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Résumé

Pendant de nombreuses années, les applications liées a la sécurisation de I'information
étaient essentiellement militaires. Avec le développement des réseaux de communications
comme Internet, et I'essor du commerce électronique, le besoin d’assurer la sécurité des
échanges a considérablement augmenté. Les communications « sécurisées » sont réalisées par
I'utilisation de petits programmes appelés protocoles cryptographiques. Le probleme de la
vérification des protocoles cryptographiques est un probléme difficile pouvant étre vu comme
un cas particulier de model-checking ou I'environnement considéré est un environnement hos-
tile. De nombreux résultats et outils ont été développés pour permettre la vérification de ces
protocoles de maniére automatique.

Récemment, pour faire face aux enjeux sociétaux et technologiques, de nouvelles applica-
tions ont vu le jour, e.g. vote électronique, protocoles de routage dans les réseaux mobiles ad
hoc, ... Ces applications présentent des caractéristiques spécifiques qui ne sont pas prises en
compte par les outils de vérification existant a ’heure actuelle, e.g. utilisation de primitives
cryptographiques complexes, propriétés de sécurité lié au respect de la vie privée, ... De plus,
il s’avere que les protocoles sont souvent analysés sans tenir compte de I’environment dans le-
quel ils s’exécutent, ce qui est insuffisant dans la pratique. Dans cette these, nous utilisons des
méthodes formelles pour étudier ces différents aspects portant sur la vérification de protocoles
cryptographiques.

Mots-Clefs

Vérification formelle, protocole cryptographique, respect de la vie privée, équivalence obser-
vationnelle, composition

Abstract

Security is a very old concern, which until quite recently was mostly of interest for mili-
tary purposes. The deployment of electronic commerce changes this drastically. The security
of exchanges is ensured by cryptographic protocols which are notoriously error prone. The
formal verification of cryptographic protocols is a difficult problem that can be seen as a
particular model-checking problem in an hostile environment. Many results and tools have
been developed to automatically verify cryptographic protocols.

Recently, new type of applications have emerged, in order to face new technological and
societal challenges, e.g. electronic voting protocols, secure routing protocols for mobile ad
hoc networks, ... These applications involve some features that are not taken into account
by the existing verification tools, e.g. complex cryptographic primitives, privacy-type security
properties, ... This prevents us from modelling these protocols in an accurate way. Moreover,
protocols are often analysed in isolation and this is well-known to be not sufficient. In this the-
sis, we use formal methods to study these aspects concerning the verification of cryptographic
protocols.
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Formal verification, cryptographic protocol, privacy, observational equivalence, composition
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Chapter 1

Introduction

This habilitation thesis reports on a selection of my contributions since my PhD thesis in 2006.
To improve readability, my own publications are cited like [1] whereas the other references are
cited like [AB03]. Moreover, for the sake of clarity, some results are only described informally
and some others are not presented in this manuscript.

1.1 The growing importance of security protocols

Security is a very old concern, which until quite recently was mostly of interest for military
purposes, and therefore of rather limited interest to the public at large. The deployment
of electronic commerce changed this drastically. Security protocols are widely used today
to secure transactions that take place through public channels like the Internet. Typical
functionalities are the transfer of a credit card number or the authentication of a user on a
system. Because of their increasing ubiquity in many important applications (e.g. electronic
commerce, electronic voting, ...), a very important research challenge consists in developing
methods and verification tools to increase our trust on security protocols, and so on the
applications that rely on them. For example, more than 12 billion Euros are spent each year
using Internet transactions. Moreover, new types of protocols are still emerging in order to
face new technological and societal challenges. As an illustrative purpose, two applications
having an important societal impact are described below.

Electronic voting. Electronic voting promises the possibility of a convenient, efficient and
secure facility for recording and tallying votes. It can be used for a variety of types of
elections, from small committees or on-line communities to full-scale national elections. For
these reasons, governments the world over are trialling and adopting electronic voting systems.

However, recent studies have highlighted inadequacies in implemented systems. For in-
stance, the electronic voting machines used in US elections have been fraught with security
problems. Researchers [KSRW04] have analysed the source code of the Diebold machines used
in 37 US states. This analysis has produced a catalogue of vulnerabilities and possible at-
tacks. More recent work [FHF06] has produced a security study of the Diebold AccuVote-TS
voting machine, including both hardware and software. The results show that it is vulnerable
to very serious attacks that can be performed at a large scale.

11



12 CHAPTER 1. INTRODUCTION

Mobile ad hoc networking. Over the past decade, wireless, mobile communication tech-
nologies have matured and been widely adopted. For instance, the number of cellular phones
now exceeds by far that of wired phones. The proliferation of portable computing devices
(e.g. RFID tags) has lead to a range of new computer security problems that are regularly
reported by the media [Gool0]. Whereas RFID tagging could allow many advantages related
to production, tracking and tracing of people, animals and products, it cannot be at the
expense of health, security, or the fundamental rights to privacy and data protection.

The same kind of things happens in vehicular ad hoc networks where applications such as
collision warning systems and high speed toll payment are envisaged to improve road safety.
Those applications rely on a beacon signal which poses a threat to privacy since it could
allow a vehicle to be tracked. It seems currently socially unacceptable that citizens would be
tracked and traced wherever they go, all the time. Moreover, coping with mobility and the
volatility of wireless communications in such systems is critical.

The Internet is a large common space, accessible to everyone around the world. As in
any public space, people should take appropriate precautions to protect themselves against
fraudulent people and processes. It is therefore essential to obtain as much confidence as
possible in the correctness of the applications that we use.

1.2 Security protocols

Cryptography is the practice and study of hiding information. Much of the theoretical work
in cryptography concerns cryptographic primitives, i.e. algorithms with basic cryptographic
properties. These primitives provide fundamental properties, which are used to develop more
complex tools called security protocols, which guarantee one or more high-level security prop-
erties.

1.2.1 Cryptographic primitives

Cryptology prior to the modern age was almost synonymous with encryption, the conversion
of information from a readable state to nonsense. The sender retains the ability to decrypt the
information and therefore prevents unwanted persons from reading it. Since World War 11
and the advent of the computer, the methods used to carry out cryptology have become
increasingly complex and its application more widespread (e.g. cash machine, electronic
commerce, electronic voting, ...) The development of digital computers and electronics after
World War 11 made possible much more complex ciphers. Typical examples of cryptographic
primitives include one-way functions, symmetric and asymmetric encryptions, ...

Symmetric encryption. Symmetric-key cryptography refers to encryption methods in
which both the sender and receiver share the same key. This was the only kind of encryption
publicly known until June 1976. For instance, the Data Encryption Standard (DES) and the
Advanced Encryption Standard (AES) are block cipher designs which have been designated
cryptography standards by the US government. Despite its deprecation as an official stan-
dard, DES remains quite popular; it is used across a wide range of applications, from ATM
encryption, to e-mail privacy and secure remote access.

A significant disadvantage of symmetric ciphers is the key management necessary to use
them securely. Each distinct pair of communicating parties must, ideally, share a different
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key, and perhaps each ciphertext exchanged as well. The number of required keys increases
as the square of the number of network members, which very quickly requires complex key
management schemes to keep them all straight and secret. The difficulty of securely establish-
ing a secret key between two communicating parties, when a secure channel does not already
exist between them, also presents a chicken-and-egg problem which is a considerable practical
obstacle for cryptography users in the real world.

Asymmetric encryption. In 1976, W. Diffie and M. Hellman proposed the notion of
public key cryptography in which two different but mathematically related keys are used — a
public key and a private key [DH76]. A public key system is so constructed that calculation
of one key (the ’private key’) is computationally infeasible from the other (the 'public key’),
even though they are necessarily related. In public key cryptosystems, the public key may
be freely distributed, while its associated private key must remain secret. The public key
is typically used for encryption, while the private key is used for decryption. W. Diffie
and M. Hellman showed that public key cryptography was possible by presenting the Diffie-
Hellman key exchange protocol [DH76]. In 1978, R. Rivest, A. Shamir, and L. Adleman
invented RSA, another public key system [RSATS|.

Hash function. A hash function takes a message of any length as input, and outputs a
short, fixed length hash. Hash functions have many information security applications, notably
in digital signatures, message authentication codes (MACs), and other forms of authentica-
tion. They can also be used as checksums to detect accidental data corruption. For good hash
functions, an attacker cannot find two messages that produce the same hash. For instance,
MD4 is a long-used hash function which is now broken; MD5, a strengthened variant of MD4,
is also widely used but broken in practice. The U.S. National Security Agency developed
the Secure Hash Algorithm series of MD5-like hash functions: SHA-0, SHA-1, ... Message
authentication codes (MACs) are much like cryptographic hash functions, except that a secret
key can be used to authenticate the hash value upon receipt.

New emerging applications such as electronic voting or electronic tolling often rely on
some less standard cryptographic primitives to achieve their goals, e.g. blind signatures,
re-encryption, zero-knowledge proofs, ... It is therefore important to develop verification
techniques that are flexible enough to deal with a variety of cryptographic primitives.

1.2.2 Protocols

A protocol can be seen as a list of rules that describes executions; these rules specify the
emissions and receptions of messages by the actors of the protocols called agents. They are
designed to achieve various security goals such as data privacy and data authenticity, even
when the communication between parties takes place over channels controlled by an attacker.
For instance, SSL is a protocol that is widely used to provide authentication and encryption
in order to send sensitive data such as credit card numbers to a vendor. Those protocols
use cryptographic primitives as a building block. A wide variety of cryptographic protocols
go beyond the traditional goals of data confidentiality, integrity, and authentication and use
more complex cryptographic primitives.

As an illustrative purpose, let us consider the following handshake protocol [Bla01]. This
is a simplification of the Denning-Sacco key distribution protocol [DS81], omitting certificates
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and timestamps. This protocol allows two agents A and B to share a symmetric key k (freshly
generated by A) that can be used for some latter transaction. For instance, B can use this
key to encrypt the secret s (freshly generated by B). We consider asymmetric encryption
(denoted by the symbol aenc), and signature (denoted by the symbol sign):

A — B : aenc(sign(k,sk(A)), pk(B))
B— A : senc(s,k)

First, the initiator of the protocol generates a fresh symmetric key k. He signs it using his
private key sk(A) before encrypting the whole message with the public key of the responder,
i.e. pk(B). When B receives the message, he decrypts it using his private key sk(B). He
obtains a signature allowing him to authenticate the message. Indeed, intuitively, only A
is able to build such a signature: he is the only one who knows sk(A). Then, from the
signature sign(k, sk(A)), the agent B can extract the key k.

The handshake protocol is well-known to be flawed. In the attack scenario, we assume
that the public keys pk(A), pk(B), and pk(C) are public, hence available to all agents. Here,
we suppose that C' is compromised. Finally, we also assume that the names of the agents,
namely A, B, and C are public. Assume that the agent A begins a session with the agent C
who is compromised (message 1). This first message allows C' to learn the key k.. Moreover,
the agent C' can use this first message to contact B on behalf of A (message 2). Hence, B will
encrypt his secret s, (that he wants to share with A only) with the key kq. that is known
by C' (message 3).

1. A— C: aenc(sign(kqc, sk(A)), pk(C))

2. C(A) — B: aenc(sign(kqc, sk(A)), pk(B))
3. B — A: senc(Sap, kac)

For a long time, it was believed that designing a strong encryption scheme was sufficient to
ensure secure message exchanges. Starting from the 1980’s, researchers understood that even
with perfect encryption schemes, messages exchanges were still not necessarily secure. This
fact is illustrated with the attack described above. Indeed, this attack can be mounted without
breaking encryption. This leads to the fact that cryptographic protocols have to be verified
and proved before they could be trusted. Note that in presence of honest participants who
follow the protocol, the protocol works well. There is no failure in this protocol. However,
we have to consider the fact that a malicious agent may want to take advantage of this
protocol. This means that we need to verify security protocols in an hostile environment, i.e.,
in presence of malicious agents who do not necessarily follow the instructions specified by the
protocols. This is an essential feature which makes protocol verification a difficult task.

1.3 Verification via formal models

The goal of cryptanalysis is to find some weakness or insecurity in a cryptographic scheme,
thus permitting its subversion or evasion. Here, we will assume that primitives work perfectly,
meaning that it is not possible to break them. This does not mean however that the protocols
that rely on these primitives are secure. There can still remain some logical attacks (see the
attack described in Section 1.2.2 on the handshake protocol).
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1.3.1 Computational versus symbolic approach

Two distinct approaches have evolved starting with the early 1980’s attempt to ground security
analysis of protocols on firm, rigorous mathematical foundations. These two approaches are
known as the computational approach and the symbolic approach. The central features of the
computational approach are detailed bit-level models for system executions, and the hypothe-
sis of a powerful attacker: security is assessed against arbitrary probabilistic polynomial-time
machines. It is generally acknowledged that security proofs in this model offer powerful se-
curity guarantees. A serious downside of this approach however is that proofs for even small
protocols are usually long, difficult, tedious, and highly error prone.

In this habilitation thesis, we concentrate on the symbolic approach that employs an ab-
stract view of the execution where the messages exchanged by parties are symbolic terms.
The resulting models are considerably simpler than those of the computational approach,
proofs are therefore also simpler, and can benefit from machine support. However, the ab-
stractions render unclear the security guarantees that are obtained at the end. Recently,
significant research efforts have attempted to develop paradigms for cryptographic systems
analysis that combines the best of both worlds. Computational soundness aims to establish
sufficient conditions under which results obtained using symbolic models imply security under
computational models. Research on computational soundness was initiated by M. Abadi and
Ph. Rogaway [AR00] in 2000. Through their work it became clear that it is possible to employ
the tools and methods specific to the symbolic approach to directly obtain computational se-
curity guarantees. The crucial implication is that such guarantees can be obtained without
making use of the typical computational proofs. Since then, a plethora of papers have tackled
this problem (see [CKW10] for a recent survey on this topic).

1.3.2 A variety of symbolic models

Several symbolic models have been proposed for cryptographic protocols. The first one has
been described by D. Dolev and A. Yao [DY81] and several models have been proposed since
then. A unified model would enable better comparisons between each result but unfortunately
such a model does not exist currently. The reason for having several popular symbolic models
probably comes from the fact that symbolic models have to achieve two antagonistic goals.
On the one hand, models have to be as fine grained and expressive as possible to capture a
large range of applications. One the other hand, models have to remain relatively simple in
order to allow the design of verification procedures.

Messages are a key concept in this modelling. Whereas messages are bit-strings in the
real-world and in the computational approach, here messages are first-order terms. Constants
can be nonces, keys, or agents identities. Functions are concatenation, asymmetric and sym-
metric encryptions or digital signature. During the protocol execution, the agents exchange
messages and the attacker may interfere with these exchanges in order to gain some infor-
mation, authenticate as another agent, or perform any other type of attack. The attacker is
defined by a deduction relation which represents the computation that the attacker can do.
In other words, the attacker can only do what is allowed by the specification.

Usually, the perfect cryptography assumption is commonly used to simplify these proofs.
When making that hypothesis, the encryption schemes are supposed to be perfect. Hence,
it is impossible to deduce a plaintext from its ciphertext without knowing the decryption
key. The only deduction rule that an attacker can use to deduce some information from a



16 CHAPTER 1. INTRODUCTION

ciphertext can be described as follows:

aenc(z, pk(y)) sk(y)

T

This rule expresses the fact that an attacker who knows aenc(m, pk(a)), i.e. the encryption
of the message m with the public key pk(a), can decrypt this ciphertext to get m only if he
knows the associated private key, namely sk(a). If the encryption scheme has some other
properties, e.g. commutativity of the RSA encryption scheme, it is important to specify this
properties to avoid missing attacks. This is often done by considering an equational theory.
For instance, the equation described below expresses a commutativity property.

aenc(aenc(z, pk(y)), pk(z)) = aenc(aenc(z, pk(z)), pk(y))

Therefore, it is important to develop verification techniques that are flexible enough to
deal with a variety of cryptographic primitives and their equational theories in order to cope
with the new emerging applications.

Without aiming at an exhaustive list we mention below several symbolic models.

Constraint solving. This technique has been introduced by J. Millen and V. Shmatikov
[MSO01]. It has been reused by H. Comon-Lundh and others [CLS03, CLCZ10]. This technique
is well-adapted to deal with a bounded number of sessions. The principle is quite simple and
will be reviewed in details in Chapter 2. We will see that it is flexible enough to deal with
a variety of equational theories and also to reflect different constructions that are sometimes
needed to model some applications (e.g. routing protocols).

Horn clauses. The main goal of this approach is to prove security properties of protocols
in an automatic way without bounding the number of sessions or the message space of the
protocol. In general, this representation of protocols is approximate in that the applica-
tion of Horn clauses can be repeated any number of times, while the real protocol repeats
each step only once per session. Nevertheless the method was successfully used by many
researchers [Wei99, Bla01, CLC03, VSS05] The main advantages of this approach is that we
can reuse resolution techniques. This is the underlying model of the PROVERIF tool [Bla01]
that we have used to perform several case studies.

Multiset rewriting. Several models based on rewriting have been proposed, e.g. the result
by M. Rusinowitch and M. Turuani [RT03]. The multiset rewriting model has been introduced
by J. Mitchell et al. [CDL*99, DLM04]. We will use a model based on rewriting in Chapter 3
to analyse security APIs.

Process algebra. Process algebra is a well-known formal framework and actually denotes
a family of calculi which have been proposed for describing features of distributed and con-
current systems. This generally leads to a model closer to the implementation. In fact, when
applied to security protocol analysis, most of them (e.g. spi-calculus [AG97], CSP [Sch96])
rely only on a well-identified subset of primitives. This is not the case of the applied pi cal-
culus [AF01] that has been designed to be flexible in this respect. This calculus is flexible
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enough to deal with a variety of equational theories. Several results presented in this thesis
have been done in this model. We will present this calculus in Chapter 4.

In these models, a notion of observational equivalence is defined. This notion can be used
to express equivalence-based properties such as privacy-type properties.

1.3.3 A variety of security properties

Cryptographic protocols aim at ensuring various security goals, depending on the application.
One of the main difficulty when analysing a complex protocol such as an electronic voting
protocol is that there are a wide variety of requirements to achieve security. For example, in
case of electronic voting, it is important to ensure vote-privacy, 7.e. the fact that a particular
voter voted in a particular way is not revealed to anyone. We have also to ensure that only the
voters that are authorized to vote can do that. Moreover, there are other needs which seem
to be contradictory: the voters have to be able to test that their votes have been correctly
taken into account but it should not be possible for them to prove to a third person the value
of their ballot (this is required to avoid ballot selling).

Hence, when we are faced to a new application, the first step is to formally define the
security properties that this application is supposed to achieve. This is not an obvious step.
Indeed, in general, the security properties mentioned in the specification are expressed in
natural language and therefore insufficiently precise.

We can distinguish two main classes of security properties.

Trace-based security properties.

The two most classical security properties are secrecy and authentication. Both are trace-
based security properties (or reachability properties) saying that a bad state can not be
reached. Most of the verification techniques have been developed for the analysis of these two
properties.

Secrecy. This property concerns a message used by the protocol. This is typically a nonce
or a secret key that should not become public. Even for this quite simple security property,
several definitions have been proposed in the literature. Indeed, a message can be public if the
attacker is able to deduce its value (weak secrecy), or it can be public as soon as the attacker
is able to distinguish this message from a randomly generated message (strong secrecy). In
this latter case, secrecy can be expressed by means of an equivalence (see below).

Authentication. Many security protocols have the aim of authenticating one agent to
another: one agent should become sure of the identity of the other. They are also several
variants of authentication. A taxomony of these has been proposed by Lowe in [Low97].

However, up-to-date applications need to satisfy some other requirements that have not
been well-studied until now. For instance route validity is a crucial property that has to be
satisfied by a routing protocol. This can also be expressed as a reachability property. There
are however several security properties, which cannot be defined (or cannot be naturally
defined) as trace properties and require the notion of observational equivalence.
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Equivalence-based security properties.

Intuitively, two processes P and () are observationally equivalent if it is not possible for an
observer to distinguish them. Observational equivalence is crucial when specifying properties
like anonymity, or privacy related properties involved in electronic voting (see Chapter 4).
More generally, it is a notion that allows one to express flexible notions of security by requiring
observational equivalence between a protocol and an idealized version of it, that magically
realizes the desired properties.

Privacy. Frequently, communication between two principals reveals their identities and
presence to third parties. Indeed, privacy is in general not one of the explicit goals of common
authentication protocol. However, we may want a protocol that achieves this goal. This
should mean, in particular, that an attacker cannot distinguish a run between A and B from
a run between two other principals A’ and B’, under appropriate hypotheses. In the context
of electronic voting, privacy means that the vote of a particular voter is not revealed to
anyone. This is one of the fundamental security properties that an electronic voting system
has to satisfy. The same concept is also a desirable property in the context of on-line auction
systems. In this situation, privacy means that a third party should not be able to determine
the bidding price of any bidder (except for the winning bidder if the winning bid is published).

Unlinkability. Protocols that keep the identity of their users secure may still allow an
attacker to identify particular sessions as having involved the same principal. Such linkability
attacks may, for instance, make it possible for a third party to trace the movements of
someone carrying an RFID tag. Intuitively, protocols are said to provide unlinkability (or
untraceability), if an attacker is not able to distinguish a scenario in which the same tag is
involved in many sessions from one that involved different tags. Although untraceability is
mainly mentioned in the context of RFID systems, linkability attacks are not restricted to
this application.

Receipt-freeness. In the context of electronic voting, this property stipulates that a voter
does not gain any information (a receipt) which can be used to prove to a coercer that
she voted in a certain way [BT94]. Receipt-freeness is intuitively a stronger property than
privacy. Intuitively, privacy says that an attacker cannot discern how a voter votes from
any information that the voter necessarily reveals during the course of the election. Receipt-
freeness says the same thing even if the voter voluntarily reveals additional information.

This property is also required in electronic auction protocols: a bidder should not be able
to prove to a third party that he has bid in a certain way. This is required to protect bidders
from being coerced to show how they bid.

1.4 Existing results

Many results and tools have been developed to automatically verify cryptographic protocols.
However, they mostly concern trace-based security properties and especially (weak) secrecy.
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1.4.1 Decidability and undecidability results

Many decidability an undecidability results have been obtained under the perfect cryptogra-
phy assumption. Recently, several works tried to extend these results to protocols with some
algebraic properties. This was the main topic of my PhD thesis [41] in which several deci-
sion procedures for a variety of algebraic properties are proposed. However, only trace-based
properties are considered. We give here an overview of the existing results (see [9] for more
details).

Some undecidability results. Though cryptographic protocols are often described in a
concise way, the verification problem is difficult because of many sources of unboundedness
in their modelling, for instance the number of sessions, the length of messages, or the nonce
generation. As a consequence deciding whether a protocol preserves a secrecy property is un-
decidable even under the perfect cryptography assumption [EG83, CLC04b, DLMS99, AC02].

Bounded number of sessions. A prominent source of undecidability is the unbounded
number of sessions. Actually, in [RT03], M. Rusinowitch and M. Turuani extend the work
of R. Amadio et al. [ALV02] by giving a co-NP-complete procedure for deciding protocol
security for the Dolev-Yao attacker as long as the number of sessions is bounded. Some
similar results [MS01, Bor01, CLCZ10] have been obtained in other models. Note that even
if it is assumed that there is a bounded number of sessions (thus, also a bounded number of
nonces), it is still not easy to design a decision algorithm since the number of messages that
can be created by the attacker is unbounded.

Certain algebraic properties of encryption, such as the homomorphic properties of RSA
or the properties induced by chaining methods for block ciphers, are widely used in protocol
constructions. Many real attacks rely on these properties. Recently, several procedures have
been proposed to decide insecurity of cryptographic protocols when considering some algebraic
properties of the cryptographic primitives, mostly for a finite number of sessions. For instance,
several procedures that deal with protocols relying on the exclusive-or operator have been
proposed [CLS03, CKRT03b]. Some properties of the modular exponentiation operator are
also taken into account in some decidability results [CKRT03a, MS05].

