinement of A by B still holds if we use Sup-automata (by exactly the same
argument as before), but it fails for limit-average (e.g., for w = (on · off)ω, we have
LB(w) = 10 and LA(w) = 7 < 10).

We attempt a systematic study of quantitative languages defined by weighted au-
tomata. The main novelties concern quantitative languages of infinite words, and espe-
cially those that have no Boolean counterparts (i.e., limit-average and discounted-sum
languages). Therefore we focus on infinite words in this manuscript, and quantitative
languages of finite words are studied in [5].

In the first part of this chapter, we consider generalizations of the Boolean decision
problems of emptiness, universality, language inclusion, and language equivalence. The
quantitative emptiness problem asks, given a weighted automaton A and a rational
number ν, whether there exists a word w such that LA(w) ≥ ν. This problem can be
reduced to a one-player game with a quantitative objective and is therefore solvable in
polynomial time for all value functions considered here. The quantitative universality
problem asks whether LA(w) ≥ ν for all words w. This problem can be formulated as

58 CHAPTER 4. QUANTITATIVE LANGUAGES

a two-player partial-observation game: one player chooses input letters and the other
player chooses the successor states, and the first player, whose goal is to construct a
word w such that LA(w) < ν, is not allowed to see the state chosen by the second player.
The problem is PSPACE-complete for simple functions like Sup, LimSup, and LimInf, it
is undecidable for limit-average (see Section 3.4), and we do not know if it is decidable or
not for discounted-sum automata (the corresponding partial-observation games are not
known to be decidable either). The same situation holds for the quantitative language-
inclusion and language-equivalence problems, which ask, given two weighted automata
A and B, if LA(w) ≤ LB(w) (resp., LA(w) = LB(w)) for all words w. Therefore
we introduce a notion of quantitative simulation between weighted automata, which
generalizes Boolean simulation relations, is decidable, and implies language inclusion.
Simulation corresponds to a weaker version of the above game, where the first player
has perfect information about the state of the game. In particular, this implies that
quantitative simulation can be decided in NP ∩ coNP for limit-average and discounted-
sum automata.

In the second part of this chapter, we present a complete characterization of the
expressive power of the various classes of weighted automata, by comparing the classes
of quantitative languages they define. The complete picture relating the expressive
powers of weighted automata is shown in Figure 4.3 and Table 4.2. For instance, the
results for LimSup and LimInf are analogous to the special Boolean cases of Büchi and
coBüchi (nondeterminism is strictly more expressive for LimSup, but not for LimInf).
In the limit-average and discounted-sum cases, nondeterministic automata are strictly
more expressive than their deterministic counterparts. Also, one of our results shows
that nondeterministic limit-average automata are not as expressive as deterministic
Büchi automata (and vice versa). Note that deterministic Büchi languages are com-
plete for the second level of the Borel hierarchy [Tho97], and deterministic limit-average
languages are complete for the third level [Cha07].

In the third part of this chapter, we study the closure properties of quantitative
languages. It is natural and convenient to decompose a specification or a design into
several components, and to apply composition operators to obtain a complete spec-
ification. We consider a natural generalization of the classical operations of union,
intersection, and complement of Boolean languages. We define the maximum, mini-
mum, and sum of two quantitative languages L1 and L2 as the quantitative language
that assigns max(L1(w), L2(w)), min(L1(w), L2(w)), and L1(w) + L2(w) to each word
w. The complement Lc of a quantitative language L is defined by Lc(w) = 1 − L(w)
for all words w. The sum is a natural way of composing two automata if the weights
represent costs (e.g., energy consumption). We give another example in Section 4.2 to
illustrate the composition operators and the use of quantitative languages as a speci-
fication framework.

We give a complete picture of the closure properties of the various classes of quan-
titative languages over infinite words under maximum, minimum, complement and
sum (see Table 4.3). For instance, (non)deterministic limit-average automata are not

4.1. INTRODUCTION 59

closed under sum and complement, while nondeterministic discounted-sum automata
are closed under sum but not under complement. All other classes of weighted au-
tomata are closed under sum. The closure properties of Sup-, LimSup-, and LimInf-
automata are obtained as a direct extension of the results for Boolean finite automata,
while for limit-average and discounted-sum automata, the proofs require the analysis
of the structure of the automata cycles and properties of the solutions of polynomi-
als with rational coefficients. Note that the quantitative language-inclusion problem
“is LA(w) ≤ LB(w) for all words w?” reduces to closure under sum and comple-
ment, because it is equivalent to the question of the non-existence of a word w such
that LA(w) + Lc

B(w) > 1, an emptiness question which is decidable for all classes of
quantitative languages (Theorem 4.1). Also note that deterministic limit-average and
discounted-sum automata are not closed under maximum, which implies that nonde-
terministic automata are strictly more expressive in these cases (because the maximum
can be obtained by an initial nondeterministic choice).

In the last part of this chapter, we introduce a new class of quantitative languages,
defined by mean-payoff automaton expressions, which is robust and decidable, i.e., a
class which is closed under the four pointwise operations of max, min (which generalize
union and intersection respectively), numerical complement, and sum, and for which
all the quantitative decision problems are decidable (emptiness, universality, language
inclusion, and equivalence), and that can express all natural examples of quantitative
languages defined using the mean-payoff measure [ADMW09, 27, CGH+08]. Mean-
payoff automaton expressions subsume deterministic LimAvg-automata, and we show
that they have expressive power incomparable to nondeterministic and alternating
LimAvg-automata. We also present for the first time an algorithm to compute distance
between two quantitative languages given as mean-payoff automaton expressions.

In our attempt to obtain such a class, we have studied alternating weighted au-
tomata [26], and probabilistic weighted automata [28] with so-called almost-sure and
positive semantics. We do not give details of these works here as none of the class of
quantitative languages defined by these automata is both robust and decidable.

Related works. In the literature, there is a wealth of results on weighted automata on
finite and infinite words. We now describe the differences with the setting presented
in this chapter. The lattice automata of [KL07] map finite words to values from a
finite lattice. Roughly speaking, the value of a run is the meet (greatest lower bound)
of its transition weights, and the value of a word w is the join (least upper bound)
of the values of all runs over w. This corresponds to Min and Inf automata in our
setting, and for infinite words, the Büchi lattice automata of [KL07] are analogous to
our LimSup automata. However, the other classes of weighted automata (Sum, limit-
average, discounted-sum) cannot be defined using operations on finite lattices. The
complexity of the emptiness and universality problems for lattice automata is given
in [KL07] (and implies our results for LimSup automata), while their generalization of
language inclusion differs from ours. They define the implication value v(A,B) of two

60 CHAPTER 4. QUANTITATIVE LANGUAGES

lattice automata A and B as the meet over all words w of the join of ¬LA(w) and
LB(w), while we would define implication value as v(A,B) = minw(LB(w) − LA(w))
since min is the meet operation (and defining negation as multiplication by −1, but
using + instead of join), and say that B refines A if v(A,B) ≥ 0.

In classical weighted automata [Sch61, Moh97] and semiring automata [KS86] (i.e.,
finite automata with transition weights in a semiring structure), the value of a finite
word is defined using the two algebraic operations + and · of a semiring as the sum
of the product of the transition weights of the runs over the word. In that case,
quantitative languages are called formal power series for finite words [Sch61, KS86],
and ω-series for infinite words [CK94, DK03, ÉK04]. Over infinite words, weighted
automata with discounted sum were first investigated in [DK03]. Note that the quan-
titative languages studied in this chapter use operations over rational numbers that
do not form a semiring. Researchers have also considered other quantitative general-
izations of languages over finite words [DG07], over trees [DKR08], and using finite
lattices [GC03]. However, these works do not address the quantitative decision prob-
lems, nor do they compare the relative expressive power and closure properties of
weighted automata over infinite words, as we do here. The work of [CK94] studies the
decision problems for weighted automata but for different notion of behaviors (differ-
ent value functions). The works of [Kar05, SSMH04] consider quantitative counting
properties, and the works of [KR03] consider the cardinality properties in monadic
second order logic, but the value functions we consider are different from the counting
and cardinality properties. The works [SSM03, DZL03] consider numerical properties
of documents such as XML that are very different from the quantitative properties we
consider. In [CCH+05], a quantitative generalization of languages is defined by discrete
functions (the value of a word is an integer) and the decision problems only involve
the extremal value of a language, which corresponds to emptiness.

In models that use transition weights as probabilities, such as probabilistic Rabin
automata [Paz71], one does not consider values of individual infinite runs (which would
usually have a value, or measure, of 0), but only measurable sets of infinite runs
(where basic open sets are defined as extensions of finite runs). Our quantitative
setting is orthogonal to the probabilistic framework: we assign quantitative values (e.g.,
peak power consumption, average response time, failure rate) to individual infinite
behaviors, not probabilities to finite behaviors.

4.2 Quantitative Languages

First, we recall the classical automata-theoretic description of Boolean languages,
and introduce an automata-theoretic description of several classes of quantitative lan-
guages. We consider Boolean languages L ⊆ Σω of infinite words over a finite alphabet
Σ. We have also investigated languages of finite words in [5, 27]. Alternatively, we can
view a Boolean language as a function in [Σω → {0, 1}].

4.2. QUANTITATIVE LANGUAGES 61

We recall the definition of (nondeterministic finite) automaton. A (finite) automa-
ton is a tuple A = 〈Q, qI ,Σ, δ〉 where:

• Q is a finite set of states, and qI ∈ Q is the initial state;

• Σ is a finite alphabet;

• δ ⊆ Q× Σ ×Q is a finite set of labeled transitions.

The automaton A is total if for all q ∈ Q and σ ∈ Σ, there exists (q, σ, q′) ∈ δ for at least
one q′ ∈ Q. The automaton A is deterministic if for all q ∈ Q and σ ∈ Σ, there exists
(q, σ, q′) ∈ δ for exactly one q′ ∈ Q. We sometimes call automata nondeterministic to
emphasize that they are not necessarily deterministic.

A run of A over a finite (resp., infinite) word w = σ1σ2 . . . is a finite (resp.,
infinite) sequence r = q0σ1q1σ2 . . . of states and letters such that (i) q0 = qI , and (ii)
(qi, σi+1, qi+1) ∈ δ for all 0 ≤ i < |w|. When the run r is finite, we denote by Last(r)
the last state in r. When r is infinite, we denote by Inf(r) the set of states that occur
infinitely many times in r. The prefix of length i of an infinite run r is the prefix of r
that contains the first i states.

Given a set F ⊆ Q of final (or accepting) states, the finite-word language defined
by the pair 〈A,F 〉 is Lf

A = {w ∈ Σ∗ | there exists a run r of A over w such that
Last(r) ∈ F}. The infinite-word languages defined by 〈A,F 〉 are as follows: if 〈A,F 〉 is
interpreted as a Büchi automaton, then Lb

A = {w ∈ Σω | there exists a run r of A over
w such that Inf(r)∩F 6= ∅}, and if 〈A,F 〉 is interpreted as a coBüchi automaton, then
Lc

A = {w ∈ Σω | there exists a run r of A over w such that Inf(r) ⊆ F}. In the sequel,
we assume that the set F is given with the description of the finite automaton A,
and we often omit the superscripts in the notation Lf

A, Lb
A, and Lc

A, assuming that
automata have a type (finite-word, Büchi, or coBüchi) that determines which language
it defines.

Boolean decision problems. We recall the classical decision problems for au-
tomata, namely, emptiness, universality, language inclusion and language equivalence.
Given a finite automaton A, the Boolean emptiness problem asks whether LA =
∅, and the Boolean universality problem asks whether LA = Σ∗ (for finite-word
language) or LA = Σω (for infinite-word language). Given two finite automata A
and B, the Boolean language-inclusion problem asks whether LA ⊆ LB, and the
Boolean language-equivalence problem asks whether LA = LB. It is well-known that
for both finite- and infinite-word languages, the emptiness problem is solvable in poly-
nomial time, while the universality, inclusion, and equivalence problems are PSPACE-
complete [MS72, SVW87].

62 CHAPTER 4. QUANTITATIVE LANGUAGES

Weighted automata. A quantitative language L over a finite alphabet Σ is a map-
ping L : Σω → R, where R is the set of real numbers.

A weighted automaton is a tuple A = 〈Q, qI ,Σ, δ, γ〉 where:

• 〈Q, qI ,Σ, δ〉 is a total finite automaton, and

• γ : δ → Q is a weight function, where Q is the set of rational numbers.

Given a finite (resp., infinite) run r = q0σ1q1σ2 . . . of A over a finite (resp., infinite)
word w = σ1σ2 . . . , let γ(r) = v0v1 . . . be the sequence of weights defined by vi =
γ(qi, σi+1, qi+1) for all 0 ≤ i < |w|.

Given a value function Val : Q+ → R (resp., Val : Qω → R), the Val-automaton A
defines the quantitative language LA such that for all words w ∈ Σ+ (resp., w ∈ Σω),
we have LA(w) = sup{Val(γ(r)) | r is a run of A over w}. We assume that Val(v) is
bounded when the numbers in v are taken from a finite set (namely, the set of weights
in A), and since weighted automata are total, LA(w) is not infinite. All value functions
we consider in this chapter satisfy this boundedness assumption.

For infinite words, we consider the following classical value functions from Qω to
R. Given an infinite sequence v = v0v1 . . . of rational numbers taken from a finite set
V (i.e., vi ∈ V for all i ≥ 0), define

• Sup(v) = sup{vn | n ≥ 0};

• LimSup(v) = lim sup
n→∞

vn = lim
n→∞

sup{vi | i ≥ n};

• LimInf(v) = lim inf
n→∞

vn = lim
n→∞

inf{vi | i ≥ n};

• LimAvg(v) = lim inf
n→∞

1

n
·

n−1∑

i=0

vi;

• given a discount factor 0 < λ < 1, Discλ(v) =
∞∑

i=0

λi · vi.

Intuitively for a sequence v = v0v1 . . . of rational numbers from the finite set V
the Sup function chooses the maximal number that appear in v; the LimSup function
chooses the maximal number that appear infinitely often in v; the LimInf function
chooses the maximal number ℓ such that from some point on all numbers that are
visited are at least ℓ; the LimAvg functions gives the long-run average of the numbers
in v; and the Discλ gives the discounted sum of the numbers in v. For decision problems,
we always assume that the discount factor λ is a rational number. Note that LimAvg(v)
is defined using lim inf and is therefore well-defined; all results of this chapter hold also

4.2. QUANTITATIVE LANGUAGES 63

if the limit average of v is defined instead as lim sup
n→∞

1

n
·

n−1∑

i=0

vi. One could also consider

the value function inf{vn | n ≥ 0} and obtain results analogous to the Sup value
function.

Note that for Boolean automata, if we assign value 1 to the accepting runs (either
those that end up in an accepting state, or visit an accepting state infinitely often,
or eventually visit accepting states only) and value 0 to the other runs, then the
function LA would be the characteristic function of the Boolean language defined by A.
Hence, the sup operator is a natural generalization to the quantitative setting of the
way nondeterminism is dealt with in Boolean automata. Other definitions can be
considered [26], like choosing inf instead of sup which would correspond to the so-
called universal automata in the Boolean case [KV01].

In the sequel, we denote by n the number of states and by m the number of tran-
sitions of a given automaton. We assume that rational numbers are given as pairs of
integers, encoded in binary. All time bounds we give in this chapter assume that the
largest size of an integer in the input is a constant p. Without this assumption, most
complexity results would involve a polynomial factor in p, as they require polynomi-
ally many operations of addition, multiplication, and comparison of rational numbers,
which are quadratic in p.

Quantitative decision problems and distance. We now present quantitative
generalizations of the classical decision problems for automata. Given two quantitative
languages L1 and L2 over Σ, we write L1 ⊑ L2 if L1(w) ≤ L2(w) for all words w ∈ Σ+

(resp. w ∈ Σω). Given a weighted automaton A and a rational number ν ∈ Q,
the quantitative emptiness problem asks whether there exists a word w ∈ Σ+ (resp.,
w ∈ Σω) such that LA(w) ≥ ν, and the quantitative universality problem asks whether
LA(w) ≥ ν for all words w ∈ Σ+ (resp., w ∈ Σω). Given two weighted automata
A and B, the quantitative language-inclusion problem asks whether LA ⊑ LB, and
the quantitative language-equivalence problem asks whether LA = LB, that is, whether
LA(w) = LB(w) for all w ∈ Σ+ (resp., w ∈ Σω). All results in this chapter also hold for
the decision problems defined above with inequalities replaced by strict inequalities.
Finally, the distance between L1 and L2 is Dsup(L1, L2) = supw∈Σω |L1(w)−L2(w)|. It
measures how close is an implementation L1 as compared to a specification L2.

Expressiveness. A class C of weighted automata can be reduced to a class C′ of
weighted automata if for every A ∈ C there exists A′ ∈ C′ such that LA = LA′. In
particular, a class of weighted automata can be determinized if it can be reduced to its
deterministic counterpart. All reductions presented in this chapter are constructive:
when C can be reduced to C′, we always show how to construct an automaton A′ ∈ C′

that defines the same quantitative language as a given automaton A ∈ C. We say that
the cost of a reduction is O(f(n,m)) if for all automata A ∈ C with n states and m

64 CHAPTER 4. QUANTITATIVE LANGUAGES

transitions, the constructed automaton A′ ∈ C′ has at most O(f(n,m)) many states.
For all reductions we present, the size of the largest transition weight in A′ is linear
in the size p of the largest weight in A (however, the time needed to compute these
weights may be quadratic in p).

Composition. Given two quantitative languages L and L′ over Σ, and a rational
number c, we denote by max(L,L′) (resp., min(L,L′), L + L′, k + L, and kL) the
quantitative language that assigns max{L(w), L′(w)} (resp., min{L(w), L′(w)}, L(w)+
L′(w), k + L(w), and k · L(w)) to each word w ∈ Σ+ (or w ∈ Σω). We say that k + L
is the shift by k of L and that kL is the scale by k of L. The language Lc = 1 − L is
called the complement of L. The max, min and complement operators for quantitative
languages generalize respectively the union, intersection and complement operator for
Boolean languages. For instance, De Morgan’s laws hold (the complement of the max
of two languages is the min of their complement, etc.) and complementing twice leave
languages unchanged.

Example 4.2 Consider an investment of 100 dollars that can be made in two banks A1

and A2 as follows: (a) 100 dollars to bank A1, (b) 100 dollars to bank A2, or (c) 50 dol-
lars to bank A1 and 50 dollars to bank A2. The banks can be either in a good state
(denoted G1, G2) or in a bad state (denoted B1, B2). If it is in a good state, then A1

offers 8% reward while A2 offers 6% reward. If it is in a bad state, then A1 offers
2% reward while A2 offers 4% reward. The change of state is triggered by the input
symbols b1, b2 (from a good to a bad state) and g1, g2 (from a bad to a good state).
The rewards received earlier weight more than rewards received later due to inflation
represented by the discount factor. The automata A1 and A2 in Figure 4.2 specify the
behavior of the two banks for an investment of 100 dollars, where the input alphabet
is {g1, b1} × {g2, b2} (where the notation (g1, ·) represents the two letters (g1, g2) and
(g1, b2), and similarly for the other symbols). If 50 dollars are invested in each bank,
then we obtain automata C1 and C2 from A1 and A2 where each reward is halved.
The combined automaton is obtained as the composition of C1 and C2 under the sum
operator.

Notation. Classes of weighted automata over infinite words are denoted with acronyms
of the form xy where x is either N(ondeterministic), D(eterministic), or N/D (when de-
terministic and nondeterministic automata have the same expressiveness), and y is one
of the following: Sup, Lsup (LimSup), Linf (LimInf), Lavg (LimAvg), or Disc. For
Büchi and coBüchi condition, we use BW and CW respectively.

4.3. THE COMPLEXITY OF QUANTITATIVE DECISION PROBLEMS 65

G1 B1

(g1, ·), 8

(b1, ·), 2

(b1, ·), 2

(g1, ·), 8

(a) 100 dollars invested in bank A1.

G2 B2

(·, g2), 6

(·, b2), 4

(·, b2), 4

(·, g2), 6

(b) 100 dollars invested in bank A2.

Figure 4.2: The discounted-sum automaton models of two banks.

4.3 The Complexity of Quantitative Decision Prob-

lems

We study the complexity of the quantitative decision problems for weighted automata
over infinite words. The results are summarized in Table 4.1. We present a quantitative
generalization of the notion of simulation as an approximation of language inclusion
(simulation implies language inclusion) and we show that quantitative simulation can
be decided with a lower complexity as compared to quantitative language inclusion.

4.3.1 Quantitative Emptiness, Universality, Language Inclu-
sion and Equivalence

Emptiness. The quantitative emptiness problem can be solved by a reduction to
the problem of finding the maximal value of an infinite path in a graph. This is
decidable because pure memoryless strategies for resolving nondeterminism exist for
all quantitative objectives that we consider [FV97, Kar78, And06].

Theorem 4.1 The quantitative emptiness problem is solvable in O(m + n) time for
Sup-, LimSup-, and LimInf-automata; in O(n ·m) time for LimAvg-automata; and in
O(n2 ·m) time for Disc-automata.

Language inclusion. The following theorem relies on the analogous results for finite
automata (since Büchi and coBüchi automata are special cases of respectively LimSup-
and LimInf-automata, with weights in {0, 1}).

Theorem 4.2 The quantitative language-inclusion problem is PSPACE-complete for
Sup-, LimSup-, and LimInf-automata.

It follows from the results of Chapter 3 that the quantitative language-inclusion
problem is undecidable for LimAvg-automata. We do not know if this problem is

66 CHAPTER 4. QUANTITATIVE LANGUAGES

∃ ∀ ⊆ = simulation
Sup PTime PSpace PSpace PSpace PTime

LimSup PTime PSpace PSpace PSpace NP ∩ coNP
LimInf PTime PSpace PSpace PSpace NP ∩ coNP
LimAvg PTime undec. undec. undec. NP ∩ coNP

Deterministic LimAvg PTime PTime PTime PTime PTime
Discλ PTime ? ? ? NP ∩ coNP

Deterministic Discλ PTime PTime PTime PTime PTime

Table 4.1: Complexity upper bound for the quantitative decision problems (∃) empti-
ness, (∀) universality, (⊆) inclusion, (=) equivalence, and quantitative simulation.

decidable for Disc-automata. The special cases of deterministic automata can be solved
using a product construction.

Theorem 4.3 The quantitative language-inclusion problems LA ⊑ LB for LimAvg-
and Disc-automata are decidable in polynomial time when B is deterministic. The
problem is undecidable for nondeterministic LimAvg-automata.

For Disc-automata, we have the following result which follows from the fact that
for a negative instance of the problem (i.e., if there exists a word w ∈ Σω such that
LA(w) > LB(w)) there exists a finite word w ∈ Σ∗ such that LA(w · w′) > LB(w · w′)
for all words w′ ∈ Σω. This follows from the fact that finite prefixes provide arbitrarily
accurate approximations of infinite discounted sums, and therefore after a sufficiently
long finite prefix of w, the separation of LA(w) and LB(w) can be established.

Theorem 4.4 The quantitative language-inclusion problem for Disc-automata is co-
r.e.

Universality and language equivalence. All of the above results about language
inclusion also hold for quantitative universality and quantitative language equivalence.

4.3.2 Quantitative Simulation

As the quantitative language-inclusion problem for limit-average automata is unde-
cidable, and as it remains open for discounted-sum automata, we introduce a no-
tion of quantitative simulation as a decidable approximation of language inclusion
for weighted automata. The quantitative language-inclusion problem can be viewed
as a partial-observation game, and we define the quantitative simulation problem as
exactly the same game, but with perfect observation. For quantitative objectives,

4.3. THE COMPLEXITY OF QUANTITATIVE DECISION PROBLEMS 67

perfect-observation games can be solved much more efficiently than partial-observation
games, and in some cases the solution of partial-observation games with quantitative
objectives is not known (e.g., for discounted-sum games), or undecidable (e.g., for for
limit-average games). For example, perfect-observation games with limit-average and
discounted-sum objectives can be decided in NP ∩ coNP, whereas the solution for
such partial-observation games is not known. Second, quantitative simulation implies
quantitative language inclusion, because it is always easier to win a game when obser-
vation is not partial. Hence, as in the case of finite automata and Boolean languages,
quantitative simulation can be used as a conservative and efficient approximation of
quantitative language inclusion.

Language-inclusion game. Let A and B be two weighted automata with weight
function γ1 and γ2, respectively, for which we want to check if LA ⊑ LB. The language-
inclusion game is played by a challenger and a simulator, for infinitely many rounds.
The goal of the simulator is to prove that LA ⊑ LB, while the challenger has the
opposite objective. The position of the game in the initial round is 〈q1

I , q
2
I 〉 where q1

I

and q2
I are the initial states of A and B, respectively. In each round, if the current

position is 〈q1, q2〉, first the challenger chooses a letter σ ∈ Σ and a state q′1 such that
(q1, σ, q

′
1) ∈ δ1, and then the simulator chooses a state q′2 such that (q2, σ, q

′
2) ∈ δ2.

The position of the game in the next round is 〈q′1, q
′
2〉. The outcome of the game

is a pair (r1, r2) of runs of A and B, respectively, over the same infinite word. The
simulator wins the game if Val(γ2(r2)) ≥ Val(γ1(r1)). To make this game equivalent
to the language-inclusion problem, we require that the challenger cannot observe the
state of B in the position of the game.