However, there are very few decision procedures dealing with equivalence-based properties.
H. Hiittel [Hut02] shows such a result in a context of process algebra for the notion of strong
secrecy expressed as an observational equivalence property. M. Baudet provides also an
interesting result showing that an equivalence property (stronger than the standard notion) is
decidable for the class of subterm convergent equational theories [Bau05, Bau07], generalizing
the result of V. Cortier and M. Abadi obtained in the passive case [AC06]. We will come back
to these results in Chapter 5 and Chapter 6 after a presentation of my own contributions in
this area.

Unbounded number of sessions. In this setting, to get decidability results, some other
restrictions are considered. One of the first results is a PTIME complexity result which has
been obtained by D. Dolev et al. for ping-pong protocols between two participants [DY81]:
in each step of the protocol, one of the agents applies a sequence of operators to the last
received message, and sends it to the other agent. Some decidability results in presence of
algebraic properties have also been obtained. For instance, in [CLCO03|, they consider the
exclusive-or operator and they assume a finite number of nonces and suppose that at each
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transition an agent may copy at most one unknown component of the received message. Some
decidable classes have been proposed by K. Verma et al. to deal with exclusive-or and Abelian
groups [Ver03, VSS05].

Concerning equivalence-based properties, a procedure has been proposed by B. Blanchet
et al. [BAF08]. This procedure considers a strong notion of equivalence and has been im-
plemented in the PROVERIF tool. It allows one to verify some equivalence-based security
properties. However, we will see (Part II of this manuscript) that the underlying notion of
equivalence is too strong in several situations.

1.4.2 Verification tools

Some of the decision procedures briefly mentioned above have been implemented. Instead of
identifying decidable classes, another approach consists of designing semi-decision procedures
that work well in practice. This approach has been followed by several authors. Below, we
briefly describe some verification tools, focusing on those that are able to handle algebraic
properties.

AVISPA tool suite. The AVISPA tool suite [ABB*05] comprises a common high-level in-
put language and four verification backends: OFMC, SATMC, CL-ATSE, and TA4SP. For
bounded verification of protocols (using small bounds equal to two or three runs), AVISPA
is state-of-the-art in terms of both speed and features. In particular, some of the backends
support some algebraic properties, allowing for correct modelling of exclusive-or, or Diffie-
Hellman exponentiation.

ProVerif. PROVERIF is an automatic verifier developed by B. Blanchet [Bla01]. Any prop-
erty can be tested provided that it can be expressed in Horn clauses. The treatment of
equations is quite simple. In particular, the system may not terminate if some complex equa-
tions are entered. In particular, it is not able to deal with exclusive-or. Nevertheless this
tool has been successful to analyse many protocols and it is quite flexible to analyse security
properties. In particular, it is possible to express strong secrecy and more generally some
equivalence-based properties.

Scyther. This tool can verify security protocols for an unbounded number of sessions in
less than a second [Cre08a]. Since no approximation methods are used, all attacks found are
real attacks on the model. In case where unbounded verification cannot be determined, the
algorithm functions as a classical bounded verification tool, and yields results for a bounded
number of sessions. However, the tool is not able to deal with algebraic properties and
equivalence-based security properties.

Maude-NRL Protocol Analyser. MAUDE-NRL Protocol Analyzer (MAUDE-NPA) is
an analysis tool for cryptographic protocols that takes into account many of the algebraic
properties of cryptosystems that are not included in other tools [EMMO7]. These include
cancellation of encryption and decryption, Abelian groups (including exclusive-or), and expo-
nentiation. MAUDE-NPA uses an approach similar to the original NRL Protocol Analyzer of
C. Meadows [Mea96]; it is based on unification, and performs backwards search from a final
state to determine whether it is reachable. Unlike the original NPA, it has a theoretical basis
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in rewriting logic and narrowing, and offers support for a wider basis of equational theories
that includes associative-commutative (AC) theories.

1.5 Contributions

Recently, new types of protocols have emerged in order to face new technological and societal
challenges, e.g. electronic voting protocols and secure routing protocols in wireless ad hoc
networks. These applications involve some features that are not taken into account by the
existing verification tools preventing us to model these protocols in an accurate way, e.g.
complex cryptographic primitives, equivalence-based security properties, ...Moreover, we
will see that, in the symbolic approach, protocols are often analysed in isolation and this
is well-known to be not sufficient to obtain guarantee in an environment where some other
protocols (possibly sharing some long-term keys) are executed as well.

1.5.1 Content of the thesis

The thesis is organized in three parts. The content of each part is briefly described below.

Part I. This first part is devoted to the study of trace-based properties. In Chapter 2, we
consider the constraint solving approach and we demonstrate the flexibility of this approach
by extending it in two main directions. This allows us to deal with trace-based properties
(secrecy, route validity, ...) for a bounded number of sessions. First, we extend deducibility
constraints with membership constraints in order to deal with the blind signature equational
theory, an equational theory that we have encountered during our study of electronic voting
protocols. Then, we consider another application area, namely routing protocols, and we show
again how to extend this approach to deal with neighbourhood constraints. In Chapter 3,
we consider an unbounded number of sessions focusing on the verification of security APIs.

Part II. The second part of this habilitation thesis is devoted to the study of privacy-type
properties. First, in Chapter 4, we introduce the applied pi calculus. This is a process algebra
flexible enough to model a variety of cryptographic primitives. This allows us in particular
to model electronic voting protocols that often rely on complex cryptographic primitives. We
show how to model privacy type properties in this setting.

In Chapter 5, we propose several decision procedures together with their implementations
for deciding indistinguishability of sequences of messages. We also present a combination
result. Altogether, this allows us to deal with a variety of equational theories.

The results presented in the previous chapter do not allow one to take into account the
dynamic behaviour of the protocol. In Chapter 6, we consider an active attacker who may
interact with the protocol and we propose several techniques and decision procedures to decide
privacy-type properties in this setting.

Part III. In a last part, we investigate composition results. More precisely, we focus on
parallel composition under shared secrets. We consider composition of different protocols
and also composition of different sessions coming from the same protocols. In both cases, we
propose a simple transformation that makes it possible to transform a protocol that is safe in



22 CHAPTER 1. INTRODUCTION

isolation into a protocol that can safely be used in an environment where some other protocols
are executed as well. This allows us to prove a protocol in isolation or even for one session
(we have seen that this is already a challenging problem) and to obtain guarantee even if the
protocol is executed in a more general setting. We focus on trace-based properties and we
consider also the particular case of password-based protocols. We provide a way to ensure
security of the protocols even if a user chooses the same password for different applications.

1.5.2 Collaborations

The results presented in this habilitation thesis have been obtained in collaboration with
many other researchers that are listed below:

Myrto Arapinis Véronique Cortier
Mathilde Arnaud Morten Dahl
Mathieu Baudet Jérémie Delaitre
Sergiu Bursuc Steve Kremer
Rohit Chadha Olivier Pereira
Vincent Cheval Mark D. Ryan
Stefan Ciobaca Ben Smyth
Hubert Comon-Lundh Graham Steel

In particular, this habilitation thesis describes the results obtained during the supervision
of three PhD thesis:

e Sergiu BURSUC defended his PhD thesis in December 2009. His thesis was co-supervised
with H. Comon-Lundh and was about “Verification of security protocols and equational
theories”. Some of the results are described in Chapter 2 (Section 2.2). The other results
obtained in collaboration with S. Bursuc and H. Comon-Lundh have not been reported
in this habilitation thesis [35, 34].

e Mathilde ARNAUD is currently finishing her PhD thesis. She started in October 2008.
Her thesis is co-supervised with V. Cortier and is about “Verification of routing proto-
cols in mobile ad hoc networks”. The results obtained so far are described in Chapter 2
(Section 2.3) and have been published in [16]. We have also another joint publication [32]
whose main results are described in Chapter 5 (Section 5.4). Actually, Mathilde AR-
NAUD did an internship at LORIA (supervised by V. Cortier ) and she obtained some
results allowing one to combine some specific equational theories (August 2006). T have

generalized these results to a broader class of equational theories when I was a post-doc
at LORIA (January 2007).

e Vincent CHEVAL began his PhD thesis in September 2009. T co-supervise his thesis
about “Verification of equivalence-based security properties” with H. Comon-Lundh.
The results we have obtained on this topic are described in Chapter 6 (Section 6.3) and
have been published in [17].

The works presented in this habilitation thesis are also based on results obtained during
the supervision of some internships and master theses. The works presented in Chapter 7
(Section 7.1) have been obtained during the master thesis of Jérémie DELAITRE (co-supervised
with V. Cortier) and has been published in [29, 7]. T also co-supervised with S. Kremer, the
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master thesis of Stefan CI0BACA. This work is described in Chapter 5 (Section 5.2) and has
been published in [20, 3]. In 2008, Myrto ARAPINIS obtained a teaching position (ATER)
for one year in the computer science department of my laboratory. During this year, she
finished her PhD thesis. Actually, I co-supervised her (with Steve Kremer). The result we
obtained together is part of her thesis. This result is described in Chapter 7 (Section 7.2) and
has been published in [24]. In 2009, Morten DAHL, PhD student at the Aalborg university
(Danemark) under the supervision of Hans Hiittel, visited LSV during one year and worked on
“Verification of security protocols in Vehicular Ad-Hoc Networks” (with co-advisor Graham
Steel). This work is described in Chapter 4 (Section 4.3) and Chapter 6 (Section 6.1).
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Chapter 2

Verification via constraint solving
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ONSTRAINT systems are quite common (see e.g. [CLS03, CZ06]) in modelling security
C protocols. A constraint system represents the possible executions of a protocol once
an interleaving has been fixed. They are used, for instance, to specify secrecy preservation
of security protocols under a particular, finite scenario. In case of a bounded number of
sessions, M. Rusinowitch and M. Turuani have established a small attack property and they
have shown that the problem of deciding secrecy preservation for a fixed set of primitives is co-
NP-complete [RT03]. Independently, J. Millen and V. Shmatikov [MS01] designed a constraint
solving procedure leading to another algorithm. Since then, the concept of constraint systems
has been reused in many works (for instance [CLS03, CLCZ10, MS05] and [8]) to obtain
decidability results for different kind of primitives, e.g. exclusive-or, Abelian group operator,
Diffie-Hellman exponentiation, monoidal equational theories, ...

First, we recall some basic notions before we present a refinement of a decision procedure
first proposed by H. Comon-Lundh et al. [CLCZ10]. Then, we present two extensions allowing
one to model some other classes of protocols. The first one, described in Section 2.2, allows
us to consider more primitives. In particular, we deal with the primitive of blind signatures

27
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Figure 2.1 - intruder deduction system for symmetric encryption and pairing.

used in electronic voting protocols. The goal of the second extension is to allow more con-
structions in our process algebra in order to model ad hoc routing protocols (see Section 2.3).
In both cases, we extend the definition of constraint systems and we revisit the constraint
simplification rules to cope with these new constructions.

2.1 The setting

2.1.1 Messages and attacker capabilities

Cryptographic primitives are represented by function symbols together with their arity, de-
noted by ar(f). For instance, we may want to consider the function symbols senc (for symmet-
ric encryption) and (_, ) for pairing, both with arity 2. We fix an infinite set of variables
X ={x,y,...} and an infinite set of names N' = {a,b,n, ...} that typically represent nonces
or agent names. Terms are obtained by repeated applications of function symbols on names
and variables. For instance, the term senc(n, k) represents the nonce n encrypted with the
key k.

As usual, we write var(t) for the set of variables occurring in t. A term is ground if it
has no variables. We write St(¢) for the set of subterms of a term t. Substitutions are written
o={x1 —t1,...,xy — t,} with dom(o) = {x1,...,2,}. The substitution o is ground if
each t; is a ground term. The application of a substitution ¢ to a term ¢ is written to. If ;
and to are terms then a unifier of t; and ty is a substitution o such that tjo = teo. It is
well-known that unifiable terms have a most general unifier (mgu), i.e. a substitution o such
that o < 7 (there exists a substitution p such that op = 7) for any other unifier 7 of ¢; and t».

The ability of the attacker is modelled by a deduction system. For instance, a deduc-
tion system representing the usual Dolev-Yao [DY81] rules for symmetric encryption and
pairing is given in Figure 2.1. The first line describes the composition rules. We call these
deduction rules pairing (P), and symmetric encryption (SE) respectively. The second line
describes the decomposition rules. These rules are called first and second projections, and
symmetric decryption respectively. Intuitively, these deduction rules say that an attacker can
compose messages by pairing and encrypting messages provided he knows the encryption key.
Conversely, he can decompose messages by projecting or decrypting provided he knows the
decryption key.

A term u is deducible from a set of terms T', denoted by T+ u, if there exists a proof m,
i.e. a tree such that the root of 7 is labelled with u, the leaves of 7 are labelled with v € T'
and every intermediate node is an instance of one of the rules of the deduction system. For



2.1. THE SETTING 29

instance, the term (kq, ko) is deducible from the set 77 = {senc(k1, k2), k2} using the inference
system given in Figure 2.1.

We let step(m) be the set of terms labelling the proof 7 and leaves(7) be the multiset of
the terms that label the leaves of 7. If 7 is a proof, we let last(m) be the last inference step
in m, premises(7) be the proofs of the premises of last(n) and conc(w) be its conclusion.
More formally, we have that:

conc(my) ---conc(my)

last(nw) =
. T - T U
if m=——— then premises(m) = {my,..., Ty}

conc(m) =u

2.1.2 Protocols insecurity as a constraint solving problem

We show on an example how protocol insecurity is reduced to constraint solving. A crypto-
graphic protocol is defined by a set of programs (or roles) which may be executed by agents
distributed over a network. In the simplest case these programs are linear sequences of receive
and send instructions on a public communication channel. The attacker may modify the mes-
sages sent on the channel using a certain set of attacker capabilities, e.g. the rules described in
Figure 2.1. The fact that all messages may be modified by the attacker is often expressed by
saying that the attacker is the network. The most basic property of cryptographic protocols
is the so-called secrecy property, which states that for any number of agents executing the
roles, for any possible interleaving of the program execution, and for any modifications of the
messages by the attacker (according to his deduction capabilities) the attacker is not able to
deduce a certain message which is supposed to remain secret.

In the case of a bounded number of sessions, 7.e. a bounded number of role instances
running in parallel, there is only a bounded number of symbolic traces, each of which repre-
sents an interleaving of the execution of the parallel role instances. Every message received
during the execution of a role is a message that can be deduced using the intruder deduction
capabilities from the messages sent before on the communication channel. The idea of the
verification algorithm is to guess a symbolic trace in which the messages are represented by
terms containing variables. This symbolic trace corresponds to a concrete execution trace if
the variables can be instantiated in such a way that at every moment a message received by
an agent can in fact be deduced by the attacker from the messages seen before.

Let us consider the handshake protocol introduced in Chapter 1, temporarily considering
asymmetric encryption and signature:

A — B : aenc(sign(k,sk(A)), pk(B))
B — A : senc(s,k)

This protocol is used by roles A and B to share a secret s (freshly generated by B) that can
be used for some later transaction. The protocol involves a symmetric key k freshly generated
by A, the signature key of A, denoted sk(A), and the public key of B, denoted pk(B). The fact
that the execution of a single session of the protocol is insecure is described by the following
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sequence of deduction constraints:

?
Tinit, aenc(sign(k,sk(a)), pk(c)) - aenc(sign(z,sk(a)), pk(b))
def ?
Chandshake = T, aenc(sign(k,sk(a)), pk(c)), senc(s,z) F senc(y, k)
?
Tinit, aenc(sign(k,sk(a)), pk(c)), senc(s,x) s

where Tjn;t is the initial knowledge of the attacker. The last deduction step states that the
secret is revealed and the protocol is insecure if the constraint system has a solution. In this
scenario, we consider one instance of the role A (with agent parameters a and c), and one
instance of the role B (with agent parameters b and a). In this scenario, we assume that the
keys pk(a), pk(b), and pk(c) are public, hence available to all agents, including the attacker.
Here, we suppose that ¢ is compromised: this means that his private key sk(c) is also available
to the attacker. Finally, the attacker knows also the names of the agents, namely a, b, and c.
Thus, the total initial attacker knowledge is:

Tinit = {pk(a), pk(b), pk(c), sk(c), a, b, c}.

Definition 2.1 (constraint system) A constraint system C is either L or a finite sequence
? ?

of expressions 11 - Ulyen., Ay - Uy, called constraints, where each T; is a non empty set of
terms, called the left-hand side of the constraint and each u; is a term, called the right-hand
side of the constraint, such that:

e monotonicity: 1; C Tiy1 for every i such that 1 < i <mn;

e origination: if z € var(1;) for some i then there exists j < i such that x € var(u;).
?
A solution of C is a ground substitution 6 such that for every (T' F u) € C, we have that
170+ uf. The empty constraint system is always satisfiable whereas 1 denotes an unsatisfiable
system.

A constraint system C is usually denoted as a conjunction of constraints:

? ?
C:TlFul VANV Tnl—un
with 7; C T;41q, for all 1 < ¢ < n. The second condition in Definition 2.1 says that each time
a variable occurs in some left-hand side, it must have occurred before in some right-hand
side. The left-hand side of a constraint system usually represents the messages sent on the
network.

Coming back to our example, we have that Chandshake 1S @ constraint system. More-
over, the substitution o = {x — k, y — s} is a solution of Chandshake- Indeed, consider-
ing an inference system modelling also asymmetric encryption and signature, we have that
sign(k,sk(a)) and k are deducible from aenc(sign(k,sk(a)),pk(c)). Then the attacker can
compute aenc(sign(k,sk(a)),pk(b)). It is easy to see that the two last constraints are also
satisfied.

Hence, we get the following problem, whose decision is the subject of this chapter:

Given an inference system and a constraint system C, does there exist a substitu-
tion o such that o is a solution of C? When it is possible, we also want to find an
effective representation of all solutions.
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? ?
Ry : CANTFu ~ C fTU{z | T"FzeC, T CT}u
? ?
Ra : CANTFu ~, Co ANTolkuo if 0 = mgu(t,u) where t € St(7T'), t # u,
and t,u are neither variables nor pairs
? ?
Rs : CANTFu ~y Co ANToluo ifo = mgu(tl,tg), t1,t2 € St(T), t1 # to,
and tq,to are neither variables nor pairs
?
Ry : CANTFu ~~ L if var(T'U{u})=0and Tt/ u

? ? ?
Rs: CATHf(u,v) ~ CATFuANTFv forfe{(), senc}

Figure 2.2 - Simplification rules for symmetric encryption and pairing

2.1.3 Refinement of an existing decision procedure

In [29, 7], we have refined an existing decision procedure for solving constraint systems.

Several decision procedures already exist [MS01, CLS03, CZ06, RT03] for solving constraint

systems. Some of them [MS01, CLS03, CZ06] are based on a set of simplification rules

allowing a general constraint system to be reduced to some simpler one, called solved, on

which satisfiability can be easily decided. A constraint system is said solved [CZ06] if it is
?

different from | and if each of its constraints is of the form T x, where x is a variable.

Note that the empty constraint system is solved. Solved constraint systems are particularly

simple since they always have a solution. Indeed, let 77 be the smallest (w.r.t. inclusion)

left-hand side of a constraint. From the definition of a constraint system we have that 77 is

non empty and has no variable. Let ¢ € T7. Then the substitution 7 defined by x7 =t for
?

every variable x is a solution since T+ z0 for any constraint 7' 2 of the solved constraint
System.

The simplification rules we consider are described in Figure 2.2. We consider the inference
system described in Figure 2.1. In [29, 7], we give a set of simplification rules allowing us to
deal with more primitives (asymmetric encryption, signature, ...). All the rules are indexed
by a substitution (when there is no index then the identity substitution is implicitly consid-
ered). We write Cy ~~% C, if there are Cy,...,C,_1 such that Cy ~5, C1 ~4, ...Cn_1 ~5, Cn
and o = 0goy ...0,. Our rules are the same as in [CZ06] except that we forbid unification
of terms headed by (). Correction and termination are still ensured by [CZ06] and we show
that they still form a complete decision procedure. Intuitively, unification between pairs is
useless since pairs can be decomposed in order to perform unification on their components.
Then, it is possible to build again the pair if necessary. Note that this is not always possible
for encryption since the key used to decrypt or encrypt may be unknown by the attacker.
Proving that forbidding unification between pairs still leads to a complete decision procedure
required in particular to introduce a new notion of minimality for tree proofs for deduction.
This procedure has been designed to establish some composition results that are presented
in Chapter 7. However, this result is of independent interest. Indeed, we provide a more
efficient decision procedure for solving constraint systems, thus for deciding secrecy for a
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bounded number of sessions. Of course, the theoretical complexity remains the same (NP).

Theorem 2.1 [29, 7] Let C be an unsolved constraint system.

1. (Soundness) If C ~% C' for some constraint system C' and some substitution o and if 0
is a solution of C' then o0 is a solution of C.

2. (Completeness) If 0 is a solution of C, then there exist a solved constraint system C' and
substitutions o, §' such that = o', C ~% C' and 0" is a solution of C'.

3. (Termination) There is no infinite chain C ~>5 Cy ... ~g, Cop ~g, 1 - ..

Hence, given a constraint system Cy, we are able to compute a finite set of solved constraint
systems Cq,...,C, together with their associated substitutions o1, ..., o, such that:

{6 | 6 is a solution of Co} = | J{0:#' | ¢’ is a solution of C;}.
i=1

2.2 Local theories

The inference system presented in Figure 2.1 is local (see [McA93]). This means that when u
is deducible from 7', there exists a proof m witnessing this fact that only contains terms that
occur in the subterms of w or 7T'. This is why deciding whether a message can be computed
by an attacker from a finite set of messages can be performed in polynomial (actually linear)
time in this inference system. The starting point of the work presented in this section is
the problem of lifting the results obtained for a ground deducibility constraint to general
constraint systems (see Definition 2.1). For security protocols, this corresponds to moving
from a passive attacker to an active attacker.

Moreover, we want to prove that, for any inference system that is saturated in some
suitable way (we call it good), the deducibility constraints are decidable. Actually, we prove
more: we provide with a constraint simplification algorithm that yields solved forms. This
allows us not only to decide the existence of a solution, but also to represent all solutions. Such
a feature is used in [CLCZ10] for deciding trace properties such as authentication and key
cycles in security protocols, and also in [KKO05] for deciding game-theoretic security properties
such as abuse-freeness. Our results generalise [CLCZ10] to any good inference system that
is finite (see Section 2.2.2). However, when the underlying inference system is not finite, our
simplification procedure is infinitely branching. We show how to solve this issue in the case
of blind signatures by introducing a new kind of constraint (see Section 2.2.3).

2.2.1 Good inference systems

In the following definitions, we introduce our notion of saturation. Informally, if there is a
proof such that some intermediate step is too large (we call this a bad proof and the large
step is called a bad pattern), then there must be a simpler proof of the same statement.
s, - S
If R = — is an inference rule, we let Max(R) be the multiset of the maximal

50
terms s;, w.r.t. the subterm ordering <.
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Definition 2.2 (bad proof / pattern) A bad proof is a proof ™ of the form:

/Ul PP /Um

- "R
Uy -+ Up Up+1 Up+2 *° Unitk
2
v
81 cee 8 tl e t k
such that Ry = —m, Ry = —n+, s € Max(Ry) and t,+1 € Max(Ro).
s t
A bad pattern in a proof 7 is a subproof of ® of the form:
m
7T1 DY 7T1
) . ——— R
Ty -+ Ty cone(ms) Ty e Ty
Ro
v
such that the following proof is a bad proof.
conc(mi) -+ cone(n]")
. - 1 .
cone(m) -+ cone(ry ) conce(ms) conc(mst) - cone(nh)
2
v
If 7 = RO is an instance of an inference rule R and Max(R) = {s1,...,sx}, then u(w) is
the multiset {s10,...,s,0}. If 7w is a proof, u(r) is defined as the multiset of p(7n’) for all
inference steps 7’ of 7. Formally, if premises(w) = {m1,...,7,}, we have that:

p(m) = p(m) W - p(mn) © p(last(m)).

Multisets are ordered using the multiset extensions of their elements: if > is an ordering, we
let >,,, be its multiset extension.