Simulation game. The simulation game is the language-inclusion game without
the restriction on the vision of the challenger, that is, the challenger is allowed to
observe the full position of the game. Formally, given A = 〈Q1, q

1
I ,Σ, δ1, γ1〉 and

B = 〈Q2, q
2
I ,Σ, δ2, γ2〉, a strategy τ for the challenger is a function from (Q1 ×Q2)

+ to
Σ × Q1 such that for all π ∈ (Q1 ×Q2)

+, if τ(π) = (σ, q), then (Last(π|Q1
), σ, q) ∈ δ1,

where π|Q1
is the projection of π on Q+

1 . A strategy τ for the challenger is blind if
τ(π) = τ(π′) for all sequences π, π′ ∈ (Q1 × Q2)

∗ such that π|Q1
= π′

|Q1
. The set

of outcomes of a challenger strategy τ is the set of pairs (r1, r2) of runs such that if
r1 = q0σ1q1σ2 . . . and r2 = q′0σ1q

′
1σ2 . . . , then q0 = q1

I , q
′
0 = q2

I , and for all i ≥ 0, we
have (σi+1, qi+1) = τ((q0, q

′
0) . . . (qi, q

′
i)) and (q′i, σi+1, q

′
i+1) ∈ δ2. A strategy τ for the

challenger is winning if Val(γ1(r1)) > Val(γ2(r2)) for all outcomes (r1, r2) of τ .

Theorem 4.5 For all value functions and weighted automata A and B, we have LA ⊑
LB if and only if there is no blind winning strategy for the challenger in the language-
inclusion game for A and B.

68 CHAPTER 4. QUANTITATIVE LANGUAGES

Given two weighted automata A and B, there is a quantitative simulation of A by
B if there exists no (not necessarily blind) winning strategy for the challenger in the
simulation game for A and B. We note that for the special cases of Büchi and coBüchi
automata, quantitative simulation coincides with fair simulation [HKR97].

Corollary 4.6 For all value functions and weighted automata A and B, if there is a
quantitative simulation of A by B, then LA ⊑ LB.

Given two weighted automata A and B, the quantitative simulation problem asks
if there is a quantitative simulation of A by B. The results of the next theorem are
summarized in Table 4.1.

Theorem 4.7 The quantitative simulation problem for Sup-automata is solvable in
polynomial time. The quantitative simulation problem is in NP ∩ coNP for LimSup-,
LimInf-, LimAvg-, and Disc-automata.

4.4 The Expressive Power of Weighted Automata

We study the expressiveness of the different classes of weighted automata over infinite
words by comparing the quantitative languages they can define. For this purpose,
we show the existence and non-existence of translations between classes of finite and
weighted automata. All reducibility relationships are summarized in Table 4.2 and
Figure 4.3.

4.4.1 Positive Reducibility Results

We start with the positive results about the existence of reductions between various
classes of weighted automata, most of which can be obtained by generalizing cor-
responding results for finite automata. Our results also hold if we allow transition
weights to be irrational numbers.

First, it is clear that Büchi and coBüchi automata can be reduced to LimSup- and
LimInf-automata, respectively. In addition, we have the following results.

Theorem 4.8 (i) Sup-automata can be determinized in O(2n) time; (ii) LimInf-automata
can be determinized in O(mn) time; (iii)Deterministic Sup-automata can be reduced to
deterministic LimInf-, to deterministic LimSup-, and to deterministic LimAvg-automata,
all in O(n ·m) time; (iv) LimInf-automata can be reduced to LimSup- and to LimAvg-
automata, both in O(n ·m) time.

4.4. THE EXPRESSIVE POWER OF WEIGHTED AUTOMATA 69

Reducibility
Boolean quantitative

N
/ D

C
W

D
B

W

N
B

W

N
/ D

S
u
p

N
/ D

L
in

f

D
L
su

p

N
L
su

p

D
L
a
v
g

N
L
a
v
g

D
D

is
c

N
D

is
c

B
o
ol

ea
n N/DCW · × X × X × X × X × ×

DBW × · X × × × X × × × ×

NBW × × · × × × X × × × ×

q
u
an

ti
ta

ti
ve

N/DSup · X X X X X × ×

N/DLinf

×

× · × X × X × ×

DLsup × × · X × × × ×

NLsup × × × · × × × ×

DLavg × × × × · X × ×

NLavg × × × × × · × ×

DDisc × × × × × × · X

NDisc × × × × × × × ·

Table 4.2: Reducibility relation. C is reducible to C′ if the entry R(C, C′) is X.

4.4.2 Negative Reducibility Results

We show that all other reducibility relationships do not hold. The most important
results in this section show that (i) deterministic coBüchi automata cannot be reduced
to deterministic LimAvg-automata, deterministic Büchi automata cannot be reduced
to LimAvg-automata, and (ii) neither LimAvg- nor Disc-automata can be determinized.
Over the alphabet Σ̂ = {a, b}, we use in the sequel the Boolean languages LF , which
contains all infinite words with finitely many a’s, and LI , which contains all infinite
words with infinitely many a’s. We also use the following definition. A class C of finite
automata can be weakly reduced to a class C′ of weighted automata if for every A ∈ C
there exists an A′ ∈ C′ such that infw∈LA

LA′(w) > supw 6∈LA
LA′(w). Intuitively, weak

reductions may not preserve the values of the words, but preserve the order on values:
for two words w ∈ LA (i.e., LA(w) = 1) and w′ 6∈ LA (i.e., LA(w′) = 0), we have both
LA(w) > LA(w′) and LA′(w) > LA′(w′).

The classical proof that deterministic coBüchi automata cannot be reduced to de-
terministic Büchi automata can be adapted to show the following theorem.

Theorem 4.9 Deterministic coBüchi automata cannot be reduced to deterministic
LimSup-automata.

Since deterministic LimAvg- and deterministic Disc-automata can define quantita-

70 CHAPTER 4. QUANTITATIVE LANGUAGES

NDisc NLavg NLsup

DDisc DLavg N/DLinf DLsup NBW

DBWN/DSup

N/DCW
quantitative

boolean

Figure 4.3: Reducibility relations: a class C of automata can be reduced to C′ iff there
is a path from C to C′.

a
b

b

a

Figure 4.4: A deterministic coBüchi
automaton.

q0 q1 sink

a, b, 0
a, b, 0

b, 1
a, 0

a, b, 0

Figure 4.5: A nondeterministic limit-average
automaton.

tive languages whose range is infinite, while LimSup-automata cannot, we obtain the
following result.

Theorem 4.10 Deterministic LimAvg-automata and deterministic Disc-automata can-
not be reduced to LimSup-automata.

The next theorem shows that nondeterministic LimAvg-automata are strictly more
expressive than their deterministic counterpart. Theorem 4.12 will show that the
expressive power of LimAvg- and LimSup-automata is incomparable.

Theorem 4.11 Deterministic coBüchi automata cannot be weakly reduced to deter-
ministic LimAvg-automata, and therefore they cannot be reduced to deterministic LimAvg-
automata. LimAvg-automata cannot be determinized.

Consider the language LF of finitely many a’s, which is the language defined by
the deterministic coBüchi automaton shown in Figure 4.4. It is also easy to see that
the nondeterministic LimAvg-automaton shown in Figure 4.5 defines LF .

We need to show that LF cannot be defined by any deterministic LimAvg-automaton
to prove the desired claims. Intuitively, a deterministic LimAvg-automaton for LF

should assign positive weight to long sequences of b’s (if the sequence is longer than
the number of states of the automaton). Therefore, a word which alternates long

4.4. THE EXPRESSIVE POWER OF WEIGHTED AUTOMATA 71

sequences of b’s with a single a would get a positive value, while such a word has value
0 according to LF (it has infinitely many a’s). Hence a deterministic LimAvg-automaton
cannot exist for LF .

An analogous argument, and the analysis of the structure of cycles in automata
gives the next result.

Theorem 4.12 Deterministic Büchi automata cannot be weakly reduced to LimAvg-
automata, and therefore they cannot be reduced to LimAvg-automata.

None of the weighted automata we consider can be reduced to Disc-automata (Theo-
rem 4.13), and Disc-automata cannot be reduced to any of the other classes of weighted
automata (Theorem 4.14, and also Theorem 4.10).

Theorem 4.13 Deterministic coBüchi automata and deterministic Büchi automata
cannot be weakly reduced to Disc-automata, and therefore they cannot be reduced to
Disc-automata. Also deterministic Sup-automata cannot be reduced to Disc-automata.

The proofs of Theorem 4.13 and 4.14 are based on the property that the value
assigned by a Disc-automaton to an infinite word depends essentially on a finite prefix,
in the sense that the values of two words become arbitrarily close when they have
sufficiently long common prefixes. In other words, the quantitative language defined
by a discounted-sum automaton is a continuous function in the Cantor topology. In
contrast, for the other classes of weighted automata, the value of an infinite word
depends essentially on its tail.

Theorem 4.14 Deterministic Disc-automata cannot be reduced to LimAvg-automata.

Finally, we show that discounted-sum automata cannot be determinized. An exam-
ple of a nondeterministic discounted-sum automaton N that cannot be determinized
is given in Figure 4.6. The automaton N computes the maximum of the discounted
sum of a’s and b’s.

Our results show that N cannot be determinized for discount factors that are
rational numbers greater than 1

2
. This result has been refined in [BH11] showing

that discounted-sum automata with integer weights can be determinization is only for
discount factors of the form 1

k
with k ∈ N≥2.

Theorem 4.15 Disc-automata cannot be determinized.

We have also studied the expressiveness of quantitative languages defined by alter-
nating weighted automata [26], and probabilistic weighted automata [28] with so-called
almost-sure and positive semantics. The main result shows that alternation is strictly
more expressive than nondeterminism for LimAvg- and Disc-automata. We refer to the
corresponding papers for the detailed results.

72 CHAPTER 4. QUANTITATIVE LANGUAGES

s0

sa sb

a, 1
b, 0

a, 0
b, 1

a, 1
b, 0

a, 0
b, 1

Figure 4.6: The automaton N .

4.5 The Closure Properties of Weighted Automata

We study the closure properties of weighted automata with respect to max, min, com-
plement and sum. We say that a class C of weighted automata is closed under a binary
operator op(·, ·) (resp., a unary operator op′(·)) if for all A1, A2 ∈ C, there exists
A12 ∈ C such that LA12

= op(LA1
, LA2

) (resp., LA12
= op′(LA1

)). All closure properties
that we present in this chapter are constructive: when C is closed under an operator,
we can always construct the automaton A12 ∈ C given A1, A2 ∈ C. We say that the cost
of the closure property of C under a binary operator op is at most O(f(n1, m1, n2, m2))
if for all automata A1, A2 ∈ C with ni states and mi transitions (for i = 1, 2 respec-
tively), the constructed automaton A12 ∈ C such that LA12

= op(LA1
, LA2

) has at most
O(f(n1, m1, n2, m2)) many states. Analogously, the cost of the closure property of C un-
der a unary operator op′ is at most O(f(n,m)) if for all automata A1 ∈ C with n states
and m transitions, the constructed automaton A12 ∈ C such that LA12

= op′(LA1
) has

at most O(f(n,m)) many states. For all reductions presented, the size of the largest
weight in A12 is linear in the size p of the largest weight in A1, A2 (however, the time
needed to compute the weights is quadratic in p, as we need addition, multiplication,
or comparison, which are quadratic in p).

Notice that every class of weighted automata is closed under shift by c and under
scale by |c| for all c ∈ Q. For Sum-automata and discounted-sum automata, we can
define the shift by c by making a copy of the initial states and adding c to the weights
of all its outgoing transitions. For the other automata, it suffices to add c to (resp.,
multiply by |c|) all weights of an automaton to obtain the automaton for the shift by c
(resp., scale by |c|) of its language. Therefore, all closure properties also hold if the
complement of a quantitative language L was defined as k − L for any constant k.

Table 4.3 summarizes the closure properties for quantitative languages over infinite
words.

4.5. THE CLOSURE PROPERTIES OF WEIGHTED AUTOMATA 73

max. min. comp. sum
N/DSup X X × X
N/DLinf X X × X

DLsup X X × X

NLsup X X X X

DLavg × × × ×
NLavg X × × ×

DDisc × × X X

NDisc X × × X

Table 4.3: Closure properties. Acronyms are defined in p. 64.

4.5.1 Closure under max

The maximum of two quantitative languages defined by nondeterministic automata
can be obtained by an initial nondeterministic choice between the two automata. This
observation was also made in [DR07] for discounted-sum automata. For deterministic
automata, a synchronized product can be used for Sup and LimSup, while for LimInf

we use the fact that NLinf is determinizable with an exponential blow-up [5].

Theorem 4.16 The nondeterministic Sup-, LimSup-, LimInf-, LimAvg- and Disc-automata
are closed under max, with cost O(n1 + n2), the deterministic Sup- and LimSup-
automata with cost O(n1 · n2), the deterministic LimInf-automata with cost O((m1 +
m2)

n1+n2).

Theorem 4.17 The deterministic LimAvg- and Disc-automata are not closed under
max.

The fact that DDisc is not closed under max follows from the proof of Theo-
rem 4.15, where it is shown that the quantitative language max(L1, L2) cannot be
defined by a DDisc, where L1 (resp. L2) is the language defined by the DDisc that
assigns weight 1 (resp., 0) to a’s and weight 0 (resp., 1) to b’s.

To show that DLavg is not closed under max, we consider the alphabet Σ = {a, b}
and the quantitative languages La and Lb that assign the value of long-run average
number of a’s and b’s, respectively. There exists DLavg for La and Lb, however
a careful analysis of the structure of cycles in weighted automata show that Lm =
max(La, Lb) cannot be expressed by a DLavg.

74 CHAPTER 4. QUANTITATIVE LANGUAGES

4.5.2 Closure under min

The positive results about closure properties under min for quantitative languages gen-
eralize the closure properties of Boolean languages under intersection. The construc-
tions are straightforward extensions of the standard constructions for finite, Büchi, and
coBüchi automata (see e.g. [Var96]).

Theorem 4.18 The (non)deterministic Sup-automata are closed under min, with cost
O(n1 ·m1 ·n2 ·m2), The deterministic LimSup-automata are closed under min with cost
O(n1 ·n2 ·2

m1+m2). The (non)deterministic LimInf-automata are closed under min with
cost O(n1 · n2), and the nondeterministic LimSup-automata with cost O(n1 · n2 · (m1 +
m2)).

On the negative side, the (deterministic or not) limit-average and discounted-sum
automata are not closed under min.

Theorem 4.19 The (non)deterministic LimAvg-automata are not closed under min.

Finally, using arguments similar to the proof of Theorem 4.15 we show that discounted-
sum automata are not closed under min.

Theorem 4.20 The (non)deterministic Disc-automata are not closed under min.

4.5.3 Closure under complement

Most of the weighted automata are not closed under complement. The next results
are a direct extension of the Boolean case. The closure under complementation for
NLsup is obtained by a reduction to the complementation of nondeterministic Büchi
automata.

Theorem 4.21 The (non)deterministic Sup- and LimInf-automata, and the deter-
ministic LimSup-automata are not closed under complement. The nondeterministic
LimSup-automata are closed under complement, with cost O(m · 2n log n).

Theorem 4.22 The deterministic Disc-automata are closed under complement, with
cost O(n). The deterministic LimAvg-automata are not closed under complement.

For Disc-automata, it suffices to replace each weight v by 1 − λ − v (where λ is
the discount factor) to obtain the Disc-automaton for the complement. For LimAvg-
automata, an example of a deterministic automaton that cannot be complemented is
given in Figure 4.7.

4.5. THE CLOSURE PROPERTIES OF WEIGHTED AUTOMATA 75

a, 1

b, 0

Figure 4.7: Deterministic Limit-average Automaton.

Theorem 4.23 The nondeterministic LimAvg- and Disc-automata are not closed un-
der complement.

The fact that NLavg are not closed under complementation is as follows. Consider
the quantitative language L∗ = 1 − max{La, Lb} where La and Lb assign the long-run
average number of a’s and b’s, respectively. Exactly the same argument as in the proof
of Theorem 4.19 shows that L∗ cannot be expressed as a NLavg, while the language
max{La, Lb} can be expressed as NLavg by Theorem 4.16.

That NDisc are not closed under complement can be obtained as follows: given
0 < λ < 1, consider the language Lλ

a and Lλ
b that assigns to words the λ-discounted

sum of a’s and b’s, respectively. The language Lλ
a and Lλ

b can be expressed as DDisc,
and the max of them can be defined by NDisc. Observe that Lλ

a(w) + Lλ
b (w) = 1

1−λ

for all w ∈ Σω. Therefore, min{Lλ
a , L

λ
b} = 1

1−λ
− max{Lλ

a, L
λ
b }. Since NDisc is not

closed under min (Theorem 4.20), we immediately obtain that NDisc are not closed
under complementation.

4.5.4 Closure under sum

All weighted automata are closed under sum, except DLavg and NLavg. We sketch
the construction for LimSup-automata. Given two NLsup A1 and A2, we construct a
NLsup A for the sum of their languages as follows. Initially, we make a guess of a pair
(v1, v2) of weights (vi in Ai, for i = 1, 2) and we branch to a copy of the synchronized
product of A1 and A2. We attach a bit b whose range is {1, 2} to each state to remember
that we expect Ab to visit the guessed weight vb. Whenever this occurs, the bit b is set
to 3 − b, and the weight of the transition is v1 + v2. All other transitions (i.e. when b
is unchanged) have weight min{v1 + v2 | v1 ∈ V1 ∧ v2 ∈ V2}.

Theorem 4.24 The (non)deterministic Sup-automata are closed under sum, with cost
O(n1 ·m1 ·n2 ·m2). The nondeterministic LimSup-automata are closed under sum, with
cost O(n1 · m1 · n2 · m2). The deterministic LimSup-automata are closed under sum,
with cost O(n1 ·n2 · 2

m1·m2). The (non)deterministic LimInf-automata are closed under
sum with cost O(n1 · n2 · 2

m1·m2).

76 CHAPTER 4. QUANTITATIVE LANGUAGES

It is easy to see that the synchronized product of two NDisc (resp., DDisc) defines
the sum of their languages, if the weight of a joint transition is defined as the sum of
the weights of the corresponding transitions in the two NDisc (resp., DDisc).

Theorem 4.25 The (non)deterministic Disc-automata are closed under sum, with cost
O(n1 · n2).

The analysis of the structure of cycles in LimAvg-automata yields the last result.

Theorem 4.26 The (non)deterministic LimAvg-automata are not closed under sum.

The closure properties alternating weighted automata [26], and probabilistic weighted
automata [28] have been studied, and while alternating automata mostly enjoy posi-
tive closure properties, we note that alternating LimAvg-automata are not closed under
sum. We refer to the corresponding papers for the detailed results.

4.6 Mean-Payoff Automaton Expressions: A Ro-

bust and Decidable Class of Quantitative Lan-

guages

In this section, we distinguish between two classes of LimAvg-automata defined using
the two mean-payoff values of a sequence v̄ = v0v1 . . . of real numbers:

LimInfAvg(v̄) = lim inf
n→∞

1

n
·

n−1∑

i=0

vi, or LimSupAvg(v̄) = lim sup
n→∞

1

n
·

n−1∑

i=0

vi.

Accordingly, the weighted automata and their quantitative language are called
LimInfAvg or LimSupAvg. From now on, we generically use LimAvg-automata to call
LimInfAvg- and LimSupAvg-automaton.

A mean-payoff automaton expression expression is either a deterministic LimInfAvg-
or LimSupAvg-automaton, or it is the max, min, or sum of two mean-payoff automaton
expressions. Since deterministic {LimInfAvg, LimSupAvg} automata are closed under
complement, mean-payoff automaton expressions form a robust class that is closed un-
der max, min, sum and complement. We show that (a) all decision problems (quantita-
tive emptiness, universality, inclusion, and equivalence) are decidable for mean-payoff
automaton expressions; (b) mean-payoff automaton expressions are incomparable in
expressive power with both the nondeterministic and alternating LimAvg-automata;
and (c) We present the first algorithm to compute the distance between two quantita-
tive languages: we show that the distance can be computed for mean-payoff automaton

4.6. MEAN-PAYOFF AUTOMATON EXPRESSIONS 77

Closure properties Decision problems
max min Sum comp. empt. univ. incl. equiv.

Deterministic × × × X1 X X X X

Nondeterministic X × × × X × × ×
Alternating X X × X1 × × × ×
Expressions X X X X X X X X

Table 4.4: Closure properties and decidability of the various classes of mean-payoff
automata. Mean-payoff automaton expressions enjoy fully positive closure and decid-
ability properties.

expressions. When quantitative language inclusion does not hold between an imple-
mentation LA and a specification LB, the distance is a relevant information to evaluate
how far they are from each other, as we would prefer the least expensive one.

Our approach to show decidability of mean-payoff automaton expressions relies on
the characterization and algorithmic computation of the value set {LE(w) | w ∈ Σω}
of an expression E, i.e. the set of all values of words according to E. The value set can
be viewed as an abstract representation of the quantitative language LE , and we show
that all decision problems, and distance computation can be solved efficiently once we
have this set.

A mean-payoff automaton expression E is obtained by the following grammar rule:

E ::= A | max(E,E) | min(E,E) | Sum(E,E)

where A is a deterministic LimInfAvg- or LimSupAvg-automaton. The quantitative lan-
guage LE of a mean-payoff automaton expression E is LE = LA if E = A is a determin-
istic automaton, and LE = op(LE1

, LE2
) if E = op(E1, E2) for op ∈ {max,min, Sum}.

4.6.1 Mean-Payoff Automaton Expressions are Robust

By definition, the class of mean-payoff automaton expression is closed under max, min
and Sum. Closure under complement follows from the fact that the complement of
max(E1, E2) is min(−E1,−E2), the complement of min(E1, E2) is max(−E1,−E2), the
complement of Sum(E1, E2) is Sum(−E1,−E2), and the complement of a deterministic
LimInfAvg-automaton can be defined by the same automaton with opposite weights and
interpreted as a LimSupAvg-automaton, and vice versa, since − lim sup(v0, v1, . . .) =
lim inf(−v0,−v1, . . .). Note that arbitrary linear combinations of deterministic mean-
payoff automaton expressions (expressions such as c1E1 + c2E2 where c1, c2 ∈ Q are

1Closure under complementation holds because LimInfAvg-automata and LimSupAvg-automata are
dual. It would not hold if only LimInfAvg-automata (or only LimSupAvg-automata) were allowed.

78 CHAPTER 4. QUANTITATIVE LANGUAGES

rational constants) can be obtained for free since scaling the weights of a LimAvg-
automaton by a positive factor |c| results in a quantitative language scaled by the
same factor. Therefore, we say that mean-payoff automaton expressions are robust.

Expressive power comparison. We compare the expressive power of mean-payoff
automaton expressions with nondeterministic and alternating LimAvg-automata. The
results of [27] show that there exist deterministic LimAvg-automata A1 and A2 such
that min(A1, A2) cannot be expressed by nondeterministic LimAvg-automata. The re-
sults of [26] show that there exist deterministic LimAvg-automata A1 and A2 such that
Sum(A1, A2) cannot be expressed by alternating LimAvg-automata. It follows that
there exist languages expressible by mean-payoff automaton expression that cannot
be expressed by nondeterministic and alternating LimAvg-automata. In Theorem 4.27
we show the converse, that is, we show that there exist languages expressible by non-
deterministic LimAvg-automata that cannot be expressed by mean-payoff automaton
expression. It may be noted that the subclass of mean-payoff automaton expressions
that only uses min and max operators (and no sum operator) is a strict subclass of
alternating LimAvg-automata, and when only the max operator is used we get a strict
subclass of the nondeterministic LimAvg-automata.

Theorem 4.27 Mean-payoff automaton expressions are incomparable in expressive
power with nondeterministic and alternating LimAvg-automata: (a) there exists a quan-
titative language that is expressible by mean-payoff automaton expressions, but cannot
be expressed by an alternating LimAvg-automaton; and (b) there exists a quantitative
language that is expressible by a nondeterministic LimAvg-automaton, but cannot be
expressed by a mean-payoff automaton expression.

4.6.2 Mean-Payoff Automaton Expressions are Decidable

Given a mean-payoff automaton expression E, let A1, . . . , An be the deterministic
weighted automata occurring in E. The vector set of E is the set

VE = {〈LA1
(w), . . . , LAn(w)〉 ∈ Rn | w ∈ Σω}

of tuples of values of words according to each automaton Ai. In this section, we
characterize the vector set of mean-payoff automaton expressions, and in Section 4.6.2
we give an algorithmic procedure to compute this set. This will be useful to establish
the decidability of all decision problems, and to compute the distance between mean-
payoff automaton expressions. Given a vector v ∈ Rn, we denote by ‖v‖ = maxi |vi|
the ∞-norm of v.

The synchronized product of A1, . . . , An such that Ai = 〈Qi, q
i
I ,Σ, δi, γi〉 is the Qn-

weighted automaton AE = A1 × · · · × An = 〈Q1 × · · · × Qn, (q
1
I , . . . , q

n
I),Σ, δ, γ〉 such

that t = ((q1, . . . , qn), σ, (q′1, . . . , q
′
n)) ∈ δ if ti := (qi, σ, q

′
i) ∈ δi for all 1 ≤ i ≤ n, and

4.6. MEAN-PAYOFF AUTOMATON EXPRESSIONS 79

q1

A1

q2

A2

a, 1
b, 0

a, 0
b, 1

(0, 0)

(0, 1)

(1, 0)

H = conv(SE)

Fmin(H)

Figure 4.8: The vector set of E = max(A1, A2) is Fmin(conv(SE))) conv(SE).

γ(t) = (γ1(t1), . . . , γn(tn)). In the sequel, we assume that all Ai’s are deterministic
LimInfAvg-automata (hence, AE is deterministic) and that the underlying graph of the
automaton AE has only one strongly connected component (scc). The general results
for automata with both deterministic LimInfAvg- and LimSupAvg automata, and with
multi-scc underlying graph are given in [19].