Definition 2.3 (good inference system) An inference system is good if there is a total
well-founded extension < of the subterm ordering < such that, for any bad proof w, there
is a proof ™ of leaves(w)t conc(w) with leaves(n’) C leaves(w) (multiset inclusion),

(") (=in)m p(m).

In a good inference system, we can restrict our attention to proofs that do not contain
bad patterns. More formally, if there exists a proof @ of T'F w, then there exists one that
does not contain any bad pattern.

The Dolev-Yao inference system described in Figure 2.1 is good. Another example in
which the good inference system is no longer finite is the case of blind signatures as modelled
in [KRO5]. The inference system is not good. However, following the work by D. Basin and
H. Ganzinger [BGO01] in which they proved that locality is equivalent to a saturation property
of the set of inference rules, we may complete it and get an infinite good inference system.

Example 2.1 We consider the following rules:

Ty sign(x
® sowy © gi’y)
(®) Ty (UB1) blind(z,y) (UB,) sign(blind(z,y), 2) y

blind(x, y) x sign(z, 2)
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Because of the rule (UBy), the system not good. The following proof m is bad:

sign(blind(blind(z, x1),x2),y) 2

sign(blind(z, 1), y) T

sign(x, y)

There is no other proof " of leaves(rw) b sign(x,y) such that leaves(n’) C leaves(w) and in
which the term sign(blind(z, x1),y) is not used. Thus, for any total well-founded extension <
of <, there is no proof @ of leaves(w) b sign(z,y) such that leaves(n’) C leaves(w) and
(") (Rm)m p(m). However, we may add to the inference system shortcuts to replace the bad
proofs. Let by (x,x1,...,xy) be defined by by(x,z1) = blind(z,z1) and byy1(x, 21, ..., 2p41) =
blind(by,(x,z1,...,2y),Tpn+1). We add the following rules (for every n > 1) and the resulting
system s a good inference system.

sign(bn(z,21,...,2n),y) T1 ... Tn

(UB)

sign(z, y)

We now only consider good inference systems. The rules of such systems can be divided in
three sets.

e The composition rules whose conclusion is the only maximal term. Any rule of the form
rT ... Ip

is a composition, e.g. (P), (SE), (S).

far o) (P), (SE), (S)

e The decomposition rules whose all maximal terms are premises, e.g. (SD).
e The versatile rules whose both the conclusion and some premises are maximal, e.g. (UB3).
In what follows, we also assume that:

1. any composition rule has a conclusion f(zy,...,x,) where 1, ..., z, are variables: each
function symbol is either public (and there is such a rule) or private.

2. any versatile rule satisfies the following properties:

(a) each strict subterm of the conclusion is a subterm of some premise.

(b) each premise that is not maximal in the rule is a strict subterm of another premise
of that rule.

These conditions are satisfied by the inference system given in Figure 2.1 as well as the one
described in Example 2.1. Besides these examples, any intruder theory that can be presented
by a finite subterm convergent rewrite system satisfies our hypotheses. These hypotheses
might not be necessary for our result, but we use them in our proof.

We now classify the proofs, according to the type of the last proof step. This generalises
the classical composition/decomposition classification:

Lemma 2.1 (locality lemma) [18] Let w be a proof of T F w without bad pattern, one of
the following occurs:

e last(m) is an instance of a composition rule and step(m) C St(T'U {u});
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?

Rax CATFu ~, Co where o = mgu(u,v), v € T and u ¢ X
? ? ?

Rrviv CANTFzAT'Fz ~ CATFz when 7' C 17
? ? ?

Recompo  CATFf(ur,...,up) ~ CATFui A... AT F u, if f is a public symbol

? ? ? ? ?
Roecompo CATFv ~» CONTOF wiOA... TOF w,0 NT'OFviOA...NT"0+ v,0

where:

v ... Um W1 n . . ..
e R= is a fresh renaming of a decomposition or a ver-

w
satile rule such that Max(R) C {wy,...,w,};
o 0 =mgu({w,wy,...,wp), (V,U1,...,Up)), Ul,...,Uup € St(T) X, and v & X;

e 7" is a left-hand side of a deducibility constraint such that 7" C T.

Figure 2.3 - Simplification rules for good inference systems

o 7 is reduced to a leaf or last(w) is an instance of a decomposition rule and we have
that step(m) C St(1');

e last(m) is an instance of a versatile rule and step(n') C St(T') for any strict subproof '

of m.

This is proved by observing that any proof in which a maximal conclusion is also a maximal
premise of the next rule can be simplified, according to the definition of good inference
systems.

2.2.2 The finite case

In this section, we consider good inference systems that only contain a finite number of
inference rules. We show that we can solve deducibility constraints in such a way that we do
not miss any solution (as in [CLCZ10]). The basic idea of the simplification rules described
in Figure 2.3 is very straightforward, and that is what makes it appealing: we simply guess

the last step of the proof, performing a backwards proof search together with narrowing the
U ... U
variables of the constraint. Assume that R = ——— is guessed as the last rule in the
u
proof of To + vo, we simply perform:

? ? ?
CANTFo~~»CONTOF wON...ANTOF upb

where 6 = mgu(u, v). This hardly terminates, even for very simple proof systems and ground
goals. First, we do not aim at explicitly enumerating all possible solutions, but only compute
solved forms, that are a convenient representation of all these solutions. Second, to avoid
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non-terminating behaviours, we use locality (Lemma 2.1). We control the application of such
rules, roughly requesting that maximal premises are subterms of 7". Actually, we lifted this
result to the non-ground case.

The purpose of each simplification rule is quite simple. Only the rule Rpecompo deserves
some explanation. We guessed here a versatile or a decomposition rule. The premises
w1, ..., w, will be those whose instances correspond to a term in St(7)o. We can guess
the corresponding terms in St(7"), namely w1, ..., u,. The other premises (that are then sub-
terms in the substitution part) are constrained to be proved with strictly less hypotheses. We
will show that this can always be assumed, hence that we get completeness.

The simplification rules transform a constraint system into a constraint system. Moreover,
we have that:

Proposition 2.1 [18] Let C be an unsolved constraint system.

o (Soundness) If C ~~* C' for some constraint system C' and some substitution o, and if 6
is a solution of C', then o0 is a solution of C.

o (Completeness) If 0 is a solution of C, then there exist a solved constraint system C' and
substitutions o,0" such that 0 = o6, C ~% C' and ¢ is a solution of C'.

In order to get termination, we add some control on the simplification rules. Altogether,
this gives us a procedure to derive a complete and effective representation of all solutions
of a constraint system. This works for any finite good inference system that satisfies the
additional syntactic conditions mentioned on page 34.

2.2.3 The infinite case: blind signatures

Consider a toy protocol in which A generates a nonce n, sends it to B, then B sends back
this nonce signed with its private key k and finally A checks that the message he receives is
sign(n, k). The possible traces obtained in any successful session of this protocol, between the
two parties a, b are sequences of four messages:

n, x, sign(z, k), sign(n,k)

where n is the message sent by a, x is the message received by b, sign(z, k) is the message
sent by b and sign(n, k) is the message received by a.

In an honest run, x = n. There are however other possible bindings of z, all yielding a
valid trace. Actually, the only constraints that x must satisfy are:

{n} lZ x and {n, sign(x,k)} lZ sign(n, k)

Intuitively, the attacker should be able to construct z and to construct back sign(n, k)
from n and sign(x,k). The set of such possible messages = includes n, but also blind(n,n)
for instance, since the attacker can unblind sign(blind(n,n), k) and get sign(n, k). Actually,
the set of possible messages x satisfying the above constraints is Bd({n},n) where Bd(T u)
denotes the least set S of terms that contains u and such that blind(s,v) € S when s € S and
T F v. In other words, we have that

Bd(T,u) = {u} U {bg(u,v1,...,v;) | k € Nand T'F v; for each 1 <i < k}.
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For each t € Bd({n},n), the attacker can compute sign(n, k) using one instance of the
rule scheme (UB) and these are the only ways to satisfy the last constraint. We wish to use
a single constraint solving step for all these possible final inference rules, hence we intro-
duce an appropriate abstraction, enriching the syntax of constraint systems with membership
constraints.

Extended constraint systems. We now consider two kinds of elementary constraints:

?
o a deducibility constraint is a constraint of the form 1" - u, whereas

?
e a membership constraint is a constraint of the form v € Bd(T, u).

In both cases, 1" is a finite set of terms and u, v are terms. The set of terms T is called the
associated set of terms of the elementary constraint. The notion of constraint system has to
be extended accordingly. Pure constraint systems are constraint systems that only contain
deducibility constraints (as defined in Definition 2.1). A solution is a substitution o such
that:

?
e T'o - uo for each constraint 17"+ u that occurs in C; and

?
e uo € Bd(To,vo) for each constraint u € Bd(T, v) that occurs in C.

Our aim is to design a set of simplification rules that rewrite any pure constraint system

into a finite set of solved forms, which are more convenient representation of the same set of
?

solutions. We have to extend our notion of solved form: now a deducibility constraint 7; - T;
?

can be associated with a membership constraint of the form x; € Bd(T;,v;). Unfortunately,

solved forms do not necessarily have a solution. Actually, our simplification rules will satisfy

an additional invariant (called well-formedness) ensuring the existence of solutions.

Our simplification rules. The simplification rules are displayed in Figure 2.4. There is
one simplification rule for each deduction rule. Note that the simplification rule Rpgsgn is
the simplification rule associated to the rule scheme (UB). This is where the membership
constraints are introduced. The three last simplification rules allow us to cope with the
membership constraints in order to reach a solved form. Moreover, we have some additional
rules (that are not described here) that consist of unfolding the left-hand side of a membership

?
constraint until a variable is reached. These rules simply reflect the semantics of u € Bd(T',v).
We have shown soundness and completeness of our set of simplification rules.

Our decision procedure. Let Cy be a pure constraint system.

1. Guess a set of equalities E between subterms of Cy. Solve E and let 6 = mgu(E) (if
there is no solution, then return ).

2. Apply non-deterministically the simplification rules (Figure 2.4) on each Cy until either
a solved form is reached or a loop is detected (i.e. C ~»" C with n > 1), in which case
we return L.
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Rax : Tl?—uw—l— fuel X
Reiriv : Tl?—I/\TII?—IWTI?—ZC ifrcrT
Re:  Thf(t,.. ty) ~ Tht,.. Tt f € {sign, blind}
Rbd : TI?—U ~ Tl?—blind(v,u) A Tl?—u if blind(v,u) € St(T")
Reget : Tl?—v ~ Tl?—sign(v,u) if sign(v,u) € St(T)
Rbdsgn Tl?—sign(v,u) ~ TI?—sign(w,u) /\wéBd(T,v) if sign(w, u) € St(7)
Ra: Tl?—m/\:céBd(T’,v) ~ Tl?—:c/\Tl?—v/\xéBd(T,v) ifrcT
Rg : TI?—x/\xéBd(T’,v) ~ TI?—J:/\TI?—w/\xéBd(T,w)/\wéBd(T’,v)

if T C T and w € St(7T)

? ? ? ? ? ?
Re : THxAzeBd(T,v)ANx € Bd(T,v') ~ T+taxAxeBd(T,v)\ve Bd(T,v)
if  does not occur in any constraint having as associated set 77 C T.

Figure 2.4 - Simplification rules for blind signatures

Considering all possible non-deterministic choices that do not yield 1, the procedure
computes a finite set of pairs (E;,C;) such that every C; is in solved form.

Theorem 2.2 [53] The procedure described above is:

e sound, i.e. for any o; solution of an output pair (E;,C;), we have that 0g,0; is a solution

Of CO 5

e complete, i.e. for any solution o of Cy, there exists an output pair (E;,C;), and a
solution o; of C; such that o = 0, 0;

e terminating.

We have applied the same technique to derive a decision procedure for an inference system
modelling symmetric encryption using an ECB encryption mode (see [53] for more details).

2.3 Ad hoc routing protocols

Mobile ad hoc networks consist of mobile wireless devices which autonomously organise their
communication infrastructure: each node provides the function of a router and relays packets
on paths to other nodes. Finding these paths is a crucial functionality of any ad hoc network.
Specific protocols, called routing protocols, are designed to ensure this functionality known as
route discovery.

Initial work on routing in ad hoc networks has considered only the problem of providing
efficient mechanisms for finding paths, without considering security issues. Recent research
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has recognized that this assumption is unrealistic and that attacks can be mounted [HPJO5,
NHO06, BV04]. Since an adversary can easily paralyse the operation of a whole network by
attacking the routing protocol, it is crucial to prevent malicious nodes from compromising
the discovered routes. Since then, secure versions of routing protocols have been developed to
ensure that mobile ad hoc networks can work even in an adversarial setting [HPJ05, PHO02].
Those routing protocols use cryptographic mechanisms such as encryption, signature, MAC,
in order to prevent a malicious node to insert and delete nodes inside a path.

While key-exchange protocols are well-studied, there are very few attempts to develop
formal techniques allowing an automated analysis of secure routing protocols. Those protocols
indeed involve several subtleties that cannot be reflected in existing work. For example, the
underlying network topology is crucial to define who can receive the messages sent by a node
and the attacker is localised at some specific nodes (possibly several nodes). Moreover, the
security properties include e.g. the validity of a route, which differs from the usual secrecy
and authenticity properties. We show in this section how constraint solving techniques can
be adapted to analyse secure routing protocols (see [16] for more details).

Related work. Recently, some frameworks have been proposed to model wireless com-
munication and/or routing protocols in a more accurate way. For example, S. Yang and
J. Baras [YBO03] provide a first symbolic model for routing protocols based on strand spaces,
modelling the network topology but not the cryptographic primitives that can be used for
securing communications. They also implement a semi-decision procedure to search for at-
tacks. S. Nanz and C. Hankin [NHO6] propose a process calculus to model the network
topology and broadcast communications. They also propose a decision procedure but for an
attacker that is already specified by the user. This allows to check security only against fixed,
known in advance scenarios. The model proposed in this paper is inspired from their work,
adding in particular a logic for specifying the tests performed at each step by the nodes on
the current route and to specify the security properties. P. Schaller et al [SSBC09] propose
a symbolic model that allows an accurate representation of the physical properties of the
network, in particular the speed of the communication. This allows in particular to study
distance bounding protocols. Several security proofs are provided for some fixed protocols,
formalized in ISABELLE/HOL.

2.3.1 Model for ad hoc routing protocols

In [16], we designed a calculus, inspired from CBS# [NHO06], which allows mobile wireless
networks and their security properties to be formally described and analysed. We propose
in particular a logic to express the tests performed by the nodes at each step. It allows for
example checking whether a route is “locally” valid, given the information known by the node.

Several calculi already exist to model security protocols (e.g. [AF01] for which a brief
presentation is proposed in Chapter 4). However, for our purpose, a node, i.e. a process, has
to perform some specific actions that can not be easily modelled in such calculi. For instance,
a node stores some information, e.g. the content of its routing table. We also need to take
into account the network topology and to model broadcast communication. Such features
can not be easily modelled in these calculi. Moreover, sometimes nodes perform some sanity
checks on the routes they receive, such as neighbourhood properties. We briefly present below
the main features of our calculus together with its informal semantics.
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Neighbourhood properties. Secured routing protocols typically perform some checks on
the message they received before accepting it. Thus we will typically consider the logic Lioute
defined by the grammar given in Figure 2.5.

¢ = formula
check(a,b) neighbourhood of two nodes
checkl(c, 1) local neighbourhood of a node in a list

route(!) validity of a route

loop(7) existence of a loop in a list
D N Dy conjunction

P,V Py disjunction

l negation

Figure 2.5 - The logic Loute

Given an undirected graph G = (V, E) the formula check(a, b) expresses that (a,b) € E,
checkl(c, 1) allows us to express that ¢ appears exactly once in [ and that the neighbours
of ¢ in [ are neighbours of ¢ in the graph G. The semantics of the other constructions is
straightforward.

Processes. The intended behaviour of each node of the network can be modelled by a
process defined by the grammar presented in Figure 2.6. Our calculus is parametrised by a
set L of formulas.

P,Q = processes
0 null process
out(u).P emission
in u[®].P reception, ¢ € L
store(u).P storage
read u then P else () reading
if ®then Pelse( conditional, ® € L
P|Q parallel composition
P replication
new m.P fresh name generation

Figure 2.6 - Processes

The process out(u).P emits u and then behaves like P. The process in u|[®].P expects a
message m of the form u such that @ is true and then behaves like Po where o = mgu(m, u).
If ® is the true formula, we simply write in u.P. The process store(u).P stores u in its
storage list and then behaves like P. The process read u then P else () looks for a message
of the form w in its storage list and then, if such an element m is found, it behaves like Po
where o = mgu(m, u). If no element of the form wu is found, then it behaves like (). Sometimes,
for the sake of clarity, we will omit the null process. We also omit the else part when ) = 0.
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Network topology. FEach process is located at a specified node of the network. Unlike
classical Dolev-Yao model, the attacker does not control the entire network but can only
interact with his neighbours. More specifically, we assume that the topology of the network is
represented by giving an undirected graph G = (V, E), where an edge in the graph models the
fact that two nodes are neighbours. We also assume that we have a set of nodes M that are
controlled by the attacker. These nodes are then called malicious. Our model is not restricted
to a single malicious node. Our results allow us to consider the case of several compromised
nodes that collaborate by sharing their knowledge. However, it is well-known that the presence
of several colluding malicious nodes often yields straightforward attacks [HPJ06, LPM™05].

A concrete configuration of the network is a tuple (P;S;Z) where:

e P is a multiset of expressions of the form |P],. The expression |P|, represents the
process P located at node n € V. We will write | P|, UP instead of {|P|,} UP.

o S is aset of expressions of the form [t|,, with n € V and ¢ a ground term. The expression
|t], represents the fact that the node n has stored the term ¢.

e T is a set of terms representing the messages seen by the attacker.

Each honest node broadcasts his messages to all his neighbours. To capture malicious be-
haviours, we allow the nodes controlled by the attacker to send messages only to some specific
neighbour. The communication system is formally defined by rules that are parametrised by
the underlying graph G and the set of malicious nodes M. We denote by —g a( the relation
between configurations induced by these rules. The relation —%7 A 1s the reflexive and tran-
sitive closure of —g am. We may write —, —¢, — A instead of — g ¢ when the underlying
network topology G or the underlying set M is clear from the context.

Note that in case we assume that there is a single malicious node and each honest node
is connected to it, we retrieve the model where the attacker is assumed to control all the
communications. As usual, an attack is defined as a reachability property.

Definition 2.4 Let G be a graph and M be a set of nodes. There is an M-attack on a
configuration with a hole (P[_];S;Z) for the network topology G and the formula ® if there
exist n, P',S", ' such that:

(Plif @ thenout(error)]; S;Z)—G o (Lout(error)],, UP', S, T')

where error is a special symbol not occurring in the configuration (P[_];S;Z).

2.3.2 Application: the SRP protocol

As an illustrative example, we consider the Secure Routing Protocol SRP introduced in [PH02],
assuming that each node already knows his neighbours (running e.g. some neighbour dis-
covery protocol). SRP is not a routing protocol by itself, it describes a generic way for
securing source-routing protocols. In this section, we model its application to the DSR pro-
tocol [JMBO1]. DSR is a protocol which is used when an agent S (the source) wants to
communicate with another agent D (the destination), which is not his immediate neighbour.
In an ad hoc network, messages can not be sent directly to the destination, but have to travel
along a path of nodes.
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Attacker capabilities. As explained in Section 2.1.1, the ability of the attacker is modelled
by a deduction system. In order to model routing protocols, we consider a special sort loc
for the nodes of the network. We assume that names and variables are given with sorts. We
also assume an infinite subset No. of names of sort loc. To model SRP, we will consider the
specific signature (Sy, F1) defined by S; = {loc, lists, terms} and F; = {hmac, ( ), ::, L, senc},
with the following arities:

e hmac,senc,(_, ) :terms X terms — terms,
e :::loc X lists — lists,
e | :— lists.

The sort lists represents lists of terms of sort loc. The symbol :: is the list constructor. L is a
constant representing an empty list. The term hmac(m, k) represents the keyed hash message
authentication code computed over message m with key k. The other function symbols
have been already defined. We write (t1,t2,t3) for the term (t1, (t2,t3)), and [t1;t2;t3] for
t1 o (t2 i (83 2 L)). We consider the inference system described in Figure 2.1 with some
additional inference rules to deal with lists and hmacs.

T Y €T T T T2

Tay x T hmac(z1, z2)

Processes. To discover a route to the destination, the source constructs a request packet
and broadcasts it to its neighbours. The request packet contains its name .S, the name of the
destination D, an identifier of the request id, a list containing the beginning of a route to D,
and a hmac computed over the content of the request with a key Kgp shared by S and D.
It then waits for an answer containing a route to D with a hmac matching this route, and
checks that it is a plausible route by checking that the route does not contain a loop and that
his neighbour in the route is indeed a neighbour of S in the network.

Let S, D, req, rep, id, Ksp be names (S, D € Njoc) and z, be a variable of sort lists. The
process executed by a node S initiating the search of a route towards a node D is:

Piit(S, D) = new id.out(uq).in us[Pg].0

where:
u; = (req, S, D, id, S :: L,hmac((req, S, D,id), Ksp))
ug = (rep, D, S, id,xr,, hmac((rep, D, S,id,z1), Ksp))
®g = checkl(S,z1) A —loop(xy,).

The names of the intermediate nodes are accumulated in the route request packet. In-
termediate nodes relay the request over the network, except if they have already seen it. An
intermediate node also checks that the received request is locally correct by verifying whether
the head of the list in the request is one of its neighbours. Below, V € N, 25, 2p and x,
are variables of sort loc whereas x, is a variable of sort lists and x;4, z,, are variables of sort
terms. The process executed by an intermediary node V' when forwarding a request is as
follows:

Preq(V) = in w; [Py ].read t then 0 else (store(t).out(wy))
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where:
w1 = <req,LL’S,ZUD,$¢d,ZL‘a = $Tu$m>
Oy = check(V, z,)
t = (rs,Tp,Tia)
wy = (req, s, xp, Tid, V i (Ta 2 Tr), Tm)

When the request reaches the destination D, it checks that the request has a correct
hmac and that the first node in the route is one of his neighbours. Then, the destination D
constructs a route reply, in particular it computes a new hmac over the route accumulated in
the request packet with Kgp, and sends the answer back over the network.

The process executed by the destination node D is the following;:

Pyest(D, S) = in v1 [P p].out(v2).0

where:
U1 = <req757D7xidaxa I, hmac(<req757D7$’id>7KSD)>
®p = check(D, z,)
vy = (rep, D, S, x4, x4 :: x;,hmac((rep, D, S, xiq, xa = 1), Ksp))

Then, the reply travels along the route back to S. The intermediate nodes check that
the route in the reply packet is locally correct (that is that they appear once in the list and
that the nodes before and after them are their neighbours) before forwarding it. The process
executed by an intermediate node V' when forwarding a reply is the following;:

Prep(V) = in w'[®}/].out(w’)

where:
’LU/ = <repa ID, TS, Tidy, Tr, :L'm>
P, = checkl(V, z,)

Security property. For the SRP protocol, the property we want to check is that the list
of nodes obtained by the source through the protocol represents a path in the graph. We can
easily encode this property by replacing the null process in Py;t(.S, D) by a hole, and checking
whether the formula —route(z) holds. Let P (S, D) be the resulting process.

init
P! ..(S, D) = new id.out(u;).in uz[®g].P

init

where P = if —route(x,) then out(error).