For each (simple) cycle ρ in AE, let the vector value of ρ be the mean of the tuples
labelling the edges of ρ, denoted Avg(ρ). To each simple cycle ρ in AE corresponds a
(not necessarily simple) cycle in each Ai, and the vector value (v1, . . . , vn) of ρ contains
the mean value vi of ρ in each Ai. We denote by SE the (finite) set of vector values of
simple cycles in AE. Let conv(SE) be the convex hull of SE.

Lemma 4.28 Let E be a mean-payoff automaton expression. The set conv(SE) is the
closure of the set {LE(w) | w is a lasso-word}.

The vector set of E contains more values than the convex hull conv(SE), as shown
by the following example.

Example 4.3 Consider the expression E = max(A1, A2) where A1 and A2 are deter-
ministic LimInfAvg-automata (see Figure 4.8). The product AE = A1 × A2 has two
simple cycles with respective vector values (1, 0) (on letter ‘a’) and (0, 1) (on letter
‘b’). The set H = conv(SE) is the solid segment on Figure 4.8 and contains the vector
values of all lasso-words. However, other vector values can be obtained: consider the
word w = an1bn2an3bn4 . . . where n1 = 1 and ni+1 = (n1 + · · ·+ ni)

2 for all i ≥ 1. It is
easy to see that the value of w according to A1 is 0 because the average number of a’s
in the prefixes an1bn2 . . . anibni+1 for i odd is smaller than n1+···+ni

n1+···+ni+ni+1
= 1

1+n1+···+ni

which tends to 0 when i → ∞. Since A1 is a LimInfAvg-automaton, the value of w is
0 in A1, and by a symmetric argument the value of w is also 0 in A2. Therefore the
vector (0, 0) is in the vector set of E. Note that z = (z1, z2) = (0, 0) is the pointwise
minimum of x = (x1, x2) = (1, 0) and y = (y1, y2) = (0, 1), i.e. z = fmin(x, y) where
z1 = min(x1, y1) and z2 = min(y1, y2). In fact, the vector set is the whole triangular
region in Figure 4.8, i.e. VE = {fmin(x, y) | x, y ∈ conv(SE)}. �

80 CHAPTER 4. QUANTITATIVE LANGUAGES

We generalize fmin to finite sets of points P ⊆ Rn in n dimensions as follows:
fmin(P) ∈ Rn is the point p = (p1, p2, . . . , pn) such that pi is the minimum ith coordinate
of the points in P , for 1 ≤ i ≤ n. For arbitrary S ⊆ Rn, define Fmin(S) = {fmin(P) |
P is a finite subset of S}. As illustrated in Example 4.3, the next lemma shows that
the vector set VE is equal to Fmin(conv(SE)).

Lemma 4.29 Let E be a mean-payoff automaton expression built from deterministic
LimInfAvg-automata, and such that AE has only one strongly connected component.
Then, the vector set of E is VE = Fmin(conv(SE)).

Computation of Fmin(conv(S)) for a Finite Set S. For a finite set S ⊆ Rn,
the set conv(S) is in general infinite, thus it is not immediate that Fmin(conv(S)) is
computable. We first present some properties of the set Fmin(conv(S)).

Lemma 4.30 If X is a convex set, then Fmin(X) is convex.

By Lemma 4.30, the set Fmin(conv(S)) is convex, and since Fmin is a monotone
operator and S ⊆ conv(S), we have Fmin(S) ⊆ Fmin(conv(S)) and thus conv(Fmin(S)) ⊆
Fmin(conv(S)). It turns out that equality holds in two dimensions, i.e. conv(Fmin(S)) =
Fmin(conv(S)) for all finite sets S ⊆ R2.

We show in the following example that in three dimensions this equality does not
hold, i.e., we show that Fmin(conv(SE)) 6= conv(Fmin(SE)) in R3.

Example 4.4 We show that in three dimension there is a finite set S such that
Fmin(conv(S)) 6⊆ conv(Fmin(S)). Let S = {q, r, s} with q = (0, 1, 0), r = (−1,−1, 1),
and s = (1, 1, 1). Then fmin(r, s) = r, fmin(q, r, s) = fmin(q, r) = t = (−1,−1, 0), and
fmin(q, s) = q. Therefore Fmin(S) = {q, r, s, t}. Consider p = (r + s)/2 = (0, 0, 1). We
have p ∈ conv(S) and fmin(p, q) = (0, 0, 0). Hence (0, 0, 0) ∈ Fmin(conv(S)). We now
show that (0, 0, 0) does not belong to conv(Fmin(S)). Consider u = αq · q + αr · r +
αs · s + αt · t such that u in conv(Fmin(S)). Since the third coordinate is non-negative
for q, r, s, and t, it follows that if αr > 0 or αs > 0, then the third coordinate of u is
positive. If αs = 0 and αr = 0, then we have two cases: (a) if αt > 0, then the first
coordinate of u is negative; and (b) if αt = 0, then the second coordinate of u is 1. It
follows (0, 0, 0) is not in conv(Fmin(S)).

Example 4.4 shows that in general Fmin(conv(S)) 6⊆ conv(Fmin(S)). In this section
we present an explicit construction of Fmin(conv(S)) as a finite set of linear constraints.

Consider the positive orthant anchored at the origin in Rn, that is, the set of
points with non-negative coordinates: Rn

+ = {(z1, z2, . . . , zn) | zi ≥ 0, ∀i}. Similarly,
the negative orthant is the set of points with non-positive coordinates, denoted as
Rn

− = −Rn
+. Using vector addition, we write y + Rn

+ for the positive orthant anchored

4.6. MEAN-PAYOFF AUTOMATON EXPRESSIONS 81

at y. Similarly, we write x+Rn
− = x−Rn

+ for the negative orthant anchored at x. The
positive and negative orthants satisfy the following simple duality relation: x ∈ y+Rn

+

iff y ∈ x− Rn
+.

Note that Rn
+ is an n-dimensional convex polyhedron. For each 1 ≤ j ≤ n, we

consider the (n − 1)-dimensional face Lj spanned by the coordinate axes except the
jth one, that is, Lj = {(z1, z2, . . . , zn) ∈ Rn

+ | zj = 0}.

We say that y + Rn
+ is supported by X if (y + Lj) ∩ X 6= ∅ for every 1 ≤ j ≤ n.

Assuming y + Rn
+ is supported by X, we can construct a set Y ⊆ X by collecting one

point per (n− 1)-dimensional face of the orthant and get y = f(Y). It is also allowed
that two faces contribute the same point to Y . Similarly, if y = f(Y) for a subset
Y ⊆ X, then the positive orthant anchored at y is supported by X. Hence, we get the
following lemma.

Lemma 4.31 (Orthant Lemma) y ∈ Fmin(X) iff y + Rn
+ is supported by X.

Construction. We use the Orthant Lemma to construct Fmin(X). We begin by
describing the set of points y for which the jth face of the positive orthant anchored at
y has a non-empty intersection with X. Define Fj = X − Lj , the set of points of the
form x− z, where x ∈ X and z ∈ Lj .

Lemma 4.32 (Face Lemma) (y + Lj) ∩ X 6= ∅ iff y ∈ Fj.

It is now easy to describe the set defined in our problem statement.

Lemma 4.33 (Characterization) Fmin(X) =
⋂n

j=1 Fj.

Algorithm for computation of Fmin(conv(S)). Following the construction, we get
an algorithm that computes Fmin(conv(S)) for a finite set S of points in Rn. Let
|S| = m. We first represent X = conv(S) as intersection of half-spaces: we require at
most mn half-spaces (linear constraints). It follows that Fj = X−Lj can be expressed
as mn linear constraints, and hence Fmin(X) =

⋂n
j=1 Fj can be expressed as n · mn

linear constraints. This gives us the following result.

Theorem 4.34 Given a finite set S of m points in Rn, we can construct in O(n ·mn)
time n ·mn linear constraints that represent Fmin(conv(S)).

Decision problems and distance. Several problems on quantitative languages can
be solved for the class of mean-payoff automaton expressions using the vector set. The
decision problems of quantitative emptiness and universality, and quantitative language
inclusion and equivalence are all decidable, as well as computing the distance between
mean-payoff languages.

82 CHAPTER 4. QUANTITATIVE LANGUAGES

Complexity. All problems studied in this section can be solved easily (in polynomial
time) once the value set is constructed, which can be done in quadruple exponential
time. The quadruple exponential blow-up is caused by (a) the synchronized product
construction for E, (b) the computation of the vector values of all simple cycles in AE ,
(c) the construction of the vector set Fmin(conv(SE)), and (d) the successive projections
of the vector set to obtain the value set. Therefore, all the above problems can be solved
in 4EXPTIME.

Theorem 4.35 For the class of mean-payoff automaton expressions, the quantitative
emptiness, universality, language inclusion, and equivalence problems, as well as dis-
tance computation can be solved in 4EXPTIME.

Theorem 4.35 is in sharp contrast with the nondeterministic and alternating mean-
payoff automata for which language inclusion is undecidable (see also Table 4.4).

4.7 Conclusion and Perspectives

We have proposed a quantitative generalization of Boolean languages where the value
of a trace is computed as the supremum, limsup, liminf, limit-average, or discounted
sum of the weights of a trace. We have defined and studied a quantitative version of
the classical decision problems (emptiness, universality, language inclusion and equiv-
alence) and exhaustively compared the expressive power and closure properties of the
various classes of quantitative languages.

We have presented a new class of quantitative languages, the mean-payoff automa-
ton expressions which are both robust and decidable (see Table 4.4), and for which the
distance between quantitative languages can be computed. The decidability results
come with a high worst-case complexity, and it is a natural question for future works
to improve the algorithmic solution. The unpublished results of [Vel11] suggest that
the problem is PSPACE-complete.

We identify the following important research directions:

• finding a robust and decidable class of quantitative languages that would sub-
sume discounted-sum languages is completely open. It would be of great interest
to understand whether such a class exists, or what are the reasons that make
the discounted sum behave differently as compared to the mean-payoff measure.
Most likely, an important first step in this direction would be to find an algorith-
mic solution to discounted sum multi-weighted games, i.e. to solve games with
Boolean combination of objectives defined by discounted sum.

• while the results presented in this chapter solve the model-checking and distance
problems, a more challenging question is the synthesis problem for mean-payoff

4.7. CONCLUSION AND PERSPECTIVES 83

automaton expressions. This question involves games and may be hard to solve.
Finding subclasses of mean-payoff automaton expressions (e.g., without the Σ
operator) may lead to interesting investigations.

• a more general and long-term objective is to describe canonical ways of defining
quantitative languages, as well as decomposition of quantitative languages into
simple building blocks, with the objective of providing a compositional (or hierar-
chical) theory of such languages, in analogy to the theory of ω-regular languages
where for instance a classification such as the Borel hierarchy, or the decompo-
sition of any language into safety and liveness languages are fundamental for a
better understanding of the theory. In this context, it will be useful to explore
logical characterizations of quantitative languages.

84 CHAPTER 4. QUANTITATIVE LANGUAGES

Chapter 5

Conclusion

Chanter, rêver, rire, passer, être seul, être libre,

Avoir l’œil qui regarde bien, la voix qui vibre.

Edmond Rostand, Cyrano de Bergerac.

5.1 Summary

The results presented in this thesis follow three main lines of research on antichain al-
gorithms for efficient analysis of finite-state models, on the complexity and algorithmic
solution of quantitative games, and on the development of new formalisms to specify
quantitative languages. Each chapter contains a summary of the contributions, as well
as some research directions for the future. Below, we select and emphasize for each
chapter one outstanding result.

• Dramatic performance improvements have been obtained by the antichain algo-
rithms of Chapter 2 for several decision problems of automata theory, for example
deciding universality of Büchi automata for automata of size ten times larger as
before [6]. Other teams are applying and extending the technique [FJR09, FV10,
ACH+10, ACC+10, LGG11].

• An important result of Chapter 3 is that deciding the winner of energy parity
games can be solved in NP ∩ coNP while exponential memory may be required for
winning strategies. Mean-payoff parity games can also be solved in NP ∩ coNP.

• The mean-payoff automaton expressions presented in Chapter 4 are the first
robust and decidable class of quantitative languages (they are closed under the
four pointwise operations, and the four decision problems are decidable).

As a conclusion and summary, it turns out that the technique of antichain algo-
rithms has several applications that go beyond the original problem for which it was

85

86 CHAPTER 5. CONCLUSION

designed (see Chapter 2), and that the study of the emerging energy games provides
new insights and new results for the tightly connected and well-established mean-payoff
games.

5.2 Perspectives

Promising research directions have been outlined at the end of each chapter. From a
broader perspective, we identify the following themes that we plan to investigate.

Partial-observation stochastic games. In several applications of infinite games
in computer science, it is more realistic to drop the assumption of perfect observation
(i.e., both players have perfect observation about the state of the game). For example
in the context of hybrid systems, the controller acquires information about the state
of a plant using digital sensors with finite precision, which gives partial information
about the state of the plant [39, HK99]. Similarly, in a concurrent system where
the players represent individual processes, each process has only access to the public
variables of the other processes, not to their private variables [Rei84, AHK02]. Such
problems are better modeled in the more general framework of partial-observation
games [Rei84, 9, BGG09] and have been studied in the context of verification and
synthesis [RP80, KV00].

As we mention in the introduction of this thesis, the study of partial-observation
games is an active area of research. From a theoretical point of view, partial-observation
games have tight connections with automata. In particular, solving a blind game
(where one player cannot distinguish any state) is equivalent to solving universality
questions on automata. Similarly, partial-observation stochastic games have connec-
tions with probabilistic automata. While the complexity and algorithms for automata
have been extensively studied, the theory of partial-observation (stochastic) games has
been little studied and several questions have not received all the attention they de-
serve. The short-term aim of our research in this area is to close complexity gaps for
decision problems, and to identify classes of partial-observation games with lower com-
plexity. From a practical point of view, the applications in program synthesis (such
as lock-placement in concurrent programs) require efficient algorithms. Techniques re-
lated to abstraction and symbolic computation need to be developed to make possible
the analysis of cases of practical interest.

Counter systems. The quantitative games and quantitative languages can be viewed
as applications of counter systems. While the energy objective is a conceptually simple
condition, a wealth of results have been obtained for energy games. This may sound
surprising since not so many interesting classes of games on counter systems are de-
cidable. In the same way, the resulting advances in the complexity and decidability of

5.2. PERSPECTIVES 87

mean-payoff games are unexpected since mean-payoff games have been studied for so
long.

From this experience, we conclude that more investigations of counter systems
are necessary, first concerning games on counter systems which have received little
attention due to many undecidability results [ABd08, RSB05], and also concerning the
quantitative theory of verification. The results on quantitative games and quantitative
languages suggest to study new classes of counter systems (e.g., with discounting,
or with new operations such as averaging, or division by a constant) to establish
connections with known or open problems. As a most promising direction, we will
investigate new game models on counter systems and the recent developments in the
theory of cost functions and distance automata [CL08, Col09, CKL10].

The other direction of research is the systematic study of games played on the
various classes of counter systems. For example, with Alexander Rabinovich we have
identified a simple class of games, the robot games, for which the decidability status
is not known. Given two finite sets U, V ⊆ Z2 of two-dimensional integer vectors, a
robot game is played in rounds from an initial configuration x0 ∈ Z2 as follows. In each
round, player 1 chooses a vector u ∈ U , then player 2 chooses a vector v ∈ V , and the
configuration in the next round is x+u+ v where x is the configuration in the current
round. The objective of player 1 is to reach the configuration (0, 0). Of apparent
extreme simplicity, the problem of deciding the existence of a winning strategy in robot
games is not solved. Extensions to higher dimensions, to more complex objectives, or
players with fixed internal state are interesting as well.

Classification of quantitative languages. The perspectives presented at the end
of Chapter 4 are fascinating, such as finding a robust and decidable class of quantitative
languages that subsumes discounted-sum languages, or solving games with objective
defined by a quantitative language. In parallel, the development of verification tools
based on the quantitative approach to model-checking is still missing, mainly due to
the lack of convincing and appropriate data-structure to deal with weights.

Our main long-term objective in the area of quantitative verification is to identify
canonical ways of defining quantitative languages and to construct an elegant theory
of quantitative languages that would induce a convincing hierarchy of languages (such
as the Borel hierarchy for Boolean languages), an hierarchy of weighted machines
of increasing complexity (such as the finite automata, pushdown automata, etc. for
non-weighted machines), robust properties (closure properties, equivalence with other
formalisms such as logics), and of course include simple class of quantitative languages
such as mean-payoff and discounted-sum languages.

88 CHAPTER 5. CONCLUSION

Bibliography

[ABd08] P. A. Abdulla, A. Bouajjani, and J. d’Orso. Monotonic and downward
closed games. J. Log. Comput., 18(1):153–169, 2008.

[ACC+10] P. A. Abdulla, Y.-F. Chen, L. Clemente, L. Hoĺık, C.-D. Hong, R. Mayr,
and T. Vojnar. Simulation subsumption in Ramsey-based Büchi automata
universality and inclusion testing. In Proc. of CAV: Computer Aided Ver-
ification, LNCS 6174, pages 132–147. Springer, 2010.

[ACC+11] P. A. Abdulla, Y.-F. Chen, L. Clemente, L. Hoĺık, C.-D. Hong, R. Mayr,
and T. Vojnar. Advanced Ramsey-based Büchi automata inclusion testing.
In Proc. of CONCUR: Concurrency Theory, LNCS 6901, pages 187–202.
Springer, 2011.

[ACH+10] P. A. Abdulla, Y.-F. Chen, L. Hoĺık, R. Mayr, and T. Vojnar. When
simulation meets antichains. In Proc. of TACAS: Tools and Algorithms
for the Construction and Analysis of Systems, LNCS 6015, pages 158–174.
Springer, 2010.

[ACJT96] P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decid-
ability theorems for infinite-state systems. In Proc. of LICS: Logic in
Computer Science, pages 313–321, 1996.

[ADMW09] R. Alur, A. Degorre, O. Maler, and G. Weiss. On omega-languages defined
by mean-payoff conditions. In Proc. of FOSSACS, LNCS 5504, pages 333–
347. Springer, 2009.

[AHK02] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal
logic. Journal of the ACM, 49:672–713, 2002.

[AHKV98] R. Alur, T. A. Henzinger, O. Kupferman, and M.Y. Vardi. Alternating
refinement relations. In Proc. of CONCUR: Concurrency Theory, LNCS
1466, pages 163–178. Springer, 1998.

[And06] D. Andersson. An improved algorithm for discounted payoff games. In
ESSLLI Student Session, pages 91–98, 2006.

89

90 BIBLIOGRAPHY

[BCHJ09] R. Bloem, K. Chatterjee, T. A. Henzinger, and B. Jobstmann. Better
quality in synthesis through quantitative objectives. In Proc. of CAV:
Computer-Aided Verification, LNCS 5643, pages 140–156. Springer, 2009.

[BFL+08] P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, and J. Srba. Infi-
nite runs in weighted timed automata with energy constraints. In Proc.
of FORMATS: Formal Modeling and Analysis of Timed Systems, LNCS
5215, pages 33–47. Springer, 2008.

[BGG09] N. Bertrand, B. Genest, and H. Gimbert. Qualitative determinacy and
decidability of stochastic games with signals. In Proc. of LICS: Logic in
Computer Science, pages 319–328. IEEE Computer Society, 2009.

[BH11] U. Boker and T. A. Henzinger. Determinizing discounted-sum automata.
In Proc. of CSL: Computer Science Logic, volume 12 of LIPIcs, pages
82–96. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

[BHH+08] A. Bouajjani, P. Habermehl, L. Hoĺık, T. Touili, and T. Vojnar. Antichain-
based universality and inclusion testing over nondeterministic finite tree
automata. In Proc. of CIAA: Implementation and Applications of Au-
tomata, LNCS 5148, pages 57–67. Springer, 2008.

[BJK10] T. Brázdil, P. Jancar, and A. Kucera. Reachability games on extended
vector addition systems with states. In Proc. of ICALP: Automata, Lan-
guages and Programming, LNCS 6199, pages 478–489. Springer, 2010.

[BL69] J. R. Büchi and L. H. Landweber. Solving sequential conditions by finite-
state strategies. Transactions of the Amer. Math. Soc., 138:295311, 1969.

[BSV04] H. Björklund, S. Sandberg, and S. G. Vorobyov. Memoryless determinacy
of parity and mean payoff games: a simple proof. Theor. Comput. Sci.,
310(1-3):365–378, 2004.

[BV07] H. Björklund and S. G. Vorobyov. A combinatorial strongly subexpo-
nential strategy improvement algorithm for mean payoff games. Discrete
Applied Mathematics, 155:210–229, 2007.

[CCGR00] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: A new
symbolic model checker. STTT: Software Tools for Technology Transfer,
2(4):410–425, 2000.

[CCH+05] A. Chakrabarti, K. Chatterjee, T. A. Henzinger, O. Kupferman, and
R. Majumdar. Verifying quantitative properties using bound functions. In
Proc. of CHARME: Correct Hardware Design and Verification Methods,
LNCS 3725, pages 50–64. Springer, 2005.

BIBLIOGRAPHY 91

[CdF+06] K. Chatterjee, L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar,
and M. Stoelinga. Compositional quantitative reasoning. In QEST: Quan-
titative Evaluation of Systems, pages 179–188. IEEE Computer Society,
2006.

[CdHS03] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Resource
interfaces. In Proc. of EMSOFT: Embedded Software, LNCS 2855, pages
117–133. Springer, 2003.

[CGH+08] K. Chatterjee, A. Ghosal, T. A. Henzinger, D. Iercan, C. Kirsch,
C. Pinello, and A. Sangiovanni-Vincentelli. Logical reliability of inter-
acting real-time tasks. In Proc. of DATE: Design, Automation and Test,
pages 909–914. ACM, 2008.

[Cha07] K. Chatterjee. Concurrent games with tail objectives. Theoretical Com-
puter Science, 388:181–198, 2007.

[Cha10] J. Chaloupka. Z-reachability problem for games on 2-dimensional vector
addition systems with states is in P. In Proc. of RP: Reachability Problems,
LNCS 6227, pages 104–119. Springer, 2010.

[CHJ05] K. Chatterjee, T. A. Henzinger, and M. Jurdziński. Mean-payoff parity
games. In Proc. of LICS: Logic in Computer Science, pages 178–187. IEEE
Computer Society, 2005.

[Chu62] A. Church. Logic, arithmetic, and automata. In Proc. of the International
Congress of Mathematicians, page 2335. Institut Mittag-Leffler, 1962.

[CK94] K. Culik and J. Karhumäki. Finite automata computing real functions.
SIAM J. Computing, 23:789–814, 1994.

[CKL10] T. Colcombet, D. Kuperberg, and S. Lombardy. Regular temporal cost
functions. In Proc. of ICALP: Automata, Languages and Programming,
LNCS 6199, pages 563–574. Springer, 2010.

[CL08] T. Colcombet and C. Löding. The non-deterministic mostowski hierarchy
and distance-parity automata. In Proc. of ICALP: Automata, Languages
and Programming, LNCS 5126, pages 398–409. Springer, 2008.

[Col09] T. Colcombet. The theory of stabilisation monoids and regular cost func-
tions. In Proc. of ICALP: Automata, Languages and Programming, LNCS
5556, pages 139–150. Springer, 2009.

[Con92] A. Condon. The complexity of stochastic games. Information and Com-
putation, 96:203–224, 1992.

92 BIBLIOGRAPHY

[Con93] A. Condon. On algorithms for simple stochastic games. In Advances
in Computational Complexity Theory, volume 13 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, pages 51–73.
American Mathematical Society, 1993.

[dAFS04] L. de Alfaro, M. Faella, and M. Stoelinga. Linear and branching metrics for
quantitative transition systems. In Proc. of ICALP: Automata, Languages
and Programming, LNCS 3142, pages 97–109. Springer, 2004.

[dAH01a] L. de Alfaro and T. A. Henzinger. Interface automata. In Proc. of FSE:
Foundations of Software Engineering, pages 109–120. ACM Press, 2001.

[dAH01b] L. de Alfaro and T. A. Henzinger. Interface theories for component-based
design. In Proc. of EMSOFT: Embedded Software, volume 2211 of LNCS,
pages 148–165. Springer, 2001.

[dAHM03] L. de Alfaro, T. A. Henzinger, and R. Majumdar. Discounting the fu-
ture in systems theory. In Proc. of ICALP: International Colloquium on
Automata, Languages and Programming, LNCS 2719, pages 1022–1037.
Springer, 2003.

[DG06] V. Dhingra and S. Gaubert. How to solve large scale deterministic games
with mean payoff by policy iteration. In Proc. Performance evaluation
methodolgies and tools, art. 12. ACM, 2006.

[DG07] M. Droste and P. Gastin. Weighted automata and weighted logics. The-
oretical Computer Science, 380:69–86, 2007.

[DGJP99] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics
for labeled Markov systems. In Proc. of CONCUR: Concurrency Theory,
LNCS 1664, pages 258–273. Springer, 1999.

[DGJP03] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Approxi-
mating labelled Markov processes. Inf. Comput., 184(1):160–200, 2003.

[Dic13] L. E. Dickson. Finiteness of the odd perfect and primitive abundant
numbers with n distinct prime factors. Am. J. of Mathematics, 35(4):413–
422, 1913.

[DK03] M. Droste and D. Kuske. Skew and infinitary formal power series. In
Proc. of ICALP: International Colloquium on Automata, Languages and
Programming, LNCS 2719, pages 426–438. Springer, 2003.

[DKR08] M. Droste, W. Kuich, and G. Rahonis. Multi-valued MSO logics over
words and trees. Fundamenta Informaticae, 84:305–327, 2008.