Initial configuration. A typical initial configuration for the SRP protocol is
Koy = (LR,nlt(Sv D)JS | LPdest(Da S)JD; (Z);IO)

where both the source node S and the destination node D wish to communicate. We assume
that each node has an empty storage list and that the initial knowledge of the attacker is given
by a set of terms Zy. A possible network configuration is modelled by the graph Gg below.
We assume that there is a single malicious node, i.e. Mg = {n;}. The nodes W and X are
two extra (honest) nodes. We do not assume that the intermediate nodes W and X execute
the routing protocol. Actually, this is not needed to show that the protocol is flawed, and we
want to keep this example as simple as possible.
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Description of an attack. We recover the attack mentioned in [BV04] with the topol-
ogy Gg, and from the initial configuration Ky. The attack scenario is the following. The
source S sends a route request towards D. The request reaches the node n;. Thus, the
attacker receives the following message:

(req, S, D,id, S :: 1, hmac((req, S, D,id), Ksp))
The attacker then broadcasts the following message in the name of X:
(req, S, D,id,[X; W; S],hmac({req, S, D, id), Ksp))

Since D is a neighbor of ny, it will hear the transmission. In addition, since the list of
nodes [X;W; S] ends with X, which is also a neighbor of D, the destination D will process
the request and will send the following route reply back to S:

(rep, D, S,id, [X; W;S], hmac((rep, D, S,id, [ X; W;S]), Ksp))

This reply will reach S through the malicious node n;. More precisely, the attacker will send
the reply to S in the name of W. Since W is a neighbor of S, the source will accept this reply
which contains a false route.

In our framework, this attack can be described as follows:

Ko =" ([in u2[®s].P|s U [out(m').0] p; 0; T)
— (|in u2[Pg].Pls U [0]p; 0;Z")
— ([if—route([X; W; S]) then out(error) | g;0; Z")
— (|out(error).0 JS,@,I’)

here 4 7 = (rep, D, S.id, [X; W; S, hmac((D, S, id, [X; W; 51), Ksp))
v T =ToU{u},and T' = Ty U {u, } U {m'}.

2.3.3 Decidability and complexity results

We assume the fixed signature (Si, 1) (defined in Section 2.3.2) for list, concatenation,
hmac and encryption together with its associated inference system. Simple properties like
secrecy are undecidable when considering an unbounded number of role executions, even for
classical protocols [DLMS99]. Since our class of processes encompasses classical protocols, the
existence of an attack is also undecidable. In what follows, we thus consider a finite number
of sessions, that is processes without replication. We say that a process is finite if it does
not contain the replication operator. A concrete configuration K = (P[_]; S;7) is said initial
if K is ground, P is finite, S is a finite set of terms and Z = N,,c UZ’ where 7’ a finite set of
terms (the attacker is given all the node names in addition to its usual initial knowledge).
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We show that accessibility properties are decidable for finite processes of our process
algebra, which models secure routing protocols, for a bounded number of sessions. We actually
provide two decision procedures, according to whether the network is a priori given or not. In
case the network topology is not fixed in advance, our procedure allows us to automatically
discover whether there exists a (worst-case) topology that would yield an attack.

Theorem 2.3 [16] Let K = (P[_];S;Z) be an initial concrete configuration with an hole,
M C Noe be a finite set of nodes, and ® € Lyoute be a property. Deciding whether there exists
a graph G such that there is an M-attack on K and ® for the topology G is NP-complete.

Theorem 2.4 [16] Let K = (P[_];S;Z) be an initial concrete configuration with an hole, G
be a graph, M C Nioc be a finite set of nodes, and ® € Loute be a property. Deciding whether
there exists an M-attack on K and ® for the topology G is NP-complete.

Note that Theorem 2.3 does not imply Theorem 2.4 and reciprocally. Theorems 2.3 and 2.4
ensure in particular that we can decide whether a routing protocol like SRP can guarantee
that any route accepted by the source is indeed a route (a path) in the network (which can
be fixed by the user or discovered by the procedure).

In this setting, we have seen that groups of executions can be represented using constraint
systems. However, we have to enrich constraint systems in order to cope with the formulas
that are checked upon the reception of a message and also in order to cope with generalised
disequality tests for reflecting cases where agents reject messages of the wrong form.

Extended constraint systems. We now have to consider three kinds of elementary con-
straints:

?
e a deducibility constraint is a constraint of the form 1" F w;

e a unification constraint is a constraint of the form v = w;
e a disequality constraint is a constraint of the form VX.v # u;

where v, u are terms, 71" is a non empty set of terms, and X is a set of variables. The notion of
constraint system has to be extended accordingly. A constraint system C is a finite conjunction
of constraints of the form described above together with a formula ® of L,oute. Moreover, we
assume that the elementary constraints in C can be ordered in such a way that monotony and
origination hold.

A solution to a constraint system C for a graph G is a ground substitution 6 such that
‘?

td =wub for allt =u € C, TO F ub for all T’ = C, and ®0 is evaluated to true. Lastly, for
all (VX.t # u) € C, we have that ¢6 and uf are not unifiable. Note that variables in X are
bound and thus renamed before the application of the substitution 6.

Decision procedures. The (NP) decision procedures proposed for proving Theorems 2.3
and 2.4 involve several steps, with many common ingredients.

Step 1. First, we show that it is sufficient to decide whether there exists a sequence of
symbolic transitions (and a graph G if G is not fixed) with a resulting symbolic configuration
(lout(u) |, U Ps; Ss; Zs; C) such that C A u = error admits a solution for the graph G. Since
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processes contain no replication and involve communication between a finite number of nodes,
it is possible to guess the sequence of symbolic transitions yielding an attack (by guessing
also the edges between the nodes that are either in M or involved in a communication step)
and the resulting configuration remains of size polynomially bounded by the size of the initial
configuration. Moreover, any left-hand side of a deduction constraint in C is of the form
T U Njoc where T is a finite set of terms. It then remains to decide the existence of a solution
for our class of constraint systems.

Step 2. Tt has been shown in [CZ06] and reviewed in Section 2.1.3 that the existence of
a solution of a constraint system (with only deduction constraints) can be reduced to the
existence of a solution of a solved constraint system, where right-hand sides of the constraints
are variables only. We have extended this result to our extended notion of constraint systems,
i.e. with disequality tests and formula of L,oyute.

Step 3. We then show how to decide the existence of a solution for a constraint system, where
?

each deduction constraint is solved, that is of the form 7' F z. This is not straightforward like
in [CZ06] since we are left with (non solved) disequality constraints and formulas. The key
step consists in showing that we can bound (polynomially) the size of the lists in a minimal
attack.

We would like to emphasise that our model is not strictly dedicated to routing protocols
but can be used to model many other classes of protocols. In particular, by considering a
special network topology where the attacker is at the centre of the network, we retrieve the
classical modelling where the attacker controls all the communications. We thus can model
as usual all the key exchange and authenticity protocols presented e.g. in the Clark & Jacob
library [CJ97]. Since we also provide each node with a memory, our model can also capture
protocols where a state global to all sessions is assumed for each agent. It is typically the
case of protocols where an agent should check that a key has not been already accepted in a
previous session, in order to protect the protocol against replay attacks.

2.4 Conclusion and perspectives

In this chapter, we have demonstrated that constraint solving is a powerful technique to
analyse security protocols. Moreover, this technique is quite flexible and can be extended in
several ways. We will see in Chapter 6 that constraint solving is also suitable to deal with
equivalence-based properties such as privacy-type security properties.

We claim that the key property of the inference system, which allows us to solve the
deducibility constraints, is locality. Given an inference system, the general procedure then
consists in completing the inference rules into a local inference system. When such a system
is infinite, we need additional abstractions and simplification rules. We have shown in Sec-
tion 2.2.3 that this is possible, in the case study of blind signatures. We demonstrated that
the method is general enough, by giving another example of application, an inference sys-
tem modelling symmetric encryption using an ECB encryption mode. It remains to provide
with a general way of abstracting some classes of infinite inference systems that would be
amenable to deducibility constraint solving. There are a few specialized theorem provers that
are relying on constraint solving techniques [Cor06, Mil09, BMV05, Tur06]. But the recent
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theoretical advances in this area may, in the next few years, yield new tools based on these
techniques.

To our knowledge, the result presented in Section 2.3 is the first decidability and com-
plexity result for routing protocols, for arbitrary attackers and network topologies. Moreover,
since we reuse existing techniques on solving constraint systems, our decision procedure seems
amenable to implementation, re-using existing tools. Recently, an analysis using the AVISPA
tool (a tool dedicated to the formal analysis of classical cryptographic protocols) has been
conducted on two routing protocols, namely ARAN and ENDAIRA [BMV10], yielding encour-
aging results.

We have seen that routing protocols have several specificities (e.g. neighbourhood prop-
erties, underlying topology, ...). Sometimes, secured versions of routing protocols [BV04,
HPJO05, FGMLO09] also require the nodes (typically the node originating the request) to check
the validity of the route they receive. This is usually performed by checking that each node
has properly signed (or MACed) some part of the route, the whole incoming message forming
a chain where each component is a contribution from a node in the path. Other examples of
protocols performing recursive operations are certification paths for public keys (e.g. X.509
certification paths [HFP98]) or right delegation in distributed systems [Aur99]. For verifying
security of protocols with recursive tests (for a bounded number of sessions), it seems possible
to reuse the setting of constraint systems and add membership constraints to test that a part
of an incoming message belongs to a recursive language. Of course, we have then to revisit
the simplification rules to get a decision procedure.

Ad hoc networking is a new area in wireless communications that is attracting the attention
of many researchers for its potential to provide ubiquitous connectivity without the assistance
of any fixed infrastructure. An important aspect that is not taken into account in most of
the analysis is mobility. It is crucial to take this feature into account especially in some
applications such as vehicle-to-vehicle communications where routing protocols have to work
in presence of fast moving nodes.
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Verification of security APIs
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N contrast to the case of a bounded number of sessions in which decidability results for veri-
fying cryptographic protocols could be obtained (see Chapter 2), the case of an unbounded
number of sessions is well-known to be undecidable [DLMO04]. Despite this negative result,
formal methods have proved their usefulness in the rigorous analysis of security protocols
even in presence of an unbounded number of sessions. In this chapter, we will concentrate on
security APIs for tamper resistant devices. A security API can be seen as a collection of pro-
tocols. Therefore, methods developed for security-protocol analysis can be used for analysing
such a device. For instance, the CL-ATSE tool [Tur06] has been used in the analysis of the
key management subset of the IBM 4758 API [CKSO07]. We also propose an analysis of the
TPM API in Section 3.2 with the PROVERIF tool [Bla01]. However, it is well-admitted that
security APIs have some specificities that prevent us sometimes to use tools designed for
classical cryptographic protocols. After recalling some of these specificities (see Section 3.1),
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we propose a formal model that is suitable to represent security APIs and that allows us to
analyse PKCS#11. Lastly, we will propose an extension of the Dolev-Yao intruder model to
capture a new kind of attack, called key conjuring (see Section 3.4).

3.1 Background

In this section, we first explain what a security API is. Then, we highlight the specificities
of the security APIs that explain why in general a security protocol analyser produces poor
results on this kind of applications.

3.1.1 Security APIs

The purpose of a security application programming interface (API) is to allow untrusted code
to access sensitive resources in a secure way. They typically arise in systems where certain
critical fragments of a program are executed on some tamper resistant device (TRD), such
as a USB security key or a hardware security module (HSM). Hardware security modules,
for example, are widely used in systems such as electronic payment and automated teller
machine (ATM) networks. They typically consist of a cryptoprocessor and a small amount
of memory inside a tamper proof enclosure. They are designed so that should an intruder
open the casing or insert probes to try to read the memory, it will auto-erase in a matter
of nanoseconds. Security APIs for tamper resistant hardware devices typically manage keys
by keeping a secret master key inside the device. This key is then used to encrypt all the
working keys used for operational functions, so that they can be securely stored outside the
device. These keys can then only be used by sending them back into the HSM, together with
some other data, under the HSM’s application programming interface.

The API will typically consist of a set of functions designed to facilitate the secure genera-
tion, storage, use and destruction of cryptographic keys. One can think of the API as defining
a number of two-party protocols, each describing an exchange between the tamper resistant
device and the host machine. However there are some important differences between security
APIs and more classical cryptographic protocols.

3.1.2 Some specificities

A security API can be seen as a collection of protocols which may be called in any order.
However, some specificities, listed below, prevent us to use existing verification tools that
have been designed to analyse more standard cryptographic protocols, e.g. key establishment
protocols, authentication protocols, ...

Security policy. Security APIs are designed to ensure a policy, 7.e. no matter what com-
mands are received from the untrusted code, certain security properties will continue to hold,
e.g. the secrecy of a sensitive cryptographic keys. In general, the security policy is not clearly
specified (e.g. TPM [Tru07]) or is well-known to be not satisfied by the standard. In this
last case, it is up to the developer to restrict the functionalities provided by the standard
to obtain a secure device (e.g. PKCS #11 [RSA04]). In any case, this leaves the developer
of an application in a confusing position. Indeed, he has to ensure some properties for his
application without knowing precisely what is the security policy guaranteed by the APIs.
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Key table. The aim of a tamper resistant device such as an HSM or a security USB key
is to store cryptographic keys and other sensitive data in its shielded memory. Then, objects
such as keys, are referenced in the APIs via handles, which can be thought of as pointers to
the objects. In general, the value of the handle does not reveal any information about the
actual value of the object. This key table is an important aspect that we have to take into
account to analyse security APIs.

Non-monotonic global state. One of the difficulties in reasoning about security APIs
is the need for mon-monotonic global states. If the tamper resistant device is in a certain
state s, and then a command is successfully executed, then typically the TRD ends up in a
state s’ # s. Commands that require it to be in the previous state s will no longer work.
Although it is in general possible to encode the state changes in existing verification tools,
the tools perform poorly on the resulting specification. For instance, in the PROVERIF tool,
private channels could be used to represent the state changes. However, the abstraction of
private channels that PROVERIF makes prevents it from being able to verify the correctness
of the resulting specification. Security API models typically contain non-monotonic global
state, which must be modelled accurately to get reasonable precision (i.e. not too many false
attacks).

Intruder model. The intruder model most commonly used for analysing security protocols
in symbolic approaches is the classical Dolev-Yao attacker (see Chapter 2). To identify how
the attacker should be modelled to analyse security APIs, we have to understand what attacks
concern HSM manufacturers (and their customers) in practice. Actually, some attacks are not
captured by the standard Dolev-Yao model. For instance, one technique used by attackers
attempting to breach security is to try calling APIs functions with random values in the
place of encrypted keys, to see if they are allowed to pass, or whether the device signals an
error. This process is known as key conjuring [Bon0Ol1]. Learning the encrypted value of a
key might not seem useful, but several attacks have been presented that leverage this trick
in order to compromise the security of an API [Bon01, Clu03a, CB03|. Hence, the analysis
of security APIs involves adapting Dolev-Yao style protocol analysis techniques [DY81] to
capture feasible brute-force attacks such as the one described above.

3.2 A formal analysis of authentication in the TPM

In this section, we show through a real case study how a security protocol analyser can be
used to analyse a security API (more details about this work can be found in [14]). Because of
the specificities mentioned in Section 3.1.2, some encodings are needed to model for instance
the memory of the HSM. Nevertheless, in the case of the TPM applications, this allows one
to obtain some interesting results. An important aspect of our work was to be able to find
some suitable encodings and also to identify the generic security properties that are supposed
to be achieved by the TPM (independently of the underlying application).

Several papers have appeared describing systems that leverage the TPM to create secure
applications, but most of these assume that the TPM API correctly functions and provides
the high-level security properties required [DFGK09, GSST07]. Lower level analyses of the
TPM API are more rare. Coker et al. discuss such work, but the details of the model remain
classified [CGLT10]. Giirgens et al. [GRST07] describe an analysis of the TPM API using
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finite state automata. They formalise security as secrecy of certain terms in the model, giving
examples of concrete scenarios where these secrets must be protected. They show how an
attacker can in some circumstances illegitimately obtain a certificate for a TPM key of his
choice. Their attack is not specific to the scenario they studied. Actually, this attack comes
from the fact that the generic injective agreement property that we propose does not hold on
the TPM CERTIFYKEY command (see Figure 3.1).

Other attacks on the TPM found without the aid of formal methods include offline dictio-
nary attacks on the passwords or authdata used to secure access to keys [CR08al, and attacks
exploiting the fact that the same authdata can be shared between users [CR09]. Both of these
could be detected in our formal model by small adjustments.

3.2.1 A brief overview of the TPM

The TPM stores cryptographic keys and other sensitive data in its shielded memory, and
provides ways for platform software to use those keys to achieve security goals. TPM keys
are arranged in a tree structure, with the storage root key at its root. To each TPM key is
associated a 160-bit string called authdata, which is analogous to a password that authorises
the use of the key. A user can use a key loaded in the TPM through the interface provided
by the device. All the commands have as an argument an authorisation HMAC that requires
the user to provide a proof of knowledge of the relevant authdata. Each command has to be
called inside an authorisation session. This mechanism provides a way to exchange nonces
that are then used to ensure freshness of the messages exchanged in a command.

To use a TPM key, it must first be created (via the command CREATEWRAPKEY) and
then loaded (via the command LOADKEY2). Actually, LOADKEY2 takes as argument a wrap
created by the command CREATEWRAPKEY, and returns a handle, that is, a pointer to
the key stored in the TPM memory. Commands that use the loaded key refer to it by this
handle. Since LOADKEY?2 involves a decryption by the parent key, it requires the parent key
to be loaded and it requires an authorisation HMAC based on the parent key authdata. Once
loaded, a key can be used, for example to encrypt or decrypt data, or to sign data. As an
illustrative example, we describe the command CERTIFYKEY in more detail.

Command CertifyKey. This command requires two key handles as arguments, repre-
senting the certifying key and the key to be certified, and two corresponding authorisa-
tion HMACs. It returns the certificate. Assume that the key pair (ski,pk(ski)) (resp.
(ska,pk(sks))) is already loaded inside the TPM with auth; (resp. authg) as an associated
authdata. We also assume that the access to these keys is possible through the handles handle;
and handle,. Lastly, we assume that two authorisation sessions are already established with
the nonces ne; and nes respectively. The CERTIFYKEY command can be informally described
as follows:

7, Mn01,N02, new Nej,new Ney -

hmac(authy, (cfk,n,ne1,no1)) Neq, Nesg, certif
hmac(authsz, (cfk, n,ney, nos)) hmac(authy, (cfk,n, Nej, noy, certif))
handle;, handles hmac(authg, (cfk, n, Nea, nos, certif))

where certif = cert(sk;, pk(skz)).
The user requests to certify the key pk(sks) with the key sk;. For this, he generates
a nonce n and two odd rolling nonces no; and noy (needed for the authorisation session
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mechanism) that he gives to the TPM together with the two authorisation HMACs. The
TPM returns the certificate certif. Two authentication HMACs are also built by the TPM
to accompany the answer. The TPM also generates two new even rolling nonces Ne; and Neg
to continue the session with fresh nonces. These nonces will replace the nonces ne; and nes
that have been used in this command.

The TPM is intended to ensure the secrecy of the keys that are stored in its shielded
memory. However, it seems clear that secrecy of these keys is not its only intended purpose.
Indeed, the authorisation session mechanism and the HMACs provided for instance in input
of each command would not be necessary to achieve this goal.

3.2.2 Modelling the TPM

In this section, we explain how the TPM commands and especially the mechanisms that are
specific to security APIs can be formalised in PROVERIF.

Non-monotonic global state. As explained in Section 3.1.2, one of the difficulties in
reasoning about security APIs is the need of a non-monotonic global state. In order to be
able to analyse the TPM with the PROVERIF tool, we have to get rid of this non-monotonic
global state. In the case of the TPM, we did that by introducing the assumption that only
one command is executed in each authorisation session. Hence, rolling nonces that come from
the authorisation session are now included in the local state. This assumption appears to
be quite reasonable. Indeed, the TPM imposes the assumption itself whenever a command
introduces a new authdata. Moreover, tools like TPM/J that provide software-level APIs
also satisfy this assumption. Again to avoid the need of non-monotonic global state, we do
not allow keys to be deleted from the memory of the TPM ; instead, we allow an unbounded
number of keys to be loaded.

Key table. In case of the TPM application, our aim is to allow the key table to contain
dishonest keys, ¢.e. keys for which the attacker knows the authdata, as well as honest keys.
Some of these keys may also share the same authdata. Indeed, it would be incorrect to
suppose that all keys have distinct authdata, as the authdata may be derived from user chosen
passwords. Our first idea was to use a binary function symbol handle(auth, sk) to model a
handle to the secret key sk with authdata auth. We use private functions, 7.e. functions which
may not be applied by the attacker, to allow the TPM process to extract the authdata and the
secret key from a handle. This models a lookup in the key table where each handle can indeed
be associated to its authdata and private key. Unfortunately, with this encoding PROVERIF
does not succeed in proving some expected properties. The tool outputs a false attack based
on the hypothesis that the attacker knows two handles handle(authy, sk) and handle(auths, sk)
which are built over two distinct authdata but the same secret key (which is impossible). We
therefore need to use a slightly more involved encoding where the handle depends on the
authdata and a seed; the secret key is now obtained by applying a binary private function
symbol (denoted hsk hereafter) to both the authdata and the seed. Hence, handle(authy, s)
and handle(authz, s) will now point to two different private keys, namely hsk(authy, s) and
hsk(authsg, s). This modelling avoids false attacks.

TPM commands. In our modelling we have two processes for each command: a user
process and a TPM process. The user process models an honest user who makes a call
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to the TPM while the TPM process models the TPM itself. The user process first takes
parameters, such as the key handles used for the given command, and can be invoked by
the adversary. This allows the adversary to schedule honest user actions in an arbitrary way
without knowing himself the authdata corresponding to the keys used in these commands.
Our model assumes that the attacker can intercept, inject and modify commands sent by
applications to the TPM, and the responses sent by the TPM. While this might not be the
case in all situations, it seems to be what the TPM designers had in mind; otherwise, neither
the authentication HMACs keyed on existing authdata, nor the encryption of new authdata
would be necessary.

Security properties. The TPM specification does not detail explicitly which security
properties are intended to be guaranteed. First, it seems clear that the device is assumed to
keep secret the keys that are stored in it. It is actually relatively easy to show that this secrecy
property is indeed satisfied (at least for the fragment we considered in this work). However,
the authorisation HMACs that accompany the commands and the HMACs provided by the
TPM with its answer allow us to argue that the TPM certainly aims to also achieve the
following properties:

1. Authentication of user commands: If the TPM has executed a certain command, then
a user in possession of the relevant authdata has previously requested the command.

2. Authentication of the TPM : If a user considers that the TPM has executed a certain
command, then either the TPM really has executed the command, or an attacker is in
possession of the relevant authdata.

In PROVERIF, we model these properties as correspondence properties.

3.2.3 Some experiments

Our methodology was to first study some core key management commands in isolation to
analyse the weakness of each command. This leads us to propose some fixes for these com-
mands. Then, we carried out an experiment where we consider the commands CERTIFYKEY,
CREATEWRAPKEY, LOADKEY2, and UNBIND together. We consider the fixed version of
each of these commands and we show in a last experiment that the security properties are
satisfied for a scenario that allows an attacker to load his own keys inside the TPM, and an
honest user to use the same authdata for different keys. In all our experiments, the security
properties under test are the correspondence properties explained in the previous section. We
described below the experiments done for the CERTIFYKEY command together with some
possible fixes!.

Configuration 1. We consider a configuration with two honest keys loaded inside the TP M.
PROVERIF immediately discovers an attack that comes from the fact that the command
involved two keys. The attacker can easily swap the role of these two keys: he swaps the
two HMACSs, the two key handles, and the rolling nonces provided in input of the command.
Hence, the TPM will output the certificate cert(sko, pk(sk1)) whereas the user asked for
obtaining the certificate cert(ski, pk(skz2)). We patch the command CERTIFYKEY by tagging

LAll the files for these experiments are available at: http://www.lsv.ens-cachan.fr/~delaune/TPM/
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the HMACs with two different, tags, namely cfk; and cfky instead of cfk. PROVERIF is now
able to verify the two correspondence properties.

Configuration 2. We add in the initial configuration another honest key sk, having the
same authdata as a previous honest key already loaded in the TPM. PROVERIF immediately
discovers another attack. The attacker can exchange the key handle handle(auths, sko) with
another handle having the same authdata. The TPM will answer by sending the certificate
cert(sk1, pk(skh)) whereas the user asked for the certificate cert(ski, pk(sks)). This attack
comes from the fact that the HMAC is only linked to the key via the authdata. A way to fix
this would be to add the key handle inside the HMAC, but the TPM designers chose not to
do this because they wanted to allow middleware to unload and reload keys (and therefore
possibly change key handles) without the knowledge of the application software that produces
the HMACs. A more satisfactory solution that has been proposed for future versions of the
TPM is to add (the digest of) the public key inside the HMAC. Considering this last fix,
PROVERIF is able to verify the two correspondence properties.

Configuration 3. We now assume that the attacker has his own key sk; loaded onto the
device meaning that he knows the authdata auth; associated to this key and also its public
part pk(sk;). Note that the attacker does not know sk; that is stored inside the TPM (this key
has been generated directly by the TPM). We immediately rediscover the attack of [GRST07]
(see Figure 3.1), showing that the attacker can manipulate the messages exchanged be-
tween the USER and the TPM in such a way that the TPM will provide the certificate
cert(sk1, pk(sk;)) to a user that has requested the certificate cert(ski,pk(sk2)). PROVERIF
succeeds in proving the other correspondence property.

Initial knowledge of Charlie: handle(authy, ski), handle(auths, sko), handle(auth;, sk;),
auth,;.

Trace: The attacker Charlie replaces the key to be certified by his own key.

USER — TPM :  request to open two authorisation sessions
TPM — USER : nei, neg

USER requests key certification to obtain cert(ski, pk(skz))

USER —  CHARLIE : n, noi, noo,
hmac(authy, (cfkq, pk(sk1),n,ner,nor1)), handle(authy, ski),
hmac(auths, (cfko, pk(skz), n,nea, no2)), handle(auths, sks)
CHARLIE — TPM :n, noi, noa,
hmac(authy, (cfky, pk(sk1),n,ne;,noy)), handle(authy, ski),
hmac(auth;, (cfke, pk(sk;), n, nea, nos)), handle(auth;, sk;)

TPM — CHARLIE : nel, neb, cert(ski, pk(sk;)), ...

Figure 3.1 - Attack trace for the CERTIFYKEY command (Configuration 3)

The attack of [GRST07] comes from the fact that the attacker can replace the user’'s HMAC
with one of his own. The TPM will not detect this change since the only link between the
two HMAC:s is the nonce n known by the attacker. To fix this, we add a digest of each public
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key inside each HMAC. For instance, the first HMAC built by the user will be now of the
form: hmac(authy, (cfkl, pk(sk1), pk(skz2),n,ne1,no1)). Now, the TPM will only accept two
HMAC:Ss that refer to the same pair of public keys. PROVERIF is now able to verify that the
two correspondence properties hold.

Configuration 4. Lastly, we consider the fixed version of the commands CERTIFYKEY,
CREATEWRAPKEY, LOADKEY2, and UNBIND (around 300 lines of PROVERIF code). We
consider a scenario where an honest key and a dishonest key are already loaded inside the
TPM. Note that by using CREATEWRAPKEY and LOADKEY2, the honest user and the
attacker will be able to create and load new keys into the device. Hence, having only two
keys loaded in the TPM in the initial configuration is not a restriction. PROVERIF is able
to establish the 8 correspondence security properties. However, in one case, it is not able to
verify the injective version of the property. This is due to a limitation of the tool and does
not correspond to a real attack.

3.3 Reduction result for well-moded APIs

This formal work on well-moded APIs was primarily motivated by the example of RSA
PKCS#11, which is widely deployed in industry. PKCS+#11 is an interface between appli-
cations and cryptographic devices such as smartcards, Hardware Security Modules (HSMs),
and USB key tokens. This standard is described in a large and complex specification [RSA04]
(392 pages). Authentication of the user is by means of a PIN. However, if malicious code
is running on the host machine, then the user PIN may easily be intercepted, e.g. by a
tampered device driver, allowing an attacker to create his own sessions with the device. The
PKCS#11 standard (see [RSA04, p. 31]) states that this kind of attack cannot however “com-
promise keys marked ‘sensitive’, since a key that is sensitive will always remain sensitive”.
The API as defined in the standard gives rise to a number of serious security vulnerabilities
(see [Clu03al). In practise, vendors try to protect against these by restricting the functionality
of the interface, or by adding extra features, the details of which are often hard to determine.
The standard itself gives no advice on the subject, perhaps because to give incomplete advice
might lead designers into a false sense of security.

To analyse this APIs, a non-monotonic global state is really needed. In particular, a
crucial feature is to model the attributes associated to a key, and we need to model the fact
that some attributes may be set or unset, and also the conditions under which these rules
can be applied. A monotonic model of state would allow an attacker to take two mutually
exclusive steps from the same state, permitting a lot of false attacks.

When we started this work, some efforts had already been made to formally analyse
configurations of PKCS#11 considering however a global monotonic state. For instance,
P. Youn [You04] used the first-order theorem prover Otter, and included in his model only
the commands needed for Clulow’s first attack. This model had one handle for each key,
preventing the discovery of some attacks, and a monotonic model of state permitting false
attacks. Tsalapati [Tsa07] used the AVISPA protocol analysis tools, included all the key
management commands, but also used a monotonic model of state, and one handle for each
key. She rediscovered a number of Clulow’s attacks, but the limitations of the model prevented
the discovery of the attacks we exhibit here.
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3.3.1 The setting

In order to be able to model attributes of a key, we consider a finite set A of unary function
symbols, disjoint from the signature F used to model messages. An attribute term is a term
of the form a(t) with a € A and where ¢ is a term built on the signature F. Attribute terms
will be interpreted as propositions. A literal is an expression of the form a(t) or —a(t).

Description language. We consider a rule-based description language close to a guarded
command language d la Dijkstra (see [Dij75]) and to the multiset rewriting framework for
protocol analysis (e.g. [Mit02]). One particular point is that it makes a clean separation
between the intruder knowledge part, 7.e. the monotonic part, and the current system state
which is formalised by the attributes that may be set or unset. The description of a system
is given as a finite set of rules of the form:

T;L "% 7', I/

where T and 1" are sets of terms, L and L’ are sets of literals and 7 is a set of names. The
formal semantics can be defined in a classical way as a transition system. Formally, a state
is a pair (S,V) where S is a finite set of ground terms that represents the knowledge of the
attacker, and V is a partial function from attribute terms to {1, T}. Intuitively, the rule

T;L =% T". L' can be fired from the state (S,V) if all terms in T are in S and if all the
literals in L are evaluated to true by V. The effect of the rule is that terms in 7”7 are added
to S and the valuation of the attributes is updated to satisfy L’. The new 72 means that all
the names in 7 need to be replaced by fresh names in 7" and L’. This allows us to model
nonce or key generation.

Security properties are expressed by the means of queries. A query is a pair (T, L) where T'
is a set of terms and L a set of literals (both are not necessarily ground). Intuitively, a
query (7', L) is satisfied if there exists a substitution § and a reachable state S that contains
all the terms in 70 and such that all literals in L6 are evaluated to true.

Modelling PKCS#11. Here, we illustrate our description language on the key manage-
ment operations of the API. We consider symmetric encryption only but the analysis of a
more substantial fragment can be found in [26, 4]. We consider the signature X, = {senc, h}.
The symbol h of arity 2 allows us to model handles to keys. We will use it with a nonce (for-
mally a name) as the first argument and a key as the second argument. Adding a nonce to
the arguments of h allows us to model several distinct handles to the same key. For instance
having two handles h(n1, ki) and h(nz, ki) models the fact that two distinct memory loca-
tions n; and ny hold the same key k;. We model the attributes that are associated to handles
by the means of the set A. For the sake of simplicity, our running example only considers the
attributes extract, wrap, unwrap, encrypt, decrypt, and sensitive.

The rules given in Figure 3.2 model a part of PKCS#11. We detail the first rule which
allows wrapping of a symmetric key with a symmetric key. Intuitively the rule can be read as
follows: if the attacker knows the handle h(z1,11), i.e. a reference to a symmetric key y1, and
a second handle h(xa,y2), i.e. a reference to a symmetric key ys, and if the attribute wrap is
set for the handle h(z1,y1) (note that the handle is uniquely identified by the nonce z) and
the attribute extract is set for the handle h(z2,y2) then the attacker may learn the wrapping
senc(y2,y1), i.e. the encryption of yo with y;.
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Wrap : h(z1,y1), h(z2, y2); wrap(z1), extract(z2) — senc(yz, Y1)

Unwrap : h(z1,12),senc(y1, y2): unwrap(zy) ——%  h(ng,y1); extract(ni), L
KeyGenerate : new ni k1 h(ny, ky); ~extract(ny), L
SEncrypt : h(z1,91), y2; encrypt(z1)  —  senc(yz,y1)

SDecrypt : h(z1,y1),senc(y2,y1); decrypt(x) — Yo

Set Wrap : h(z1,y1); ~wrap(xy) — wrap(x1)

UnSet_ Wrap : h(z1,y1); wrap(x1) — —wrap(z1)

Set__Encrypt : h(z1,y1); —encrypt(z1) — encrypt(z;)

UnSet_ Encrypt : h(z1,y1); encrypt(z) — —encrypt(z)

where L = —wrap(n1), “unwrap(ny ), —encrypt(n; ), ~decrypt(ny ), —sensitive(n1). The ellipsis in
the set and unset rules indicates that similar rules exist for some other attributes.

Figure 3.2 - PKCS#11 key management subset (symmetric encryption only).

3.3.2 Reduction result and decidability

In this section, we establish a result that allows us to reduce the search space when we are
looking for an attack, i.e. when we try to decide the satisfiability of a query. This result is
quite general and can be applied as soon as the rules are well-moded. The notion of mode
is inspired from [CRO6]. It is similar to the idea of having well-typed rules, but we prefer to
call them well-moded to emphasise that we do not have a typing assumption. We show that
if there is an attack, then there is an attack where bitstrings are used for the purpose they
were originally created. Unfortunately, deciding whether a query is satisfiable from an initial
state is still undecidable in this setting. We show how to get decidability by considering an
additional assumption.

Well moded rules. We consider a set of modes Mode and we assume that there exists a
mode function such that M(f, ) is defined for every symbol f and every integer ¢ such that
1 <i<ar(f). We also assume that a function sig returns the mode to which a symbol f
belongs. We extend the function sig to terms by considering its root symbol. Intuitively, a
position of a term t is well-moded if the subterm at that position is of the expected mode
w.r.t. to the function symbol immediately above it. A term is well-moded if all its positions
are well-moded. This notion is extended as expected to literals, sets of terms, rules, queries,
and states.

Note that any term can be seen as a well-moded term if there is a unique mode, e.g. Msg.
However, such a result will not be really useful to reduce the search space. The rules described
in Figure 3.2 and the rules needed to represent the deduction capabilities of the attacker are
well-moded w.r.t. the modes and signature function described below. This set of modes
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allows us to bound the length of a well-moded term.

h : Nonce x Key — Handle x1,x2,n1 : Nonce
senc : Key x Key — Cipher Y1, Y2, k1 Key

att : Nonce — Attribute for all att € A

Decidability. First, we show that in a system induced by well-moded rules, only well-moded
terms need to be considered when checking for the satisfiability of a well-moded query. More
formally, we have that:

Theorem 3.1 [26, /] Let R be a set of well-moded rules. Let (So, V) be a well-moded state
(the initial state) such that for any possible mode m, there exists a well-moded term tq, € Sy
of mode m. Let @ be a well-moded query that is satisfiable. Then there exists a derivation
witnessing this fact that only involves well-moded states.

Note that we do not assume that an implementation enforces well-modedness. We allow
an attacker to yield derivations that are not well-moded. Our result however states that
whenever there exists an attack that uses a derivation which is not well-moded there exists
another attack that is well-moded. Note also that the modes used in our modelling of PKCS#
11 imply that all well-moded terms have bounded message length. This is not sufficient
for decidability. Indeed, undecidability proofs [DLM04, TEBO5] for security protocols with
bounded message length and unbounded number of nonces can be easily adapted to our
setting. Therefore, in order to get a decidability result, we bound the number of atomic data
of each mode.

3.3.3 Analysing PKCS#11 and some proprietary extensions

The decision procedure arising from Theorem 3.1 for a bounded number of keys and handles
has been implemented. Actually, the propositional encoding is generated in a syntax suitable
for the model checker NUSMV [CCGT02]. We then asked NUSMV to check whether the
security property (secrecy of sensitive keys) holds.

Methodology. PKCS#11 is a standard designed to promote interoperability, not a tighthly
defined protocol with a particular goal. As such the aim of our experiments was to analyse
a number of different configurations in order to validate our approach with the secrecy of
sensitive keys as security property (see PKCS#11 manual [RSA04, p. 31]). First, we perform
experiments involving symmetric keys only, and try to restrict the API until a secure config-
uration was found. For this, as suggested by J. Clulow [Clu03a], we declare some conflicting
attributes which means that some appropriate conditions are added to the left-hand side of
the Set rules. We also study the notion of sticky attributes, i.e. those that, once set, cannot
be unset, and those which once unset, cannot be set anymore. This way of restricting the
APT was actually suggested by the PKCS standard.

We then added asymmetric keys, and repeated the process. A secure configuration is
obtain by adding the ’trusted keys’ mechanism introduced in PKCS#11 v2.20. We also
carried out some experiments modelling the algebraic properties of the ECB mode of encryp-
tion. Finally, we considered the proprietary extensions used by two commercial providers of
cryptographic hardware.
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Summary of our experiments. All the files for our experiments are available at:
http://www.lsv.ens-cachan.fr/~steel/pkcsil/

In our first set of experiments (see [26]), we examine key separation attacks, similar to
those found by J. Clulow [Clu03a]. We constrain our PKCS#11 API by repeatedly banning
certain combinations of key attributes, each time obtaining a new (longer) attack. Finally we
investigate some solutions involving for example the ’trusted keys’ mechanism.

Concerning the two proprietary extensions (see [4]), we find that both permitted secure
configurations to be found, but both require careful attention to other details in order to
avoid vulnerabilities. However, we have only examined small bounded models.

3.3.4 Related results

Our result has been extended by S. Froschle and G. Steel to deal with an unbounded number
of fresh data [FS09]. To achieve this, they consider APIs having a particular policy. Actually,
APIs outside this class are likely to be problematic. Thus, this restriction appears to be
quite natural. Then, they show that these APIs can be safely abstracted to APIs where the
attributes are fixed. It is thus sufficient to consider a small bounded model. A positive result
will guarantee security in the unbounded case. However, their abstract model may suggest
false attacks.

In our work, we showed how difficult it is to prevent attacks: the commands can be
restricted to prevent certain conflicting attributes from being set on the same object, but
still more attacks arise. However, we do not check whether any real devices following the
standard actually implement key management like this, since much of the functionality is
optional. In [BCFS10], M. Bortolozzo et al, motivated by our work, developed a tool, called
TOOKAN. Their tool reverse-engineers the particular token in use to deduce its functionality,
constructs a model of its API (following the model presented in Section 3.3.1), and then
executes any attack trace found by the model checker directly on the tokens. They use the
SATMC model checker relying on our result (see Theorem 3.1) to reduce the search space.
They have tested the TOOKAN tool on 17 commercially available tokens: 9 were vulnerable
to attacks, while the other 8 had severely restricted functionality.

3.4 A formal theory of key conjuring

In this section, we describe a formalism for key comjuring, the process by which an attacker
obtains an unknown, encrypted key by repeatedly calling a cryptographic API function with
random values in place of keys. We propose a formalism for detecting computationally feasible
key conjuring operations, incorporated into a Dolev-Yao style model of the security API. Then,
we show that security in the presence of key conjuring operations is decidable for a particular
class of APIs, which includes the key management API of IBM’s Common Cryptographic
Architecture (CCA). In particular, this requires consideration of the algebraic properties of
the exclusive-or operation.

Formal work on the CCA first concentrated on rediscovering the attacks on the original
version of the APT [Ste05, YAB105], and then on proving both Bond’s proposed fixes [CMO06],
and the fixes IBM actually implemented [CKS07], to be secure. However, these works made
an informal approximation of the ability of the intruder to ‘conjure’ keys, a trick used several
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times in Bond’s attacks. To explain precisely what key conjuring is, we first need to introduce
some notation.

3.4.1 Some definitions
Before introducing key conjuring, we first define the class of APIs considered in this section.
Modelling. We consider a set of modes. Terms which respect these modes are said to be

well-moded. 1t includes a set of base mode Base and a set of ciphertext mode Cipher. Moreover
we assume that our function symbols have the following mode:

@ : Base x Base — Base
senc : Base x Base — Cipher
sdec : Cipher x Base — Base

We equip the signature with an equational theory Eap| that models the algebraic properties

of our operators:
Epp & { senc(sdec(z,y),y) = = r®0 =z D (ydz) = (zdyY) D2
sdec(senc(z,y),y) = x r®x =0 r®y = ydx

In the CCA API, as in many others, symmetric keys are subject to parity checking. The
4758 uses the DES (and 3DES) algorithm for symmetric key encryption. A (single length)
DES key consists of 64 bits in total, which is divided into eight groups, each consisting of
seven key bits and one associated parity bit. For a key of odd parity, each parity bit must
be set so that the overall parity of its group is odd. For a key of even parity, the parity bits
must be set so that all groups are of even parity. If the groups have mixed parities, then the
key is of undefined parity and considered invalid. These parity considerations are important
for our analysis of key conjuring, and are represented in our formalism by occurrences of the

predicate symbols chkEven and chkOdd, each having a term as argument. Moreover, we have
some deduction rules to infer parity from known facts.

Intruder capabilities and the API behaviour are described using API rules.

Definition 3.1 An API rule is a rule of the form chky(uy),...,chkg(ug), x1,..., 2, — t
where x1,...,x, are variables, t is a term such that var(t) C {z1,...,x,}, ui,...,ux are
terms of Base mode not headed with @, chk; € {chkOdd,chkEven}, 1 < i < k. We also
assume that the rule only involves well-moded terms with at most one encryption symbol that
has to occur at their root position.

This class allows us in particular to model the attacker capabilities in a Dolev-Yao style
and the symmetric key management subset of the IBM 4758 API [CCA06].

Key conjuring. As we have seen, key management APIs like the CCA keep working keys
outside the HSM, safely encrypted, so that they can only be used by sending them back into
the HSM. What happens when an intruder wants to use a particular command in an attack,
but does not have access to an appropriate key? For example, suppose he has no data keys
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(terms of the form senc(dl, km @ data)), but wants to use the ENCRYPT DATA command. In
an implicit decryption formalism, the command is defined like this:

ENCRYPT DATA =z, senc(zkey, km @ data) — senc(z, zkey).

This suggests that the command cannot be used if the intruder does not have a data key.
However, in reality, an intruder could just guess a 64 bit value and use that in place of the
data key. The HSM will decrypt the guessed value under km @ data, and check the parity of
the resulting 64 bit term to see if it is a valid key before encrypting the data. Usually, the
check will fail and the HSM will refuse to process the command, but if the intruder guesses
randomly, he can expect that 1 in every 256 guessed values will result in a valid key. This
notion is captured by our formalism, in which we write the ENCRYPT DATA command like
this:

ENCRYPT DATA chkOdd(sdec(y, km & data)), x, y — senc(x,sdec(y, km & data))

It may seem useless for the intruder to simply guess values, since the result is a term he
knows encrypted under an unknown key, but used cleverly, this technique can result in serious
attacks. For example, Bond’s so called Import/Export attack [Bon01], uses key conjuring to
convert a PIN derivation key into an encryption key, allowing an intruder to generate the
PIN for any given account number. Further attacks using key conjuring had been discovered
by then, [CB03, Clu03a], on both the CCA APT and other APIs.

Note that a straightforward ‘explicit decryption’ model is not sufficient for a key conjuring
analysis, since though this allows an attack like Bond’s be discovered, it doesn’t take into
account parity checks. This means that the model cannot distinguish between feasible and
non-feasible key conjuring steps, leading to false attacks. For example, an explicit decryption
model without parity checking would allow an intruder to conjure several keys at the same
time which in practise is highly unlikely. The transformation we proposed to model key
conjuring ensures that the intruder has to guess values for at most one parity check. Moreover,
this transformation is generic enough to deal with any API made up of rules satisfying the
conditions given in Definition 3.1. Given an API rule R, our transformation will return a set
of rules, denoted by KeyCj(R).

Example 3.1 The key conjuring rule obtained with our transformation from the rule EN-
CRYPT DATA is as follows:

ENCRYPT DATA 2 "% senc(z,sdec(n, km @ data)), n, chkOdd(sdec(n, km & data))

To encrypt a data x with a key xkey, it is necessary to provide to the interface the data
and the ciphertext senc(zkey, km @ data). However, the intruder can simply send a random
sequence n instead of this ciphertext. If it happens that sdec(n,km & data) satisfies the parity
condition then the rule will return senc(z, k) where k = sdec(n, km & data).

3.4.2 Decidability result

We consider here the problem of deciding whether a particular term, for example a PIN
derivation key, can be learnt by an attacker. The intruder starts with a fixed set of terms
that constitute his initial knowledge. He can then use the rules of the API and also the
key conjuring variants of the rules in any order to extend his knowledge. Each time the
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adversary wants to conjure a key, it requires a significant amount of access to the API. We
assume in what follows that the use of these rules by the attacker is limited. This is modelled
by introducing a parameter k that bounds the maximum number of applications of the key
conjuring rules. The value of k could be set based on the amount of time an attacker may
have access to a live HSM, based on physical security measures, auditing procedures in place,

We write S I—A2 <fp| u if u is deducible from S by using the rules in A; and at most k
instances of the rule in Ay (modulo the theory Eapj). The security problem we are interested
in can be defined as follows:

Entries: A finite set A of API rules, a set S of ground facts that is consistent (the initial
knowledge of the attacker), a ground term s (the secret) and a bound k£ € N (number of key
conjuring steps).

Question: Is the secret s deducible from S by using the rules in A and at most k instances
of rules in KeyCj(A) (modulo Eapy), i.e. does S l_ieéijp(lA) <k o

Theorem 3.2 [33] The security problem defined above is decidable for well-formed APIs.

The notion of well-formed API is formally defined in [33]. It mostly restricts the APIs by
imposing some natural conditions that are in particular satisfied by the IBM 4758 API. For
instance, it imposes that the API only checks the parity of objects that have to be used in
generating the output. This is quite natural since we would not expect an API to check the
parity of a term that is subsequently discarded.

Related work. Our class of API rules is related to the class proposed in [CKSO07]. It is
shown that secrecy preservation is decidable for an unbounded number of sessions for API
rules with XOR, provided that these rules satisfy a condition closed to our notion of well-
moded terms. However, there are two main differences between the class of well-formed API
rules studied in this chapter and the class defined in [CKS07]. First, we consider here an
equational theory with explicit decryption. This is necessary for modelling key conjuring.
Second, because of the use of explicit destructor symbol, we have to deal with an infinite
number of well-moded terms.

To the best of our knowledge, there exist only two other decidable classes [CLC03, VSS05]
for secrecy preservation for protocols with XOR, for an unbounded number of sessions. In
both cases, the main difference with our class is that we make restrictions on the combination
of functional symbols rather than on the occurrences of variables. As a consequence, our class
is incomparable to the two existing ones. In particular, the IBM CCA protocol cannot be
modelled in either of these two other classes.

More recently, R. Kiisters and T. Truderung have designed and implemented an algo-
rithm for checking trace properties on protocols using the XOR operator [KT11]. This tool
takes as input Horn clauses with XOR, (modelling the protocols and the security property)
and translates them into Horn clauses (without XOR) that can be handled by PROVERIF.
In particular, using their implementation (together with PROVERIF), they found a new at-
tack. They do not consider explicit destructors, and thus they do not take into account key
conjuring.
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3.5 Perspectives

In this chapter, we have analysed three different APIs and we have presented two decision
procedures. Despite the undecidability results for verifying protocols in presence of an un-
bounded number of sessions, we have shown that it is possible to exploit the specificities of the
APIs to get decision procedures without limiting the number of sessions. The abstraction and
over-approximation of protocols by a set of Horn clauses (the method used in the PROVERIF
tool) is a very successful method in practice to analyse cryptographic protocols. Using this
tool, we have also performed an interesting analysis of the TPM.