BIBLIOGRAPHY 93

[DR07] M. Droste and G. Rahonis. Weighted automata and weighted logics with
discounting. In Proc. of CIAA: Implementation and Application of Au-
tomata, LNCS 4783, pages 73–84. Springer, 2007.

[DZL03] S. Dal-Zilio and D. Lugiez. XML schema, tree logic and sheaves automata.
In Proc. of RTA: Rewriting Techniques and Applications, pages 246–263,
2003.

[Ehl10] R. Ehlers. Symbolic bounded synthesis. In Proc. of CAV: Computer Aided
Verification, LNCS 6174, pages 365–379. Springer, 2010.

[EJ91] E. A. Emerson and C. Jutla. Tree automata, mu-calculus and determi-
nacy. In Proc. of FOCS: Foundations of Computer Science, pages 368–377.
IEEE, 1991.

[EJS93] E. A. Emerson, C. Jutla, and A. P. Sistla. On model checking for fragments
of the µ-calculus. In Proc. of CAV: Computer Aided Verification, LNCS
697, pages 385–396. Springer, 1993.

[ÉK04] Z. Ésik and W. Kuich. An algebraic generalization of omega-regular lan-
guages. In Proc. of MFCS: Mathematical Foundations of Computer Sci-
ence, LNCS 3153, pages 648–659. Springer, 2004.

[EM79] A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff
games. International Journal of Game Theory, 8:109–113, 1979.

[FJR09] E. Filiot, N. Jin, and J.-F. Raskin. An antichain algorithm for LTL re-
alizability. In Proc. of CAV: Computer Aided Verification, LNCS 5643,
pages 263–277. Springer, 2009.

[FJR10] E. Filiot, N. Jin, and J.-F. Raskin. Compositional algorithms for LTL
synthesis. In Proc. of ATVA: Automated Technology for Verification and
Analysis, LNCS 6252, pages 112–127. Springer, 2010.

[FS01] A. Finkel and P. Schnoebelen. Well-structured transition systems every-
where! Theor. Comput. Sci., 256(1-2):63–92, 2001.

[FV97] J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer,
1997.

[FV09] S. Fogarty and M. Y. Vardi. Büchi complementation and size-change ter-
mination. In Proc. of TACAS: Tools and Algorithms for the Construction
and Analysis of Systems, volume 5505 of LNCS, pages 16–30. Springer,
2009.

94 BIBLIOGRAPHY

[FV10] S. Fogarty and M. Y. Vardi. Efficient Büchi universality checking. In
Proc. of TACAS: Tools and Algorithms for the Construction and Analysis
of Systems, LNCS 6015, pages 205–220. Springer, 2010.

[GC03] A. Gurfinkel and M. Chechik. Multi-valued model checking via classical
model checking. In Proc. of CONCUR: Concurrency Theory, LNCS 2761,
pages 263–277. Springer, 2003.

[GH82] Y. Gurevich and L. Harrington. Trees, automata, and games. In Proc. of
STOC: Symposium on Theory of Computing, pages 60–65. ACM, 1982.

[Gim06] H. Gimbert. Jeux positionnels. PhD thesis, Université¡ Paris 7, 2006.

[GKK88] V. A. Gurvich, A. V. Karzanov, and L. G. Kachiyan. USSR computational
mathematics and mathematical physics. Cyclic Games and an Algorithm
to Find Minmax Cycle Means in Directed Graphs, 5(28):85–91, 1988.

[GKSV03] S. Gurumurthy, O. Kupferman, F. Somenzi, and M. Y. Vardi. On comple-
menting nondeterministic Büchi automata. In Proc. of CHARME: Correct
Hardware Design and Verification Methods, LNCS 2860, pages 96–110.
Springer-Verlag, 2003.

[GNT04] E. Giunchiglia, M. Narizzano, and A. Tacchella. QuBE++: An Efficient
QBF Solver. In Proc. of FMCAD: Formal Methods in Computer-Aided
Design, LNCS 3312, pages 201–213. Springer, 2004.

[GTW02] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and
Infinite Games, LNCS 2500. Springer, 2002.

[Hen10] T. A. Henzinger. From boolean to quantitative notions of correctness.
In Proc. of POPL: Principles of Programming Languages, pages 157–158.
ACM, 2010.

[HHK95] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing simu-
lations on finite and infinite graphs. In Proc. of FOCS: Foundations of
Computer Science, pages 453–462. IEEE Computer Society Press, 1995.

[HK97] M. Huth and M. Z. Kwiatkowska. Quantitative analysis and model check-
ing. In Proc. of LICS: Logic in Computer Science, pages 111–122. IEEE
Computer Society Press, 1997.

[HK99] T. A. Henzinger and P. W. Kopke. Discrete-time control for rectangular
hybrid automata. Theoretical Computer Science, 221:369–392, 1999.

[HKR97] T. A. Henzinger, O. Kupferman, and S. K. Rajamani. Fair simulation.
In Proc. of CONCUR: Concurrency Theory, LNCS 1243, pages 273–287.
Springer, 1997.

BIBLIOGRAPHY 95

[Kar78] R. M. Karp. A characterization of the minimum cycle mean in a digraph.
Discrete Mathematics, 23(3):309–311, 1978.

[Kar05] W. Karianto. Adding monotonic counters to automata and transition
graphs. In Proc. of DLT: Developments in Language Theory, LNCS 3572,
pages 308–319. Springer, 2005.

[KL07] O. Kupferman and Y. Lustig. Lattice automata. In Proc. of VMCAI:
Verification, Model Checking, and Abstract Interpretation, LNCS 4349,
pages 199–213. Springer, 2007.

[Kön36] D. König. Theorie der endlichen und unendlichen Graphen. Akademische
Verlagsgesellschaft, Leipzig, 1936.

[Koz83] D. Kozen. Results on the propositional mu-calculus. Theor. Comput. Sci.,
27:333–354, 1983.

[KR03] F. Klaedtke and H. Rueß. Monadic second-order logics with cardinalities.
In Proc. of ICALP: International Colloquium on Automata, Languages
and Programming, pages 681–696, 2003.

[KS86] W. Kuich and A. Salomaa. Semirings, Automata, Languages, volume 5
of Monographs in Theoretical Computer Science. An EATCS Series.
Springer, 1986.

[KS88] S. R. Kosaraju and G. F. Sullivan. Detecting cycles in dynamic graphs in
polynomial time (preliminary version). In Proc. of STOC: Symposium on
Theory of Computing, pages 398–406. ACM, 1988.

[KV00] O. Kupferman and M. Y. Vardi. Synthesis with incomplete informatio. In
Advances in Temporal Logic, pages 109–127. Kluwer Academic Publishers,
January 2000.

[KV01] O. Kupferman and M. Y. Vardi. Weak alternating automata are not that
weak. ACM Trans. Comput. Log., 2(3):408–429, 2001.

[LB10] F. Lonsing and A. Biere. DepQBF: A dependency-aware QBF solver
(System Description). Journal on Satisfiability, Boolean Modeling and
Computation, 7:71–76, 2010.

[LGG11] M. Lindström, G. Geeraerts, and G. Goossens. A faster exact multipro-
cessor schedulability test for sporadic tasks. In Proc. of RNTS: Real-Time
and Network Systems, 2011.

[LLM05] A. Lluch-Lafuente and U. Montanari. Quantitative µ-calculus and CTL
based on constraint semirings. Electr. Notes Theor. Comput. Sci., 112:37–
59, 2005.

96 BIBLIOGRAPHY

[LP07] Y. Lifshits and D. Pavlov. Potential theory for mean payoff games. Journal
of Mathematical Sciences, 145(3):4967–4974, 2007.

[LX01] E. A. Lee and Y. Xiong. System-level types for component-based design.
In Proc. of EMSOFT: Embedded Software, pages 237–253. Springer, 2001.

[Mar98] D. A. Martin. The determinacy of blackwell games. J. Symb. Log.,
63(4):1565–1581, 1998.

[McN93] R. McNaughton. Infinite games played on finite graphs. Annals of Pure
and Applied Logic, 65(2):149–184, 1993.

[MH84] S. Miyano and T. Hayashi. Alternating finite automata on omega-words.
In Proc. of CAAP: Int. Colloquium on Trees in Algebra and Programming,
pages 195–210, 1984.

[Mil71] R. Milner. An algebraic definition of simulation between programs. In
Proc. of IJCAI: Int. Joint Conference on Artificial Intelligence, pages
481–489. British Computer Society, 1971.

[MM02] A. McIver and C. Morgan. Games, probability and the quantitative µ-
calculus qMµ. In Proc. of LPAR: Logic for Programming, Artificial Intel-
ligence, and Reasoning, LNCS 2514, pages 292–310. Springer, 2002.

[Moh97] M. Mohri. Finite-state transducers in language and speech processing.
Comp. Linguistics, 23(2):269–311, 1997.

[MS72] A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular
expressions with squaring requires exponential space. In Proc. of FOCS:
Foundations of Computer Science, pages 125–129. IEEE, 1972.

[NPPT09] M. Narizzano, C. Peschiera, L. Pulina, and A. Tacchella. Evaluating and
certifying QBFs: A comparison of state-of-the-art tools. AI Communica-
tions, 22:191–210, 2009.

[Pap94] C. H. Papadimitriou. Computational complexity. Addison-Wesley Pub-
lishing Company, Reading, MA, 1994.

[Paz71] A. Paz. Introduction to probabilistic automata. Computer Science and
Applied Mathematics. Academic Press, New York, 1971.

[Pis99] N. Pisaruk. Mean cost cyclical games. Mathematics of Operations Re-
search, 24(4):817–828, 1999.

[Rab69] M. O. Rabin. Decidability of second-order theories and automata on infi-
nite trees. Transactions of the Amer. Math. Soc., 141:1–35, 1969.

BIBLIOGRAPHY 97

[Rab72] M. O. Rabin. Automata on Infinite Objects and Church’s Problem. Amer-
ican Mathematical Society, Boston, MA, USA, 1972.

[Rei84] J. H. Reif. The complexity of two-player games of incomplete information.
Journal of Computer and System Sciences, 29:274–301, 1984.

[RH04] T. C. Ruys and G. J. Holzmann. Advanced spin tutorial. In SPIN, LNCS
2989, pages 304–305. Springer-Verlag, 2004.

[RHN00] R. Raimi, R. Hojati, and K. S. Namjoshi. Environment modeling and
language universality. ACM Trans. Design Autom. Electr. Syst., 5(3):705–
725, 2000.

[RP80] J. H. Reif and G. L. Peterson. A dynamic logic of multiprocessing with
incomplete information. In Proc. of POPL: Principles of Programming
Languages, pages 193–202. ACM, 1980.

[RSB05] J.-F. Raskin, M. Samuelides, and L. Van Begin. Games for counting
abstractions. Electr. Notes Theor. Comput. Sci., 128(6):69–85, 2005.

[RV07] K. Rozier and M. Y. Vardi. LTL satisfiability checking. In 14th Int. SPIN
Workshop, LNCS 4595, pages 149–167. Springer, 2007.

[Saf88] S. Safra. On the complexity of ω-automata. In Proc. of FOCS: Founda-
tions of Computer Science, pages 319–327. IEEE, 1988.

[Sch61] M. P. Schützenberger. On the definition of a family of automata. Infor-
mation and Control, 4:245–270, 1961.

[Sch09] S. Schewe. Tighter bounds for the determinisation of Büchi automata. In
Proc. of FOSSACS: Foundations of Software Science and Computational
Structures, LNCS 5504, pages 167–181. Springer, 2009.

[Sha53] L. S. Shapley. Stochastic games. In Proc. of the National Acadamy of
Science USA, volume 39, pages 1095–1100, 1953.

[SSM03] H. Seidl, T. Schwentick, and A. Muscholl. Numerical document queries.
In Proc. of PODS: Principles of Database Systems, pages 155–166. ACM,
2003.

[SSMH04] H. Seidl, T. Schwentick, A. Muscholl, and P. Habermehl. Counting in
trees for free. In Proc. of ICALP: International Colloquium on Automata,
Languages and Programming, pages 1136–1149, 2004.

[STV05] R. Sebastiani, S. Tonetta, and M. Vardi. Symbolic systems, explicit prop-
erties: On hybrid approaches for LTL symbolic model checking. In Proc. of
CAV: Computer-Aided Verification, LNCS 3576, pages 350–363. Springer,
2005.

98 BIBLIOGRAPHY

[SVW87] A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation prob-
lem for Büchi automata with applications to temporal logic. Theoretical
Computer Science, 49:217–237, 1987.

[TH03] A. Tozawa and M. Hagiya. XML schema containment checking based on
semi-implicit techniques. In Proc. of CIAA: Implementation and Applica-
tion of Automata, LNCS 2759, pages 213–225. Springer, 2003.

[Tho97] W. Thomas. Languages, automata, and logic. In Handbook of Formal
Languages, volume 3, Beyond Words, chapter 7, pages 389–455. Springer,
1997.