The results presented in this chapter can be extended in several ways. For instance, con-
cerning our work on the TPM, we foresee extending our model with more commands such as
those involved in key migration. We also plan to model the TPM’s platform configuration reg-
isters (PCRs) which allow one to condition some commands on the current value of a register.
PCRs are crucial when using the TPM for checking the integrity of a system. Modelling the
PCRs and the commands for manipulating these registers for automated verification seems
to be a challenging task, because of the need for a non-monotonic global state.

Regarding our work on key conjuring, it seems natural to extend our decision procedure
to a larger class of APIs, incorporating pairing and further cryptographic primitives. Even
if key conjuring allows one to capture a large class of brute-force attacks, there still remain
some feasible brute-force attacks that are not captured by our model, e.g. parallel-key search
attacks, meet-in-the-middle attack, ... The meet-in-the-middle attack is a cryptographic at-
tack which, like the birthday attack, makes use of a space-time tradeoff. While the birthday
attack attempts to find two values in the domain of a function that map to the same value
in its range, the meet-in-the-middle attack attempts to find a value in each of the range and
domain of the composition of two functions such that the forward mapping of one through
the first function is the same as the inverse image of the other through the second function —
quite literally meeting in the middle of the composed function. However, in order to capture
feasible brute-force attacks only, it seems important to introduce a quantitative model. Some
efforts have already been done in this direction (e.g. [AMRVO06]), this is however insufficient
for modelling the attacks mentioned here (e.g. [SCO07]).

More generally, it seems important to propose a unified framework allowing us to model
a large number of security APIs. This seems quite challenging since even if security APIs
have some common features (e.g. key table, ...) we often need to model in an accurate way
some of their specific features to conduct a reasonable analysis. An important challenge is
to develop decision procedures allowing one to take into account non-monotonic global state.
This is needed for the analysis of most of the APIs, e.g. the key attributes in PKCS #11,
the PCR used in the TPM application, .... We have seen that the method based on over-
approximation such as the use of Horn clauses is very successful in practice; it has however
limitations for protocols that are based on databases of keys such as security APIs. Recently,
some advances have been made to extend the scope of these over-approximation methods by
defining a new way of abstraction that can handle such databases [Md10]. In order to obtain
efficient tools, the specificities of the security APIs could be helpful. This will probably lead
to an automatic verifier tailored for this specific application.
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Modelling in applied pi calculus
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ORMAL methods have proved their usefulness for precisely analysing the security of pro-
tocols. However, most existing results focus on trace properties, that is, statements that
something bad never occurs on any execution trace of a protocol. Secrecy and authentica-
tion, and more generally all the properties studied in Chapter 2 and Chapter 3, are typical
examples of trace properties. There are however several security properties, which cannot be
defined (or cannot be naturally defined) as trace properties and require the notion of obser-
vational equivalence. Intuitively, two processes P and () are equivalent, denoted by P ~ @,
if for any process O (the observer) the processes P | O and @ | O are equally able to emit on
a given channel. This means that the process O cannot observe any difference between the
processes P and Q.
We focus here on the definition proposed in the context of applied pi calculus [AF01],
which is well-suited for the analysis of security protocols. First, we present the applied pi
calculus in Section 4.1. Then, in Section 4.2, we formally define the notions of observational
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and trace equivalence, and we study the relationship between these two notions. Observational
equivalence is crucial when specifying properties like anonymity that states that an observer
cannot distinguish the case where A is talking from the case where B is talking. We have
shown that privacy related properties involved in electronic voting protocols [6] or in the
context of vehicular ad hoc networks [15] also rely on equivalence as a key notion. Those
applications are detailed in Section 4.3. Lastly, we give a brief description of the PROVERIF
tool [Bla01]. This is a well-established protocol verifier able to check observational equivalence.
However, the method used by PROVERIF is not complete and the tool is actually unable to
prove the equivalences presented in Section 4.3.

4.1 Applied pi calculus

The applied pi calculus [AF01] is a derivative of the pi calculus that is specialised for mod-
elling cryptographic protocols. Participants in a protocol are modelled as processes, and the
communication between them is modelled by means of message passing.

4.1.1 Syntax

We consider a set of names, which is split into the set N' = {a,b,k,n,...} of names of
base types and the set Ch of names of channel type (which are used to name communication
channels). We also consider a set of variables X = {z,y,...}, and a signature F consisting
of a finite set of function symbols. We rely on a sort system for terms. The details of the
sort system are unimportant, as long as it distinguishes base types from the channel type.
We suppose that function symbols only operate on and return terms of base types. Terms
are defined as names, variables, and function symbols applied to other terms. We denote by
T(F,N UZX) the set of terms built on F and N'U X. Of course function symbol application
must respect sorts and arities.

Example 4.1 Let F = {aenc/2, adec/2, pk/1, ()/2, proj;/1, proj,/1} be a signature con-
taining function symbols for asymmetric encryption, decryption and pairing, each of arity 2,
as well as projection symbols and the function symbol pk, each of arity 1. The term pk(sk)
represents the public counterpart of the private key sk.

In the applied pi calculus, one has plain processes, denoted P, ), R and extended processes,
denoted by A, B,C. Plain processes are built up in a similar way to processes in pi calculus
except that messages can contain terms rather than just names. Extended processes add
active substitutions and restriction on variables. In the grammar described below, M and N
are terms, n is a name, = a variable and u is a metavariable, standing either for a name or a
variable.

P,Q,R:=0 plain processes A B,C:= extended processes
P|Q P
P Al|B
new n.P new n.A
if M = N then P else () new x.A
in(u,z).P M/}

out(u, N).P
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{M/.} is the active substitution that replaces the variable x with the term M. Active substi-
tutions generalise the “let” construct: new x.({*/,} | P) corresponds exactly to “let x = M
in P”. As usual, names and variables have scopes, which are delimited by restrictions and by
inputs. We write fu(A), bu(A), fn(A) and bn(A) for the sets of free and bound variables and
free and bound names of A, respectively. We say that an extended process is closed if all its
variables are either bound or defined by an active substitution. An evaluation context C[_]
is an extended process with a hole instead of an extended process.

Active substitutions are useful because they allow us to map an extended process A to its
frame, denoted ¢(A), by replacing every plain process in A with 0. A frame is an extended
process built up from 0 and active substitutions by parallel composition and restriction. The
frame ¢(A) accounts for the set of terms statically possessed by the intruder (but does not
take into account for A’s dynamic behaviour). The domain of a frame ¢, denoted by dom(y),
is the set of variables for which ¢ defines a substitution (those variables z for which ¢ contains
a substitution {*/,} not under a restriction on z).

Example 4.2 Consider the signature F of Example 4.1. Let A be the following process made
up of three components in parallel:

A= news, s, z1.(out(er, z1) | in(er, y).out(cs, adec(y, sk)) | {#NC-PER) /).

The first component publishes the message aenc(s,pk(sk)) stored in x1 by sending it on c;.
The second receives a message on c1, uses the secret key sk to decrypt it, and forwards the
result on co. We have ¢(A) = new s, sk, x,.{2"Pk6R) /Y and dom(p(A)) = 0 (since z1 is
under a restriction).

4.1.2 Semantics

We briefly recall the operational semantics of the applied pi calculus (see [AF01] for details).
First, we associate an equational theory E to the signature F. The equational theory is defined
by a set of equations of the form M = N where M, N € T (F,X), and induces an equivalence
relation over terms: =g is the smallest congruence relation on terms, which contains all
equations M = N in E, and that is closed under substitution of terms for variables.

Example 4.3 Considering the signature F of Example 4.1 we define the equational the-
01y Eaenc by the equations adec(aenc(zx, pk(y)),y) = x and proj;({(x1,x2)) = z; fori € {1,2}.

Structural equivalence, noted =, is the smallest equivalence relation on extended processes
that is closed under a-conversion on names and variables, by application of evaluation con-
texts, and satisfying some further basic structural rules such as A | 0 = A, associativity and
commutativity of |, binding-operator-like behaviour of new, and when M =g N the equiva-
lences

newa {M/.} =0 (M= {"/h (M A= M 1AM}

Example 4.4 Let P = new s, sk.(out(cy,aenc(s,pk(sk))) | in(c1,y).out(ca, adec(y, sk))).
The process P is structurally equivalent to the process A given in Example 4.2. We have
also that $(P) =0 = ¢(A).



70 CHAPTER 4. MODELLING IN APPLIED PI CALCULUS

The operational semantics of processes in the applied pi calculus is defined by rules defin-
ing two relations: structural equivalence (described above) and internal reduction, noted .
Internal reduction — is the smallest relation on extended processes closed under structural
equivalence and application of evaluation contexts such that:

out(a,z).P | in(a,2).Q = P|Q if M = M then Pelse @ = P
if M = N then P else Q = @ where M, N are ground terms such that M #g N

The operational semantics is extended by a labelled operational semantics enabling us to
reason about processes that interact with their environment. Labelled operational semantics
defines the relation - where £ is either an input or an output. We adopt the following rules
in addition to the internal reduction rules. Below, a is a channel name, u is a metavariable,
and x is a variable of base type.

J4 .
A= A’ wu does not occur in ¢

IN in(a,z).P 0, pedy v Scopk
7 ’ new u.A 5 new u. A’
out(a,u bn(f) N B)=0
OuT-ATOM out(a,u).P M P b bn(g) mf"(B) _@
b 001 /olB) =
t(asu) A|B—= A |B
out(a,u ,
OPEN-ATOM A—>4 i y)#a A=B BLB A=pR
new y. A = LRGY, - Ay STRUCT

AL A

Note that the labelled transition is not closed under application of evaluation contexts.
Moreover the output of a term M needs to be made “by reference” using a restricted variable
and an active substitution.

4.2 Observational equivalence versus trace equivalence

Let A be the alphabet of actions (in our case this alphabet is infinite) where the special
symbol 7 € A represents an unobservable action. For every a € A the relation — has been
defined in Section 4.1.2. We consider the relation + that is the restriction of = on closed
extended processes. For every w € A* the relation ~ on closed extended processes is defined
in the usual way. By convention A v A where e denotes the empty word. For every s €
(A~ {7})*, the relation & on extended processes is defined by: A & B if, and only if, there
exists w € A* such that A > B and s is obtained from w by erasing all occurrences of 7.
Intuitively, A & B means that A transforms into B by experiment s.

4.2.1 Observational equivalence

Intuitively, two processes are observationally equivalent if they cannot be distinguished by any
active attacker represented by any context. Observational equivalence can be used to formalise
many interesting security properties, in particular privacy related properties (see Section 4.3).
The universal quantification over contexts makes observational equivalence difficult to verify.
Hence, an alternative characterization, namely labelled bisimilarity, is introduced in [AF01].
This characterization, recalled in Definition 4.2, relies on a direct comparison of labelled
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transitions rather than on contexts. First, we introduce a notion of intruder’s knowledge that
has been extensively studied. Several results about this notion are presented in Chapter 5.

Definition 4.1 (static equivalence ~) Two terms M and N are equal in the frame ¢,
and we write (M =g N)¢, if there exists n and a substitution o such that ¢ = newn.o,
n N (fn(M)U fm(N)) = 0, and Mo =g No. Two closed frames ¢1 and ¢o are statically
equivalent, ¢y ~g ¢o (or simply ¢1 ~ ¢o when E is clear from the context), when

e dom(¢1) = dom(p2), and

o for all terms M, N we have that (M =g N)¢1 if and only if (M =g N)op,.

Example 4.5 Consider the two frames ¢g = {2"<(0Pk(sK)) / V gnd ¢y = {2enclsipk(sk) /1
We have (adec(z1, sk) =k,... So)¢o whereas (adec(xy, sk) #E,... S0)¢1, thus ¢o # ¢1. However,
we have that new sk.¢pg ~ new sk.¢p1. This is a non trivial equivalence. Intuitively, there is
no test that allows one to distinguish the two frames since neither the decryption key, nor the
encryption key are available.

Definition 4.2 (labelled bisimilarity =~,) Labelled bisimilarity is the largest symmetric
relation R on closed extended processes such that A R B implies

1. ¢(A) ~ ¢(B),

2. if A5 A, then BE& B’ and A’ R B’ for some B,
3. if Avs A’ and bn(€) N fn(B) = 0 then B & B’ and A' R B' for some B’

Example 4.6 Consider the theory Eaenc, the processes Py = out(c,aenc(sp, pk(sk))) and
Qo = out(c,aenc(s1, pk(sk))). We have new sk.Py =y new sk.Qq whereas Py %y Qo. These
results are direct consequences of the static (in)equivalence relations stated in Ezample 4.5.

4.2.2 Trace equivalence

For every closed extended process A, we define its set of traces, each trace consisting in a
sequence of actions together with the sequence of sent messages

trace(A) = {(s,¢(B)) | A& B for some closed extended process B}.

Definition 4.3 (trace inclusion C;, trace equivalence =~;) Let A and B be two closed
extended processes, A T B if for every (s,p) € trace(A) such that bn(s) N fn(B) = 0, there
exists (s',¢') € trace(B) such that s =s and ¢ ~ ¢'. The processes A and B are trace
equivalent, denoted by A ~; B, if AC; B and B C; A.

It is well-known that observational equivalence (or labelled bisimilarity) implies trace
equivalence whereas the converse is false in general.
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4.2.3 Determinacy

J. Engelfriet has shown that observational equivalence and trace equivalence coincide for a
process algebra with atomic actions, when processes are determinate [Eng85].

Definition 4.4 (determinacy) Let = be an equivalence relation on closed extended pro-
cesses. A closed extended process A is =-determinate if whenever A & B, A & B’ and
¢(B) ~ ¢(B') then B= B'.

Fixing the equivalence relation yields to potentially different notions of determinacy, e.g.
observation determinacy (for = := =) and trace determinacy (for = := =;). Following
J. Engelfriet techniques, we have shown (see [21]) that these two notions of determinacy
coincide. So we say that an extended process is determinate if it satisfies any of these two
notions. Then, we have extended the result of J. Engelfriet [Eng85] to processes of the
applied pi calculus, showing that observational equivalence and trace equivalence coincide
when processes are determinate.

Theorem 4.1 [21] Let A and B be two closed extended processes that are determinate.
~; B implies A ~; B.

Originally, the notion of observational equivalence (or equivalently labelled bisimilarity)
has been introduced to approximate trace equivalence [AG99]. The fact that observational
equivalence is based on a notion of step-by-step simulation between processes makes this
notion sometimes easier to prove directly. Even if the notion of observational equivalence
is quite strong, it is also used to express privacy type properties. In the next section, we
use & to represent ~; or & (leading of course to different notions of equivalence when the
underlying processes are not determinate).

4.3 Applications

In this section, we illustrate how security properties can be expressed by the means of equiv-
alences. We detailed three applications. Actually, equivalences are also useful to model many
other security properties, e.g. anonymity [AF04], untraceability [ACRR10, BCdH10], ...

4.3.1 Guessing attacks on password-based protocols

Guessing attacks are a kind of dictionary attack in which the password is assumed to be weak,
i.e. part of a dictionary for which a brute force attack is feasible. A guessing attack works in
two phases. In a first phase the attacker eavesdrops or interacts with one or several protocol
sessions. In a second offline phase, the attacker tries each of the possible passwords on the
data collected during the first phase. To resist against a guessing attack, the protocol must
be designed such that the attacker cannot discover on the basis of the data collected whether
his current guess of the password is the actual password or not. The definition below is due
to M. Baudet [Bau05], inspired from the one of [CDE05]. In our definition, we allow multiple
shared secrets, and write @ for a sequence of such secrets.
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Definition 4.5 The process new w.A is resistant to guessing attacks against W if, for every
process B such that neww.A & neww.B (derivation obtained without renaming names in ),
we have that neww.(p(B) | {%/z}) ~ new ' .neww.(p(B) | {¥ /z}) where &' is a sequence of
fresh names and & a sequence of variables such that Z N dom(¢(B)) = (.

Intuitively, a protocol A is resistant against guessing attacks on a weak password w if
it is not possible for an active attacker to mount a guessing attack on it even after some
interactions with the protocol during a first phase.

4.3.2 Privacy in electronic voting protocols

We report below on some of our recent efforts in using the equivalences of the applied pi
calculus to model privacy-type properties of electronic elections [36, 6, 1]. Those properties
can be expressed informally as follows:

e Vote-privacy: the fact that a particular voter voted in a particular way is not revealed
to anyone.

e Receipt-freeness: a voter does not gain any information (a receipt) which can be used
to prove to a coercer that she voted in a certain way.

e (oercion-resistance: a voter cannot cooperate with a coercer to prove to him that she
voted in a certain way.

Vote-privacy. The privacy property aims to guarantee that the link between a given
voter V' and his vote v remains hidden. A classical device for modelling anonymity is to
ask whether two processes, one in which V4 votes and one in which Vg votes, are equivalent.
However, such an equivalence does not hold here as the voters’ identities are revealed (and
they need to be revealed at least to the administrator to verify eligibility). In a similar way,
an equivalence of two processes where only the vote is changed does not hold, because the
votes are published at the end of the protocol. To ensure privacy we need to hide the link
between the voter and the vote and not the voter or the vote itself.

In order to give a reasonable definition of privacy, we suppose that at least two voters
are honest. We denote the voters V4 and Vp and their votes a and b. We say that a voting
protocol respects privacy whenever a process where V4 votes a and Vg votes b is equivalent
to a process where V4 votes b and Vp votes a. Formally, we have defined privacy as follows:

Definition 4.6 (vote-privacy) [36, 6] A voting protocol respects vote-privacy if

SWVal®/o} | Va{"/u}] = SIVa{’/u} | VB{"/u}]
for all possible votes a and b.

Note that this definition is robust even in situations where the result of the election is
such that the votes of V4 and Vp are necessarily revealed e.g. if the vote is unanimous, or
if all other voters reveal how they voted. In some protocols the vote-privacy property may
hold even if authorities are corrupt, while other protocols may require the authorities to be
honest. When proving privacy, we choose which authorities we want to model as honest, by
including them in the context S.
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Receipt-freeness. Similarly to privacy, receipt-freeness may be formalised as an equiva-
lence. However, we need to model the fact that Vy is willing to provide secret information,
i.e. the receipt, to the coercer. We assume that the coercer is in fact the attacker who, as
usual in the Dolev-Yao model, controls the public channels. To model V4’s communication
with the coercer, we consider that V4 executes a voting process th which has been modified:
inputs and freshly generated names of base type (i.e. not channel type) are forwarded to the
coercer on the channel ch. We do not forward restricted channel names, as these are used for
modelling purposes, such as physically secure channels, e.g. the voting booth, or the existence
of a PKI which securely distributes keys (the keys are forwarded but not the secret channel
name on which the keys are received). The process A\outeh) jg a5 the process A, but hiding
the outputs on the channel ch.

Intuitively, a protocol is receipt-free if, for all voters V4, the process in which V4 votes
according to the intruder’s wishes is indistinguishable from the one in which she votes some-
thing else. As in the case of privacy, we express this as an equivalence between two processes.
Suppose the coercer’s desired vote is ¢. Then we define receipt-freeness as follows:

Definition 4.7 (Receipt-freeness) [36, 6/ A voting protocol is receipt-free if there exists
a closed plain process V' such that

° Vl\out(chc,-) ~ VA{Q/U};
o SVa{c/u}" | VB{*/u}] = SIV'|VB{®/u}],

for all possible votes a and c.

As before, the context S in the second equivalence includes those authorities that are
assumed to be honest. V' is a process in which voter V4 votes a but communicates with the
coercer C' in order to feign cooperation with him. Thus, the second equivalence says that the
coercer cannot tell the difference between a situation in which V4 genuinely cooperates with
him in order to cast the vote ¢ and one in which she pretends to cooperate but actually casts
the vote a, provided there is some counterbalancing voter that votes the other way around.
The first equivalence of the definition says that if one ignores the outputs V' makes on the
coercer channel che, then V' looks like a voter process V4 voting a.

The first equivalence of the definition may be considered too strong. Informally, one might
consider that the equivalence should be required only in a particular S context rather than
requiring it in any context (with access to all the private channels of the protocol). This
would result in a weaker definition, although one which is more difficult to work with. In
fact, the variant definition would be only slightly weaker. It is hard to construct a natural
example which distinguishes the two possibilities, and in particular it makes no difference to
the case studies we have performed. Therefore, we prefer to stick to Definition 4.7.

Coercion-resistance. Coercion-resistance is the third and strongest of the three privacy
properties. Again, it says that the link between a voter and her vote cannot be established
by an attacker, this time even if the voter cooperates with the attacker during the election
process. Such cooperation can include giving to the attacker any data which the voter gets
during the voting process, and using data which the attacker provides in return. When
analysing coercion-resistance, we assume that the voter and the attacker can communicate
and exchange data at any time during the election process. Coercion-resistance is intuitively
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stronger than receipt-freeness, since the attacker has more capabilities. The definition is more
involved and can be found in [6].

We have proved the intuitive relationships between the three properties:

Proposition 4.1 [36, 6] Let V' be a voting protocol.

1. If V is coercion-resistant (for a given set of honest authorities), then it also respects
receipt-freeness (for the same set);

2. If V is receipt-free (for a given set of honest authorities), then it also respects privacy
(for the same set).

To validate our definitions, we have investigated three protocols from the literature:

1. The protocol by Fujioka, Okamoto, and Ohta [FOO92b] based on blind signatures and
commitments;

2. The protocol by T. Okamoto [Oka96] based on trapdoor bit commitments. It was
designed to be incoercible. However, Okamoto himself shows a flaw [Oka97]. According
to him, one of the reasons why the voting scheme he proposed had such a flaw is that no
formal definitions of receipt-freeness and coercion-resistance have been given when the
concept of receipt-freeness has been introduced by J. Benaloh and D. Tuinstra [BT94].

3. The protocol by B. Lee et al. [LBDT04] based on designated verifier proofs of re-
encryption.

Our results, fully described in [6], are summarised below:

Property Fujioka et al.  Okamoto et al. Lee et al.
Vote-privacy v v v
trusted authorities none timeliness mbr. administrator
Receipt-freeness X v v
trusted authorities n/a timeliness mbr. admin. & collector
Coercion-resistance X X v
trusted authorities n/a n/a admin. & collector

Our reasonings about static equivalence and bisimulation in applied pi are rather informal.
Having in mind these examples, we have developed better techniques for automating this
reasoning (see Chapter 5 and Chapter 6 in which we will come back to these case studies).

In the context of applied pi calculus, those definitions were the first formal definitions
to model privacy-type properties in electronic voting. Since then, some other definitions
have been proposed [BHMO08]. Our definitions of privacy and receipt-freeness have also been
reused and adapted to model privacy and receipt-freeness in on-line auction systems [DJP10].
We have also proposed an epistemic logic that is expressive enough to specify privacy [23].
Independently, a definition of coercion-resistance, based on an epistemic approach has also
been proposed in [KT09]. This approach to model complex security properties seems to be
promising. Epistemic logics are indeed well-suited to express general security properties in
an intuitive and simple way.
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4.3.3 Privacy in VANETSs

To improve road safety, a vehicle-to-vehicle communication platform is currently being devel-
oped by consortia of car manufacturers and legislators [SAF10, Sta06]. To facilitate safety-
critical applications there is a consensus that all vehicles must periodically broadcast a beacon
message consisting of the vehicle’s location, velocity, and identifier. Broadcasting this data
several times per second raises privacy issues.

Fortunately, many of the envisioned applications do not need a real-world identifier, but
can instead use a random identifier known as a pseudonym. However, long term tracking
may still reveal the real-world identity of the driver. One can change pseudonym from time
to time, but for this to have any effect the vehicles must change pseudonyms under the right
circumstances. It seems preferable to change pseudonyms e.g. at intersections where several
vehicles are close together and their paths unpredictable. This mimics the ubiquitous comput-
ing idea of a miz-zone, where beacon signals are turned off in a mixing area [BS03]. However,
vehicles cannot turn off beacon messages since many accidents happen at intersections, hence
the idea is to have all vehicles encrypt their beacon signals when inside the zone [FRFT07].

The formal privacy property aims to capture the fact that an attacker cannot track a
vehicle. We assume that the attacker can listen on the entire network and hence on all public
channels. Thus, in order to achieve privacy, we need to suppose the presence of at least two
vehicles.

During their journey through the mix-zone, the vehicles will come in close enough prox-
imity that the attacker is assumed unable to distinguish their location (part B of the figure).
Before leaving the mix-zone, the vehicles change their pseudonyms leaving the attacker unable
to determine if they leave according to part C or part Cs of the figure. Intuitively, we achieve
privacy if an attacker cannot tell the two cases apart. Again, this can be expressed by an
equivalence between two processes modelling the two different situations (see [15]). We will
come back to this application in Chapter 6 to show how to analyse the resulting equivalence
properties.

4.4 An existing tool: ProVerif

PROVERIF constitutes a well-established automated protocol verifier based on Horn clauses
resolution that allows for the verification of observational equivalence and of different trace-
based security properties such as authenticity. This verifier has been mainly developed by
B. Blanchet [Bla01]. Actually, this is the only tool that is able to establish observational
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equivalence between processes written in applied pi calculus. After a brief description of the
PROVERIF tool, we will discuss the problem we encountered when we tried to use it to prove
equivalences coming from our case studies.

4.4.1 A brief description

PROVERIF takes as input processes written in a syntax close to the one described in Sec-
tion 4.1. It is based on a representation of the protocol by Horn clauses. It can handle many
different cryptographic primitives, including shared and public key cryptography (encryption
and signatures), hash functions, and Diffie-Hellman key agreements, specified both as rewrite
rules or as equations. It can handle an unbounded number of sessions of the protocol (even
in parallel) and an unbounded message space. This result has been obtained thanks to some
well-chosen approximations. This means that the verifier can give false attacks, but if it
claims that the protocol satisfies some property, then the property is actually satisfied. It has
been shown that the considered resolution algorithm terminates on a large class of protocols
and when the tool cannot prove a property, it tries to reconstruct an attack. PROVERIF can
prove the following properties:

e secrecy (the adversary cannot obtain the secret) [Bla01];
e authentication [Bla02] and more generally correspondence properties [AB03];

e strong secrecy: the adversary does not see the difference when the value of the secret
changes [Bla04];

e equivalences between processes that differ only by terms (so-called bi-processes) [BAF08|.

4.4.2 Some limitations

The PROVERIF tool has several limitations that prevents us to use it to analyse certain
cryptographic protocols.

Equational theories. Even if PROVERIF is able to deal with a variety of equational the-
ories, this is still not sufficient to analyse some protocols. For instance, PROVERIF fails to
analyse protocols that rely on trapdoor bit commitments (e.g. electronic voting protocol by
T. Okamoto [Oka97]).

Non-monotonic global states. Some of the over-approximations made by the tool do not
work well with non-monotonic global state. For example, although private channels could be
used to represent the state changes, the abstraction of private channels that PROVERIF makes
prevents it from being able to verify correctness of the resulting specification. PROVERIF does
not model a state transition system, but rather a set of derivable facts representing attacker
knowledge, together with the assumption that the attacker never forgets any fact. Actually,
this restriction is problematic to model API (see Chapter 3) and also RFID protocols since
the RFID tag often stores a secret from one session to another (see e.g. [BCdH10]).
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Observational equivalence. The syntax of PROVERIF contains the operator choice[ , ]
which allows us to model a pair of processes that have the same structure and differ only in
the choice of terms. Such a process is called a bi-process. Given a bi-process P, the process
fst(P) is obtained by replacing all occurrences of choice[M, M’] with M. Similarly, snd(P) is
obtained by replacing choice[M, M'] with M’. When a bi-process P satisfies what is called
diff-equivalence, this implies that fst(P) ~ snd(P).

However, diff-equivalence is a strong notion, and thus there are trivial equivalences which
PROVERIF is unable to prove. For instance, the equivalence

out(c, a) | out(c, b) ~ out(c,b) | out(c,a)

holds trivially since the processes are in fact structurally equivalent. However, the corre-
sponding bi-process out(c, choice[a, b]) | out(c, choice[b, a]) does not satisfy diff-equivalence
and therefore this equivalence cannot be proved by PROVERIF. We already encountered this
problem several times when modelling different kinds of cryptographic protocols from the
literature, e.g. the e-voting protocol by Fujioka, Okamoto, and Ohta [FOO92b], or the Direct
Anonymous Attestation protocol [BCCO04] (more details in Chapter 6).

4.5 Conclusion and perspectives

In this chapter, we gave a brief description of the applied pi calculus [AF01] which has been
used by many researchers to model and analyse security protocols in a variety of areas, e.g.
certified email [ABO3], election verifiability properties in e-voting protocols [KRS10], ...In
such a calculus, the properties of the cryptographic primitives are modelled by means of an
equational theory. This leads to a flexible calculus suitable to formalise a lot of security
protocols. It is however not sufficient for instance to capture neighbourhood checks needed
to model routing protocols (see Chapter 2). Hence, this calculus could be extended in several
ways in order to model new applications. Actually, this calculus is particularly suitable to
model privacy-type properties that are encountered in many applications. We present some
of them in this chapter. Observational equivalence has also been used to model privacy in
some other applications as well, e.g. unlinkability in RFID protocols [ACRR10, BCdH10],
privacy-type properties in e-auction protocols [DJP10], ...

From the verification point of view, it is clearly important to develop procedures for
deciding the security properties mentioned in this chapter. The following two chapters are
entirely devoted to this goal. In Chapter 5, we describe several algorithms for deciding static
equivalence. This allows us to cover a large class of equational theories. Then, in Chapter 6, we
sum up our recent attempts to decide the more involved notion of observational equivalence.

From the modelling point of view, it would be interesting to better understand the rela-
tionship between observational equivalence and trace equivalence. We have shown that these
two notions actually concide for determinate processes. We have also exhibited a syntactic
class of determinate processes, namely the class of simple processes (see Chapter 6). Even
if it seems quite natural to restrict our attention to determinate processes since most of the
security protocols are indeed determinate, for modelling purposes, it is sometimes useful to
consider processes outside this class. For instance, we may want to use private channels to
distribute keys relying then on a composition result to establish the correctness of the en-
tire protocol where keys are distributed via unreliable channels (e.g. [CC10]). In presence of
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non-determinate processes, we first need to decide which notions of equivalence we want to
use.

Originally, the notion of observational equivalence has been introduced as a proof tech-
nique for trace equivalence [AG97] leading to a co-inductive method for proving trace equiva-
lence. Although bisimulation-based equivalences may be simpler to check than trace equiva-
lences [KS83], in the context of cryptographic protocols, it seems sometimes easier to simply
check trace equivalence, that is, equality of the set of execution traces (modulo some equiva-
lence relation between traces). As future work, it would be interesting to study the complexity
of both problems from both a theoretical and practical points of view.
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Static equivalence
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RADITIONALLY, the knowledge of the attacker is expressed in terms of deducibility. A
message s (intuitively the secret) is said to be deducible from a set of messages ¢, if an
attacker is able to compute s from ¢. To perform this computation, the attacker is allowed,
for example, to decrypt deducible messages by deducible keys. However, deducibility is not
always sufficient. Consider for example the case where a protocol participant sends over the
network the encryption of one of the constants “yes” or “no” (e.g. the value of a vote).
Deducibility is not the right notion of knowledge in this case, since both possible values
(“yes” and “no”) are indeed “known” to the attacker. In this case, a more adequate form
of knowledge is indistinguishability (e.g. [AC06]): is the attacker able to distinguish between
two transcripts of the protocol, one running with the value “yes” and the other one running
with the value “no”?
The two notions of knowledge that we consider do not take into account the dynamic
behaviour of the protocol. Nevertheless, in order to establish that two dynamic behaviours of

81
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a protocol are indistinguishable, an important subproblem is to establish indistinguishability
between the sequences of messages generated by the protocol. As we have seen in Chapter 4,
indistinguishability between sequences of messages, also called static equivalence in the ap-
plied pi calculus framework, plays an important role in the study of guessing attacks as well
as for privacy-type properties.

In this chapter, we consider both deducibility and indistinguishability. The two notions
are formally recalled in Section 5.1. Then, we provide several algorithms for deciding these
two notions for a wide variety of equational theories. First, we consider convergent equational
theories and we present two algorithms based on a saturation procedure. These algorithms
have been implemented in the tools YAPA and KiSs (see Section 5.2). In Section 5.3, we
present a general setting for solving deducibility and indistinguishability for an important
class (called monoidal) of equational theories involving AC operators. Lastly, we show that
existing decidability results can be easily combined for any disjoint equational theories: if
the deducibility and indistinguishability relations are decidable for two disjoint theories, they
are also decidable for their union. This result is stated in Section 5.4. As a consequence of
all these results, new decidability and complexity results can be obtained for many relevant
equational theories. In Section 5.5, we give a list of relevant equational theories for which
deduction and static equivalence have been studied by us or others. This gives a (hopefully)
complete picture of existing results in this area.

5.1 Definitions

In this section, we formally state the two problems (deduction problem and static equivalence
problem) that are studied along this chapter.

5.1.1 Deduction

Given a frame ¢ that represents the information available to an attacker, we may ask whether
a given ground term M may be deduced from ¢. Intuitively, the deducible messages are the
messages of ¢ and the names that are not protected in ¢, closed by equality in E and closed
by application of function symbols.

Definition 5.1 (recipe) Let M be a ground term and ¢ = newn.oc be a frame. A recipe of
M in ¢ modulo E is a term ¢ € T(F,N UX) such that fn({)Nn =0 and (o =g M. In such
a case, we say that M is deducible from ¢ modulo E, and we write ¢ Fg M.

When new 71.0 g M, this means that any occurrence of names from 7 in M is bound
by new 7. So new 7.0 bg M could be formally written new 71.(c Fg M). We reuse the nota-
tion F first introduced in Chapter 2. Here, the abilities of the attacker to deduce messages
are expressed by the means of an equational theory instead of an inference system. Actually,
the relation described above can be axiomatized by the following inference rules:

if 3z € dom(o) such that zo = M ——— seN~n
new .o Fg M new .o Fg s

oFe My ... ¢Fg My few ot M
¢ e f(My, ..., My) dFe M
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Deduction problem modulo the equational theory E built over F.

Entries: A frame ¢ and a ground term M (both built over F)
Question: ¢ g M?

5.1.2 Static equivalence

Deduction does not always suffice for expressing the knowledge of an attacker, as discussed
in the introduction of this chapter. Sometimes, the attacker can deduce exactly the same set
of terms from two different frames but he could still be able to tell the difference between
these two frames. This indistinguishability relation has been formally defined in Chapter 4
(see Definition 4.1). Here, we give another characterization. Let E be an equational theory
built over F. We define Eqg(¢) to be the set of equations satisfied by the frame ¢.

Eqe(¢) = {(M,N) e T(F,NUX) x T(F,NUX) | (M =g N)¢}.

We write ¢ = Eqg(¢) if (M =g N)i for any (M, N) € Eqe(¢).

Checking for static equivalence is clearly equivalent to checking whether each of the two
frames under consideration satisfies the equalities of the other frame. Hence, we have that:

¢1 ~E P2 & ¢2 |= Eqe(1) and ¢1 |= Eqg(e2).

Static equivalence problem modulo the equational theory E built over F.
Entries: Two frames ¢; and ¢y (both built over F)
Question: ¢1 ~g P27

5.2 Convergent equational theories

First, we have proposed a generic procedure for deducibility and static equivalence that takes
as input any convergent theory, 7.e. any equational theory described by a finite convergent
rewrite system [22]. Since the problem of checking deducibility and static equivalence is
undecidable for this class [AC06], unfailing termination can not be guaranteed in general. To
address this issue and turn our algorithm into a decision procedure for a given equational
theory, we provide several criteria. This allows us to obtain a generic algorithm for all the
convergent theories shown to be decidable in [AC06] (with different algorithms).

5.2.1 Applications

We give in this section several theories that are in the scope of the results stated and proved
in [22, 20, 3]. We are particularly interested by those allowing us to model electronic voting
protocols, e.g. blind signatures, trapdoor commitments, ...

Subterm convergent equational theories. A subterm convergent theory is an equational
theory induced by a finite set of equations of the form u = v where v is either a subterm of u
or a constant, and such that the associated rewrite system is convergent.
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Blind signature. In [6], we used this theory in order to model blind signatures for the
analysis an e-voting protocol [FOO92b].

unblind(blind(z,y),y) = = checksign(sign(z,y), pk(y)) = =«
unblind(sign(blind(z, y), ), y) = sign(zx, z)

Homomorphism encryption. This theory represents an encryption scheme with a homo-
morphism property.

senc((z,y),2) = (senc(z,z),senc(y, 2)) proj; ((z,y)) = =
sdec((z,y),z) = (sdec(z,z),sdec(y,z)) projs((x,y)) =
sdec(senc(z,y),y)

I
8 <

Trapdoor commitment. The following equational theory Ei is a model for trapdoor
commitment.

Open(td(ﬂf,ya Z)vy) =T td($2>f($1a ?J,2’7332)a Z) = td(xla Y, Z)
Open(td(l‘laya Z),f(xl, Y, Z7$2)) = X2 f(l‘g,f(l‘l,y, Z,l‘g), 27$3) = f(xla Y, Z,LL'3)

We encountered this equational theory when studying the electronic voting protocols
described in [Oka96]). The term td(m, r, td) models the commitment of the message m under
the key r using an additional trapdoor ¢d. Such a commitment scheme allows a voter who
has performed a commitment to open it in different ways using its trapdoor.

Designated verifier proofs (DVP) of re-encryption. We came across this theory when
studying the electronic voting protocol described in [LBD'04].

adec(penc(z, pk(y), 2),y) = =
renc(penc(z, pk(y), z1), z2) = penc(z, pk(y), f(z1, 22))
checkdvp(dvp(z, renc(z, 2), z, pk(y)), =, renc(z, z), pk(y)) = ok
checkdvp(dvp(wl, X2, z, y)a T1,x2, pk(y)) = ok

A re-encryption of a ciphertext (obtained using a randomised encryption scheme) changes
the random coins, without changing or revealing the plaintext. A DVP of the re-encryption
proves that the two ciphertexts contain indeed the same plaintext. However, a designated
verifier proof only convinces one intended person, e.g. the voter, that the re-encrypted ci-
phertext contains the original plaintext. In particular this proof cannot be used to convince
the coercer.

5.2.2 A generic procedure

Let E be a convergent equational theory and R its associated convergent rewrite system. We
denote by t|r (or simply ¢| when R is clear from the context) the normal form of ¢. The core
of the procedure that is fully described in [22] consists of a set of transformation rules used
to saturate a state (®, ¥) made up of a finite set of facts, denoted by M > ¢, and a finite set
of quantified equations, denoted by VZ.M 1 N.

Given a frame ¢, the result of the saturation is a state (®, V) such that:
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e U characterises all the equations that are true in . More precisely, we have that:
(M= N)p & VEMxN

where W = M <1 N means that the equation M < N is a consequence of ¥ in the usual
first-order logic with equality axioms for the relation < (i.e. reflexivity, symmetry,
transitivity and compatibility with symbols in F that are public).

e & characterises all the deducible terms of ¢. More precisely, we have that:

pFet & Pyt

Decision procedures for deduction and static equivalence modulo E follow from the result
described above.

Algorithm for deduction. Let ¢ be an initial frame and ¢t be a ground term. The proce-
dure for checking ¢ Fg ¢ runs as follows:

1. Apply the transformation rules on ¢ to obtain (if any) a saturated state (@, ¥);

2. Return yes if ® F ¢} (that is, the R-reduced form of ¢ is syntactically deducible from ®);
otherwise return no.

Algorithm for static equivalence Let ¢ and @2 be two initial frames. The procedure
for checking 1 ~g s runs as follows:

1. Apply the transformation rules on 1 and ¢, to obtain (if possible) two saturated states
(q)l, \111) and (q)g, \I/2>;

2. For {i,j} = {1,2} and for every equation (Vzi,...,z,.M >1 N) in W;, check that
Myj; =g Nyj, that is, in other words, (My;)] = (N¢;)l;

3. If so return yes; otherwise return no.

5.2.3 Non-failure and termination

Note that (unfailing) termination cannot be guaranteed in general since the problem of check-
ing deducibility and static equivalence is undecidable, even for convergent theories [ACO06].
To address this issue and turn our algorithm into a decision procedure for a given convergent
theory, we provide two criteria (see [22] for more details).

A syntactic criterion to ensure non-failure. We have proved that our algorithm never
fails for layered convergent theories. This criterion is enjoyed in particular by any subterm
convergent theory, as well as the theories of blind signature and homomorphic encryption.
Termination often follows from a simple analysis of the rules of the algorithm.
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A semantic criterion to ensure termination. We also provide a semantic criterion
that more generally explains why our procedure succeeds on theories previously known to be
decidable [AC06]. This criterion intuitively states that the set of deducible terms from any
initial frame ¢ should be equivalent to a set of syntactically deducible terms. Provided that
failures are prevented and assuming a fair strategy for rule application, we prove that this
criterion is a necessary and sufficient condition for our procedure to terminate.

Together with the syntactic criterion described to prevent non-failure, this criterion allows
us to prove decidability of deduction and static equivalence for layered convergent theories
that also belong to the class of locally stable theories defined in [AC06]. As a consequence, our
procedure always saturates for the theories of blind signature and homomorphic encryption
since those theories are layered and have been proved locally stable [AC06]. Other examples
of layered convergent theories enjoying this criterion can be found in [ACO06] (e.g. a theory
of addition). While in [AC06] the decision algorithm needs to be adapted for each theory,
we propose a single (and efficient) algorithm that ensures a unified treatment of all these
theories.

5.2.4 More equational theories

As shown by the following example (from [20]), the procedure described in the previous section
may fail.

Example 5.1 Consider the convergent theory Ema described below:
Emal = {sdec(senc(z,y),y) = =, mal(senc(z,y), z) = senc(z,y)}.

The mal function symbol allows one to arbitrarily change the plaintext of an encryption.
Such a malleable encryption is not realistic. It is only used for illustrative purposes. Let
o = {senc(s, k)} where s and k are private constants.

Among the terms that are deducible from ¢, there are senc(a, k), senc(b, k), ...and more
generally all the terms of the form senc(m, k) where m is any term that is deducible from .
Since our procedure represents the deducible terms by a finite set of ground terms (this finite
set of terms can be seen as a basis to generate all the deducible terms), it is easy to see that the
procedure described above can not reach a saturated state when we consider the theory Emal.

The same problem happens for the trapdoor commitment theory. Hence, in [20, 3], we
have proposed a symbolic representation of deducible terms which manipulates terms that
are not necessarily ground and facts with side conditions. For instance, consider again the
frame ¢ = {5"(>#) /1 and the theory Epa, we will have the following fact to deal with the
situation described in Example 5.1

mal(zy, X) > senc(z, k) | X > =

Intuitively, this fact says that senc(xo, k) is deducible as soon as zo is deducible. Moreover,
assuming that xo is deducible by using the recipe (, the recipe associated to senc(zo, k) is
mal(x1,(). The procedure we have proposed in [20, 3] does not fail. However, termination
is not ensured in general. We provide a generic method for proving termination that we
instantiate on several examples. This allows us to derive PTIME decision procedures for
deduction and static equivalence for the subterm convergent equational theories, malleable
encryption, trapdoor commitment, and blind signature. We also guarantee termination for
homomorphic encryption by relying on a fair saturation strategy.
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5.2.5 Implementations: YAPA and KiSs

We give a brief description of the tools that correspond to the implementations of the proce-
dures described in the previous section.

YAPA. YAPA (Yet Another Protocol Analyzer) is an Ocaml implementation of the satura-
tion procedure presented in Section 5.2.2 with several optional optimizations. It can be freely
downloaded [Bau08| together with a brief manual and examples. The tool takes as input an
equational theory described by a finite convergent rewrite system, as well as frame definitions
and queries.

We have conducted several experiments for various equational theories and found that
YAPA provides an efficient way to check static equivalence and deducibility (few seconds).
Those examples are available at:

http://www.lsv.ens-cachan.fr/~baudet/yapa/index.html.

KiSs. A C++ implementation of the procedures fully described in [20, 3] is provided in
the K1Ss (Knowledge In Security protocols) tool [Cio09]. Actually, the tool implements the
procedure with some optimizations. This makes the procedure terminate in polynomial time
for subterm convergent equational theories, blind signature, malleable encryption, trapdoor
commitment, and homomorphic encryption.

The performances of the KISs tool are comparable to the YAPA tool and on most ex-
amples the tool terminates in less than a second. In [22], we presented a family of contrived
example to diminish the performance of YAPA, exploiting the fact that YAPA does not im-
plement DAG representations of terms and recipes, as opposed to KiSs. As expected, KISs
indeed performs better on these examples. More details about the KISs tool are available on
line:

http://www.lsv.ens-cachan.fr/~ciobaca/kiss/.

Related work. In comparison with the PROVERIF tool [Bla01, BAF08], here instrumented
to check static equivalences, our test samples suggest a running time faster for YAPA and
Ki1Ss. Also we did not succeed in making PROVERIF terminate on the theories of homo-
morphic encryption and trapdoor commitment. Of course, these results are not entirely
surprising given that PROVERIF is tailored for the more general (and difficult) problem of
protocol (in)security under active attackers. In particular PROVERIF’s initial preprocessing
of the rewrite system appears more substantial than ours and does not terminate on the the-
ory Epom. However, PROVERIF handles some non-convergent theories such as commutativity
and the equation exp(exp(g,x),y) = exp(exp(g,y),x) which can be used as a basic model of
Diffie-Hellman. These theories are out of scope of our tools YAPA and KiSs.

Recently, new polynomial time algorithms for deduction and static equivalence under
subterm convergent equational theories have been proposed [CBC10]. Their procedures have
many concepts in common with the algorithms presented in this section and have not yet
been implemented. However, they achieve a significantly better asymptotic complexity.
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5.3 Monoidal equational theories

This class of theories has been introduced by F. Baader [Baa89] and W. Nutt [Nut90]. This
class captures many theories with associative and commutative properties (AC), which are
known to be difficult to deal with. In [30, 2], we have proposed a general schema for deciding
deduction and static equivalence. This schema has to be filled with procedures for linear
equations in order to yield complete algorithms. Such algorithms strongly depend on the
structure of the semiring associated to a monoidal theory. We will see that algebra provides
useful techniques and results to fill in this gap.

5.3.1 Definitions

In this section, we first define monoidal theories and then give examples.

Definition 5.2 (monoidal theory) A theory E over F is called monoidal if it satisfies the
following properties:

1. The signature F contains a binary function symbol + and a constant symbol 0, and all
other function symbols in F are unary.

2. The symbol + is associative-commutative with unit 0, i.e. the equations x + (y + z) =
(x+y)+z, z+y=y+2z and x+0=2x are in E.

3. Every unary function symbol h € F is an endomorphism for + and 0, i.e. h(x +y) =
h(z) + h(y) and h(0) =0 are in E.

Suppose + is a binary function symbol and 0 is nullary. Moreover assume that the other
symbols, i.e —, h, are unary symbols. The equational theories below are monoidal.

e The theory ACU over F = {+,0} which consists of the axioms of associativity and
commutativity with unit 0.

e The theory ACUN (exclusive or) over F = {+,0} which consist of the axioms (AC) and
(U) with in addition Nilpotency (N) =+ z =0.

e The theory AG (Abelian groups) over F = {+,—,0} which is generated by the axioms
(AC), (U) and = + —(z) = 0 (Inv). Indeed, the equations —(z + y) = —(x) + —(y) and
—0 = 0 are consequences of the others.

e The theories ACUh, ACUNh over F = {+,h,0} and AGh over F = {+, —,h,0}: these
theories correspond to the ones described above extended by the homomorphism laws (h)
for the symbol h, i.e. h(z +y) = h(z) + h(y) and h(0) = 0 (if it is not a consequence of
the other equations).

Monoidal theories have an algebraic structure close to rings except that elements might
not have an additive inverse. Such a structure is called a semiring.

Definition 5.3 (semiring) A semiring is a set S (called the universe of the semiring) with
distinct elements 0 and 1 that is equipped with two binary operations 4+ and - such that
(S,+,0) is a commutative monoid, (S,-,1) is a monoid, and the following identities hold for
all a, B,y € S:
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o (a+08)-vy=a-y+ 8-~ (right distributivity)
e a-(B+vy)=a-B+a-v (left distributivity)

e 0-a=a-0=0 (zero laws).