[TV05] D. Tabakov and M. Y. Vardi. Experimental evaluation of classical au-
tomata constructions. In Proc. of LPAR: Logic for Programming, Artificial
Intelligence, and Reasoning, LNCS 3835, pages 396–411. Springer-Verlag,
2005.

[TV07] D. Tabakov and M. Y. Vardi. Model-checking Büchi specifications. In Pre-
proceedings of LATA: Language and Automata Theory and Applications,
2007.

[Var96] M. Y. Vardi. An automata-theoretic approach to linear temporal logic.
In Proc. of Banff Higher Order Workshop, LNCS 1043, pages 238–266.
Springer, 1996.

[Vel11] Y. Velner. The complexity of mean-payoff automaton expression. CoRR,
abs/1106.3054, 2011.

[VR11] Y. Velner and A. Rabinovich. Church synthesis problem for noisy input. In
Proc. of FOSSACS: Foundations of Software Science and Computational
Structures, LNCS 6604, pages 275–289. Springer, 2011.

[VW86] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification (preliminary report). In Proc. of LICS: Logic in
Computer Science, pages 332–344. IEEE Computer Society, 1986.

[VW94] M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Inf.
Comput., 115(1):1–37, 1994.

[Zie98] W. Zielonka. Infinite games on finitely coloured graphs with applications
to automata on infinite trees. Theor. Comput. Sci., 200:135–183, 1998.

[ZP96] U. Zwick and M. Paterson. The complexity of mean payoff games on
graphs. Theor. Comput. Sci., 158(1&2):343–359, 1996.

Publication list

An up-to-date publication list is available at:

http://www.lsv.ens-cachan.fr/~doyen/publications.html

Book chapter

[1] L. Doyen and J.-F. Raskin. Games with imperfect information: Theory and al-
gorithms. In Lectures in Game Theory for Computer Scientists, pages 185–212.
Cambridge University Press, 2010.

Journal papers

[2] L. Brim, J. Chaloupka, L. Doyen, R. Gentilini, and J.-F. Raskin. Faster algorithms
for mean-payoff games. Formal Methods in System Design, 38(2):97–118, 2011,
Springer.

[3] D. Berwanger, K. Chatterjee, M. De Wulf, L. Doyen, and T. A. Henzinger. Strat-
egy construction for parity games with imperfect information. Information and
Computation, 208(10):1206–1220, 2010.

[4] K. Chatterjee, L. Doyen, and T. A. Henzinger. Expressiveness and closure prop-
erties for quantitative languages. Logical Methods in Computer Science, 6(3:10),
2010, LMCS-Online.

[5] K. Chatterjee, L. Doyen, and T. A. Henzinger. Quantitative languages. ACM
Transactions on Computational Logic, 11(4), 2010.

[6] L. Doyen and J.-F. Raskin. Antichains for the automata-based approach to model-
checking. Logical Methods in Computer Science, 5(1:5), 2009, LMCS-Online.

[7] M. De Wulf, L. Doyen, N. Markey, and J.-F. Raskin. Robust safety of timed au-
tomata. Formal Methods in System Design, 33(1-3):45–84, 2008, Springer-Verlag.

99

100 CONFERENCE PAPERS

[8] L. Doyen, T. A. Henzinger, and J.-F. Raskin. Equivalence of labeled markov
chains. Inernational Journal of Foundations of Computer Science, 19(3):549–563,
2008, World Scientific.

[9] K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Algorithms for
omega-regular games of incomplete information. Logical Methods in Computer
Science, 3(3:4), 2007, LMCS-Online.

[10] L. Doyen. Robust parametric reachability for timed automata. Information Pro-
cessing Letters, 102(5):208–213, 2007.

[11] Martin De Wulf, Laurent Doyen, and Jean-François Raskin. Almost ASAP seman-
tics: From timed models to timed implementations. Formal Aspects of Computing,
17(3):319–341, 2005.

Conference papers

[12] T. Brihaye, V. Bruyère, L. Doyen, M. Ducobu, and J.-F. Raskin. Antichain-
based QBF solving. In Proc. of ATVA: Automated Technology for Verification
and Analysis, LNCS. Springer-Verlag, 2011.

[13] T. Brihaye, L. Doyen, G. Geeraerts, J. Ouaknine, J.-F. Raskin, and J. Worrell.
On reachability for hybrid automata over bounded time. In Proc. of ICALP:
Automata, Languages and Programming, LNCS 6756, pages 416–427. Springer,
2011.

[14] K. Chatterjee and L. Doyen. Energy and mean-payoff parity Markov decision
processes. In Proc. of MFCS: Mathematical Foundations of Computer Science,
LNCS 6907, pages 206–218, 2011.

[15] K. Chatterjee, L. Doyen, and R. Singh. On memoryless quantitative objectives. In
Proc. of FCT: Fundamentals of Computation Theory, LNCS 6914, pages 148–159.
Springer-Verlag, 2011.

[16] L. Doyen, T. Massart, and M. Shirmohammadi. Infinite synchronizing words for
probabilistic automata. In Proc. of MFCS: Mathematical Foundations of Com-
puter Science, LNCS 6907, pages 278–289, 2011.

[17] K. Chatterjee and L. Doyen. The complexity of partial-observation parity games.
In Proc. of LPAR: Logic for Programming, Artificial Intelligence, and Reasoning,
LNCS 6397, pages 1–14. Springer-Verlag, 2010.

[18] K. Chatterjee and L. Doyen. Energy parity games. In Proc. of ICALP: Inter-
national Colloquium on Automata, Languages and Programming (Part II), LNCS
6199, pages 599–610. Springer-Verlag, 2010.

CONFERENCE PAPERS 101

[19] K. Chatterjee, L. Doyen, H. Edelsbrunner, T. A. Henzinger, and P. Rannou.
Mean-payoff automaton expressions. In Proc. of CONCUR: Concurrency Theory,
LNCS 6269, pages 269–283. Springer-Verlag, 2010.

[20] K. Chatterjee, L. Doyen, H. Gimbert, and T. A. Henzinger. Randomness for free.
In Proc. of MFCS: Mathematical Foundations of Computer Science, LNCS 6281,
pages 246–257. Springer-Verlag, 2010.

[21] K. Chatterjee, L. Doyen, and T. A. Henzinger. Qualitative analysis of partially-
observable Markov decision processes. In Proc. of MFCS: Mathematical Founda-
tions of Computer Science, LNCS 6281, pages 258–269. Springer-Verlag, 2010.

[22] K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Generalized mean-
payoff and energy games. In Proc. of FSTTCS: Foundations of Software Tech-
nology and Theoretical Computer Science, Dagstuhl Seminar Proceedings 08008.
Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), 2010.

[23] A. Degorre, L. Doyen, R. Gentilini, J.-F. Raskin, and S. Toruńczyk. Energy
and mean-payoff games with imperfect information. In Proc. of CSL: Computer
Science Logic, LNCS 6247, pages 260–274. Springer-Verlag, 2010.

[24] L. Doyen, T. A. Henzinger, A. Legay, and D. Nickovic. Robustness of sequential
circuits. In Proc. of ACSD: Application of Concurrency to System Design, pages
77–84. IEEE Computer Society Press, 2010.

[25] L. Doyen and J.-F. Raskin. Antichains algorithms for finite automata. In Proc.
of TACAS: Tools and Algorithms for the Construction and Analysis of Systems,
LNCS 6015, pages 2–22. Springer-Verlag, 2010.

[26] K. Chatterjee, L. Doyen, and T. A. Henzinger. Alternating weighted automata.
In Proc. of FCT: Fundamentals of Computation Theory, LNCS 5699, pages 3–13.
Springer, 2009.

[27] K. Chatterjee, L. Doyen, and T. A. Henzinger. Expressiveness and closure prop-
erties for quantitative languages. In Proc. of LICS: Logic in Computer Sciences,
pages 199–208. IEEE, 2009.

[28] K. Chatterjee, L. Doyen, and T. A. Henzinger. Probabilistic weighted automata.
In Proc. of CONCUR: Concurrency Theory, LNCS 5710, pages 244–258. Springer-
Verlag, 2009.

[29] K. Chatterjee, L. Doyen, and T. A. Henzinger. A survey of stochastic games with
limsup and liminf objectives. In Proceedings of ICALP: International Colloquium
on Automata, Languages and Programming (Part II), Lecture Notes in Computer
Science 5556, pages 1–15. Springer-Verlag, 2009.

102 CONFERENCE PAPERS

[30] L. Doyen, G. Geeraerts, J.-F. Raskin, and J. Reichert. Realizability of real-time
logics. In Proc. of FORMATS: Formal Modelling and Analysis of Timed Systems,
LNCS 5813, pages 133–148. Springer-Verlag, 2009.

[31] D. Berwanger, K. Chatterjee, L. Doyen, T. A. Henzinger, and S. Raje. Strategy
construction for parity games with imperfect information. In Proc. of CONCUR:
Concurrency Theory, LNCS 5201, pages 325–339. Springer-Verlag, 2008.

[32] D. Berwanger and L. Doyen. On the power of imperfect information. In Proc.
of FSTTCS: Foundations of Software Technology and Theoretical Computer Sci-
ence, Dagstuhl Seminar Proceedings 08004. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), 2008.

[33] K. Chatterjee, L. Doyen, and T. A. Henzinger. Quantitative languages. In Proc.
of CSL: Computer Science Logic, LNCS 5213, pages 385–400. Springer-Verlag,
2008.

[34] M. De Wulf, L. Doyen, N. Maquet, and J.-F. Raskin. Antichains: Alternative
algorithms for LTL satisfiability and model-checking. In Proc. of TACAS: Tools
and Algorithms for the Construction and Analysis of Systems, LNCS 4963, pages
63–77. Springer-Verlag, 2008.

[35] L. Doyen, T. A. Henzinger, B. Jobstmann, and T. Petrov. Interface theories
with component reuse. In Proc. of EMSOFT: Embedded Software, pages 79–88.
ACM-Press, 2008.

[36] L. Doyen and J.-F. Raskin. Improved algorithms for the automata-based approach
to model-checking. In Proc. of TACAS: Tools and Algorithms for the Construction
and Analysis of Systems, LNCS 4424, pages 451–465. Springer-Verlag, 2007.

[37] K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Algorithms for
omega-regular games of incomplete information. In Proceedings of CSL: Computer
Science Logic, Lecture Notes in Computer Science 4207, pages 287–302. Springer-
Verlag, 2006.

[38] M. De Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Antichains: A new
algorithm for checking universality of finite automata. In Proc. of CAV: Computer-
Aided Verification, LNCS 4144, pages 17–30. Springer-Verlag, 2006.

[39] M. De Wulf, L. Doyen, and J.-F. Raskin. A lattice theory for solving games of
imperfect information. In Proc. of HSCC: Hybrid Systems—Computation and
Control, LNCS 3927, pages 153–168. Springer-Verlag, 2006.

[40] Martin De Wulf, L. Doyen, and J.-F. Raskin. Systematic implementation of
real-time models. In Proc. of FM: Formal Methods, LNCS 3582, pages 139–156.
Springer-Verlag, 2005.

TOOL PAPERS 103

[41] L. Doyen, T. A. Henzinger, and J.-F. Raskin. Automatic rectangular refinement
of affine hybrid systems. In Proc. of FORMATS: Formal Modelling and Analysis
of Timed Systems, LNCS 3829, pages 144–161. Springer-Verlag, 2005.

[42] M. De Wulf, L. Doyen, N. Markey, and J.-F. Raskin. Robustness and imple-
mentability of timed automata. In Proc. of FORMATS-FTRTFT, LNCS 3253,
pages 118–133. Springer-Verlag, 2004.

[43] M. De Wulf, L. Doyen, and J.-F. Raskin. Almost ASAP semantics: From
timed models to timed implementations. In Proc. of HSCC: Hybrid Systems—
Computation and Control, LNCS 2993, pages 296–310. Springer-Verlag, 2004.

Tool papers

[44] D. Berwanger, K. Chatterjee, M. De Wulf, L. Doyen, and T. A. Henzinger. Alpaga:
A tool for solving parity games with imperfect information. In Proc. of TACAS:
Tools and Algorithms for the Construction and Analysis of Systems, LNCS 5505,
pages 58–61. Springer, 2009.

[45] M. De Wulf, L. Doyen, N. Maquet, and J.-F. Raskin. Alaska: Antichains for logic,
automata and symbolic kripke structures analysis. In Proc. of ATVA: Automated
Technology for Verification and Analysis, LNCS 5311, pages 240–245. Springer-
Verlag, 2008.

Other publications

[46] K. Chatterjee and L. Doyen. Games and Markov decision processes with mean-
payoff parity and energy parity objectives. In Proc. of MEMICS 2011: Mathemat-
ical and Engineering Methods in Computer Science, Lecture Notes in Computer
Science, 2011.

[47] L. Doyen, T. Massart, and M. Shirmohammadi. Synchronizing objectives for
Markov decision processes. In Proc. of iWIGP: Interactions, Games and Protocols,
EPTCS, pages 61–75, 2011.