It has been shown in [Nut90] that for any monoidal theory E there exists a corresponding
semiring Sg. For instance, we have that

1. The semiring Sacy is isomorphic to N, the semiring of natural numbers.

2. The semiring Sacyn consists of the two elements 0 and 1 and we have 0+1 =1+0=1,
0+40=14+1=0,0-0=1-0=0-1=0,and 1-1 = 1. Hence, Sacyn is isomorphic
to the commutative ring (field) Z/27Z.

3. The semiring Sacgh is isomorphic to Z[h] which is a commutative ring.

5.3.2 Reduction results

We have shown that solving a deduction problem can be reduced to solving a linear system
of equations in the corresponding semiring.

Theorem 5.1 /30, 2/ Let E be a monoidal theory and Sg be its associated semiring. Deduc-
tion in E is reducible in polynomial time to the following problem:

Entries: A matriz A over Sg of size £ X m and a vector b over Sg of size ¢
Question: Does there exist X (a vector over Sg of size £) such that X - A =b?

Note that when Sg is commutative, this problem is equivalent to the problem of deciding
whether there exists Y such that AT-Y = b, i.e whether b7 is in the image of AT where MT
is the transpose of M.

Example 5.2 Consider the theory ACUN (exclusive or) and the term M = ny + nz. Let
¢ = newny,ng,ng.{"1"2/, "2t/ Y We have that:

10 1
A = 1 1 and b = 0
0 1 1

The equation X - A = b has a solution over Z/27 : (1,1). The term M is deducible from ¢
by using the recipe x1 + x2.

As a consequence, decidability/complexity results for deduction can be deduced from
decidability /complexity results for solving linear system of equations over semirings (see Sec-
tion 5.3.3).

We have shown that deciding whether two frames are equivalent can be reduced to deciding
whether two matrices satisfy the same set of equalities.
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Theorem 5.2 /30, 2] Let E be a monoidal theory and Sg be its associated semiring. Static
equivalence in E is reducible in polynomial time to the following problem:

Entries: Two matrices A1 and As over Sg of size £ X m
Question: Does the following equality holds?

{(X,Y)eSEXSE| X - A=Y A} ={(X,)Y)eSEXSE| X-Ay =Y - Ay}

Thanks to Theorem 5.2, we give a way to decide static equivalence in monoidal equational
theories provided we can decide whether two sets of linear equations over Sg have the same
set, of solutions. Actually, when Sg is a ring or when we can extend the semiring Sg into a
ring R, the static equivalence problem is equivalent to the problem of deciding whether the
equality

{(ZeRE|Z-Al=0}={ZecRE|Z -Ay=0}

holds. When Rg is commutative, it is equivalent to deciding whether Ker(A;) = Ker(A2),
where Ker(M) denotes the kernel of the matrices M, i.e. the set {X | M - X = 0}.

5.3.3 Applications

In this section, we show that several interesting monoidal equational theories induce a ring
or a semiring for which solving linear systems or checking for equalities of sets of solutions
of linear systems are decidable. This allows us to retrieve many existing decidability and
complexity results and also some new ones (see Table in Section 5.5).

Theory ACU. This equational theory is the simplest monoidal theory. The semiring cor-
responding to this theory is N whereas its associated ring is Z. Since the problem of solving
linear equations over N is NP-complete, we obtain that deduction is a NP-complete problem.
Thanks to our algebraic characterization, the static equivalence problem can be solved in
polynomial time [Sch86].

Theory ACUN (Exclusive Or). The semiring corresponding to this equational theory is
the finite field Z/27. Deduction and static equivalence are both decidable in polynomial time
for this theory.

Theory AG (Abelian Groups). The semiring associated to this equational theory is in
fact a ring, namely the ring Z of all integers. There exist several algorithms to compute
solutions of linear equations over Z and to compute a base of the set of solutions (see for
instance [Sch86]). Hence, we easily deduce that both problems are decidable in PTIME.

Theories ACUh, ACUNh and AGh. The semiring associated to ACUh is N[h], the semiring
of polynomials in one indeterminate over N, whereas the ring associated to ACUh is Z[h]. For
the theory ACUNh (resp. AGh) the associated semiring is Z/2Z[h] (resp. Z[h]).

1. ACUh and AGh: Deciding static equivalence for both these theories is reducible to the
problem of deciding whether Ker(A) = Ker(B) where A and B are matrices built over
N[h] in the case of ACUh and Z[h] in the case of AGh. This problem has been solved
by F. Baader to obtain a unification algorithm for the theory AGh (see [Baa93]). This
is done by the help of Grébner Base methods in a more general setting. Actually, he
provides an algorithm even in the case of several commuting homomorphisms.
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2. ACUNh: Deciding static equivalence in ACUNh is reducible to the problem of deciding
whether Ker(A) = Ker(B) where A and B are matrices built over Z/2Z[h]. This is
achieved in [LLTO06] by using an automata-theoretic approach.

5.4 Combination for disjoint theories

In [32], we provide a general combination result for both deduction and static equivalence:
if the deducibility and indistinguishability relations are decidable for two disjoint theories E;
and Ea (that is, the equations of E; and E2 do not share any signature symbol), they are also
decidable for their union E; U E5. Our combination results follow the approach of Y. Chevalier
and M. Rusinowitch [CR05, CR08b], who show how to combine decision algorithms for the
deducibility problem in presence of an active attacker. Our procedures also rely on combina-
tion algorithms for solving unification problems modulo E [SS89, BS96], and we partly reuse
the techniques introduced by F. Baader and K. Schulz to combine constraint solvers [BS98].

Theorem 5.3 [32, 2/ Let E; and Ey be two equational theories built over Fy (resp. Fa) such
that Fy N Fa = O and for which the word problem is decidable. If deduction is decidable for E;
and Es, then deduction is decidable for E; U Es.

Decidability of the word problem for the theories E; and Es allows us to ensure that we
are able to decide whether two (ground) terms are equal or not modulo E; UEy. This property
is satisfied by all the theories that can be represented by a convergent (possibly modulo AC)
rewrite system.

Theorem 5.4 [32, 2] Let E; and Ey be two equational theories built over Fy (resp. Fa) such
that F1 N Fo = 0. If deduction and static equivalence are decidable for Ey and Es, then static
equivalence is decidable for the equational theory E; U Eq.

Actually, we show that whenever static equivalence is decidable for E; and E2 and deduc-
tion is decidable for E; U Eg, then static equivalence is decidable for E; U E;. Thanks to our
combination result for deduction (Theorem 5.3), we know it is sufficient for deduction to be
decidable for E; and E2. Note that the decidability of =g, is not necessarily a consequence of
the decidability of ~g,. The encoding proposed in [AC06] works only when there exists a free
function symbol in F;.

This combination result allows us to combine any existing decidability results for deduction
and static equivalence provided the signatures of the equational theories are disjoint. Those
combination algorithms can be applied for instance to combine a monoidal equational theory

with any other equational theory for which deduction and static equivalence are known to be
decidable.

5.5 Conclusion and perspectives

This chapter provides many decidability and complexity results for deduction and static equiv-
alence, two formal representations for knowledge in the analysis of security protocols. First,
we propose several generic decision procedures together with their implementations. These
procedures work for a large class of convergent equational theories. Second, we propose a
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general setting for an important class of equational theories with associative and commuta-
tive properties. Lastly, we show that existing decidability results can be combined for any
disjoint equational theories. As a consequence, new decidability and complexity results can
be obtained for many relevant equational theories. We sum up in the table below the existing
results. We only mention those concerning equational theories that have been introduced in
this chapter.

Theory E Deduction Static Equivalence
subterm convergent decidable [22, 20], PTIME [AC06, CBC10] & [3]
blind signature decidable [ACO06] &[22], PTIME [3]
homomorphic encryption decidable [ACO06] & [22, 20, 3]
malleable encryption PTIME [3]
trapdoor commitment PTIME [BRC09] & [3]
dvp of re-encryption PTIME [BRC09]
ACU NP-complete decidable [ACO06]
PTIME [30, 2]
ACUN PTIME [CKRTO03a] & [30, 2] | PTIME [ACO06] & [30, 2]
AG PTIME [CKRT03a] & [30, 2] PTIME (30, 2]
ACUh NP-complete [LLT05] decidable [30, 2]
ACUNHh PTIME [12] decidable [30, 2]
AGh PTIME [12] decidable [30, 2]
AGh; ... h, decidable [30, 2]
subterm conv. & ACUN PTIME [32, 2]
subterm conv. W AG PTIME [32, 2]

The tool KiISs supports several equational theories for which the procedure implemented
in YAPA fails. Conversely the procedure implemented in YAPA is guaranteed to terminate
(without failure) for classes of theories that are not considered by the procedure implemented
in K1Ss. It would be interesting to compare the techniques and possibly to combine them
in order to capture more theories. As further work, we would like to extend YAPA and/or
Ki1Ss to theories with associative and commutative operators. A first possibility would be
to implement the decidability result presented in Section 5.3 for monoidal theories (that
include many theories with associative and commutative operators) and to combine the two
procedures using the combination theorems presented in Section 5.4. However, it seems much
more efficient to integrate associativity and commutativity directly and this could even open
the way to a more powerful combination technique.

Another interesting and probably challenging problem is to extend the combination re-
sults presented in Section 5.4 for non disjoint theories. We might use for example a notion
of hierarchy between theories like in [CRO8b]. A first result in this direction has been ob-
tained by S. Kremer et al. [KMT11]. Their method allows one in some cases to simplify
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the task of deciding static equivalence in a multi-sorted setting, by removing a symbol from
the term signature and reducing the problem to several simpler equational theories. In par-
ticular, this technique allows them to decide static equivalence for bilinear pairings. This
constitutes a first step towards finding generic criteria. However, some fragments of the
modular exponentiation theory such as the Diffie-Hellman one, i.e. the axioms exp(z,1) = x
and exp(exp(z,y), z) = exp(x,y X z) where X is an Abelian group operator, or the equation
exp(z,y) - exp(z, z) = exp(z,y + z), are out of the scope of their combination result.

Lastly, deduction and static equivalence are static notions. They do not take into account
the dynamic behaviour of the underlying protocols. Even if these notions play an impor-
tant role for the analysis of security protocols in presence of an active attacker, it remains
challenging to obtain decidability results for the active case, especially in presence of alge-
braic properties. It would be also interesting to extend our combination result to the active
case. Such kind of results already exists for trace-based security properties [CR08b], but no
combination result exist for equivalence-based security properties.
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Chapter 6

Observational equivalence
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BSERVATIONAL equivalence is crucial when specifying privacy-type properties like anonymity

that states that an observer cannot see the difference when A is talking and when B is
talking (see Chapter 4). The goal of this chapter is to show how to verify this kind of security
properties in presence of an active attacker. In Chapter 5, we only focus on the indistin-
guishability problem between two sequences of messages generated by the protocol. Thus,
we do not take into account the dynamic behaviour of the underlying protocol. Here, we
consider an active attacker who may interact with the protocol. In Section 4.4, we have seen
that the PROVERIF tool makes some progress in this direction. However the tool has several
limitations that prevent us from establishing the equivalences needed to establish privacy on
most of our examples.

First, we propose a technique for expanding the scope of the PROVERIF tool (see Sec-
tion 6.1). Then, following the constraint solving approach developed in Chapter 2, we show
how to reduce observational equivalence to symbolic equivalence of constraint systems (Sec-
tion 6.2). For a large class of processes, this allows us to conclude by using an existing decision
procedure by M. Baudet [Bau05, Bau07]. In Section 6.3, we propose an alternative procedure
that has been implemented and that works well in practice.

95
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6.1 Going beyond with the ProVerif tool

We develop a formal verification technique for proving observational equivalence of crypto-
graphic protocols. We focus on proving observational equivalence between processes P and Q)
having the same structure and differing only in the choice of terms. In Section 4.4, we have
seen that the PROVERIF tool makes some progress in this direction. However, the method
developed for proving observational equivalence is not complete and is unable to prove certain
interesting properties as those presented in Section 4.3.

In [27], we have expanded the scope of PROVERIF, to provide reasoning about further
equivalences. We have developed an algorithm to enable automated reasoning. Using this
approach, we provided the first automated proof that the electronic voting protocol by Fujioka,
Okamoto, and Ohta [FOO92b] satisfies privacy. As a second case study, we provide a formal
proof that the Direct Anonymous Attestation [BCCO04] protocol also satisfies privacy. We also
use this technique to establish privacy properties in the context of vehicular ad hoc network.

6.1.1 Some extensions

To overcome the limitations presented in Section 4.4.2 that prevent us to analyse several
protocols using PROVERIF, we have extended the applied pi calculus with strong phases and
data swapping.

Strong phases. Many protocols can be broken into phases, and their security properties
can be formulated in terms of these phases. Typically, for instance, if a protocol discloses a
session key after the conclusion of a session, then the secrecy of the data exchanged during the
session may be compromised but not its authenticity. To enable modelling of protocols with
several phases, the syntax of processes is supplemented with a phase prefix “phase t¢; P”.
Intuitively t represents a global clock, and the process “phase ¢; P” is active only during
phase t.

However, in order to model electronic voting protocols, we need to consider global syn-
chronisation. We have to express that the registration is closed before the voting phase
starts. To achieve this, the syntax of processes is supplemented with a strong phase pre-
fix “strong phase t; P". A strong phase represents a global synchronisation and ¢ represents
the global clock. The process strong phase t; P is active only during strong phase ¢ and a
strong phase progression may only occur once all the instructions under the previous phase
have been executed.

Example 6.1 The process strong phase 1;out(c,a) | strong phase 2;out(c,b) cannot
output b without having previously output a. Note that this behaviour is possible in presence
of a “weak” phase.

Data swapping. The equivalence out(c,a) | out(c,b) ~y out(c,b) | out(c, a) holds trivially
since the processes are in fact structurally equivalent. But the corresponding bi-process
P = out(c, choice[a, b]) | out(c, choice[b, a]) does not satisfy diff-equivalence and therefore the
equivalence cannot be proved by PROVERIF.

Actually, we have that fst(P) = out(c, a) | out(c,b) and snd(P) = out(c,b) | out(c,a). Since
out(c,b) | out(c,a) = out(c,a) | out(c,b) it seems reasonable to rewrite the process snd(P)
as out(c,a) | out(c, b), enabling us to write P as out(c, choicela, a]) | out(c, choice[b, b]). Our
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new bi-process satisfies diff-equivalence, and thus observational equivalence. It therefore seems
possible (under certain circumstances) to swap values from the left to the right side of the
parallel operator. Sometimes the swap is not done initially but instead immediately after a
strong phase. In such a case, we have to ensure that the data used during the current phase
(nonces, inputs) are passed to the next phase. This can be done by using private channels. To
specify data swapping we introduce the special comment (**swap*) in process descriptions,
which can be seen as a proof hint.

Our translator. To allow automated reasoning we have proposed a translator which accepts
as input processes written in our extended language. It will also include a single main process
and sub-processes of the form “let P = )7, subject to some restrictions. The translator out-
puts processes in the standard language of PROVERIF, which can be automatically reasoned
about by the software tool. If PROVERIF is now able to establish equivalence of the resulting
bi-process, this means that the bi-process P given in input is such that fst(P) ~, snd(P).

Recently, the transformation has been revisited [SB10] and implemented in the PROSWAP-
PER tool [Smy10]:

http://www.bensmyth.com/proswapper.php.

6.1.2 Applications

In this section, we demonstrate the usefulness of our translator on several case studies that
are fully described in [27, 15].

Electronic voting protocol by Fujioka, Okamoto, and Ohta (FOO). The protocol
involves voters, an administrator and a collector and it is based on blind signatures and bit
commitments. The administrator is responsible for verifying that only eligible voters can cast
votes and the collector handles the collecting and publishing of votes. The protocol requires
three strong phases (registration, voting, tallying). The separation of the protocol into strong
phases is crucial for privacy to hold.

In [6], we rely on hand proof techniques to show privacy on FOO: PROVERIF is unable
to prove it directly. Our modelling of FOO is similar to the one we have proposed in [6].
In addition, we have to provide a data swapping hint to allow our translator to produce an
output suitable for automatic verification using PROVERIF.

We use our translator to remove all instances of strong phases and handle data swap-
ping. Our translator produces a process, which is suitable for automatic verification using
PROVERIF. Hence, using this approach, we provided the first automated proof that the FOO
protocol satisfies privacy.

Direct Anonymous Attestation (DAA) protocol. This protocol provides a means for
remotely authenticating a trusted platform whilst preserving the user’s privacy [BCCO04].
In [SRCO7], B. Smyth et al. have shown that corrupt administrators are able to violate the
privacy of the host. Using our extended calculus we are able to provide a formal and automatic
proof that the rectified protocol proposed in [SRCO7| satisfies its privacy requirements.

The protocol can be seen as a group signature scheme without the ability to revoke
anonymity and an additional mechanism to detect rogue members. In broad terms the host
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contacts an issuer and requests membership to a group. If the issuer wishes to accept the
request, it grants the host/TPM an attestation identity credential. The host is now able to
anonymously authenticate itself as a group member to a verifier with respect to its credential.
The protocol is initiated when a host wishes to obtain a credential. This is known as the join
protocol. Once the host has obtained an anonymous attestation credential from the issuer
it is able to produce a signature proof of knowledge of attestation on a message m. This is
known as the sign/verify protocol. The DAA protocol makes extensive use of signature proofs
of knowledge (SPK) to prove knowledge of and relations among discrete logarithms.

Intuitively, the DAA protocol satisfies privacy whenever a process where Alice interacts
with the verifier is observationally equivalent to when Bob interacts with the verifier. For
privacy we require that both Alice and Bob have completed the join protocol. This can be
formally stated as an observational equivalence between two processes. We use the strong
phase and data swapping commands introduced by our extension to the calculus to ensure
synchronisation. The two instances of the DAA processes must first execute all instructions
of DAAJoin before moving onto DAASign. The separation of the protocol into strong phases
is crucial for privacy to hold.

We use our translator to remove all instances of strong phases from our encoding and
produce code suitable for input to PROVERIF. Our translator produces a process which
permits the automatic verification of the privacy property using PROVERIF. We are able to
detect the vulnerability in the original DAA protocol and to prove the optimisation presented
in [SRCOT].

CMIX protocol in vehicular ad hoc network. The CMIX protocol [FRFT07] dis-
tributes keys for encrypting beacon messages while in the mix-zone with the goal of prevent-
ing an attacker from linking the pseudonym of an in-coming vehicle with the pseudonym it
uses when leaving. Every vehicle is equipped with a tamper resistant device (TRD) allowing
access to its contents only through its API. Every vehicle has a fresh non-empty set of these
key-pseudonym pairs stored in its TRD. One pair is marked as current, to be used when
sending messages. The zone key is then used to encrypt and decrypt beacon messages while
inside the mix-zone.

We performed our analysis in two models: an ideal model where the vehicles are assumed
to know the mix-zone encryption key and a CMIX model where this key is distributed using
the CMIX protocol. From our ideal model analysis, we extract a set of scenarios where it is
possible for a ‘perfect’ key distribution protocol to guarantee privacy.

We then evaluate the CMIX protocol with respect to these scenarios. We consider all
scenarios where privacy is provable in the ideal model. First, we add one session of the CMIX
protocol to both vehicle processes. We found that in all cases where privacy was possible
in the ideal model, it was also possible here. We use our translator to obtain these results.
Actually, if PROVERIF is able to establish observational equivalence on the process outputted
by our translator, this means that the equivalence really holds. In case PROVERIF is not able
to conclude, we have to check that this corresponds to a real attack. This was indeed the
case in all our experiments. In particular, we report some scenarios in which the use of the
CMIX protocol can prevent privacy from being achieved when a second session of the CMIX
protocol is triggered before the vehicle left the mix-zone.
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6.2 From observational equivalence to symbolic equivalence

The aim of this section is to provide some reduction results. More precisely, we show that
observational equivalence can be reduced to the problem of checking symbolic equivalences of
pairs of constraint systems. We can then conclude by using the decision procedure proposed
in [Bau05, Bau07] for the class of subterm convergent equational theories. We have also
developed our own procedure that is presented in Section 6.3.

6.2.1 Symbolic equivalence of pair of constraint systems

The following definition of constraint system is consistent with the definition given in Chap-
ter 2. However, we need to generalize the usual definition. Indeed, the constraint solving
method we presented in Chapter 2 is complete only w.r.t. what an attacker can deduce, but
not w.r.t. how it can be deduced. If an attacker has different ways to deduce a given message
in two different experiments, he could distinguish between them. This is the main purpose
of the variables X;: they are used to record the recipe that has been used to deduce s;. This
information is needed to capture observational equivalence.

An initial deducibility constraint is either L or consists of:

1. a frame ¢ = {axy > uq,..., axy > upy}, whose size is some m (terms uq, ..., u,, may
contain variables);

? ?
2. asequence D = Xq,i1 Fs1; ...; Xy,in s, where
e X4,...,X, are distinct variables, s1,...,s, are terms, and 0 < i1 < ... < i, <m.

e for every 0 <k < m, var(uy) C U, <1 var(s;);
3. a conjunction F of equations between terms.

The variables X; represent the recipes that might be used to deduce the right-hand side
of the deducibility constraint. The indices indicate which initial segment of the frame can be
used. An E-solution of an initial deducibility constraint C = (¢, D, E) consists of

e a substitution o from var({si,...,sp}) to ground terms, and
e a substitution # mapping Xi,..., X, to ground recipes, i.e. terms built from public
function symbols, and special variables ax1, ..., azy,,
such that:

?
o for every X;,j b s; in D, var(X;0) C {ax1,...,az;} and X;0(¢o) =g s;0;

? .
e for every equation u = v in E, we have that uoc = vo.

We denote by Solg(C) (or simply Sol(C) when E is clear from the context) the set of E-solutions
of C. By convention, we have that Solg(L) = (.

Intuitively, we want to check static equivalence on any possible trace. More precisely, we
want that any experiment 6 performed by the attacker on C has a counterpart on C’ such that
the resulting sequence of messages that are observed on both sides are statically equivalent.
This is captured by the following definition:
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Definition 6.1 (symbolic equivalence) LetC and C’ be two constraint systems whose cor-
responding frames are ¢ and ¢'. The constraint system C is symbolically equivalent to C’,
denoted C ~4 C', if:

e for all (6,0) € Sol(C), there exists o' such that (0,0") € Sol(C"), and ¢o ~ ¢'o’,

e for all (6,0") € Sol(C"), there exists o such that (8,0) € Sol(C), and ¢po ~ ¢'c’.

In the following section, we will see how equivalence between simple processes can be
expressed via symbolic equivalence of initial pairs of constraints, that is a pair of the form
(¢1, D1, E1), (¢2, D2, Eo) where both initial constraint systems have the same shape. More
precisely, we have that:

? ?
o o1 ={az >uy,...,axy, > Uy}, and Dy = Xy,i1 Fosy; o0 X, in B oSy

? ?
o oy ={azx >y, ..., a0z, >vyt, and Do = Xy,i1 Fty; ... Xy, in F ty.

Or else it is a pair as above, in which one of the components is replaced with L.

6.2.2 The case of simple processes

We consider any signature and equational theory. However, we do not consider the full
applied pi calculus but only a restricted fragment. For example, it is generally assumed that
all communications are controlled by the attacker thus private channels between processes
are not accurate (they should rather be implemented using cryptography). In addition, the
attacker schedules the communications between processes thus he knows exactly to whom
he is sending messages and from whom he is listening. Thus we assume that each process
communicates on a personal channel.

More precisely, we consider the fragment of simple processes built on basic processes
(see [21] for a formal definition of simple processes). A basic process represents a session
of a protocol role where a party waits for a message of a certain form or checks some equali-
ties and outputs a message accordingly. Then the party waits for another message or checks
for other equalities and so on. Intuitively, any protocol whose roles have a deterministic
behavior can be modeled as a simple process. Most of the roles are indeed deterministic
since an agent should usually exactly know what to do once he has received a message. In
particular, all protocols of the J. Clark and J. Jacob library [CJ97] can be modelled as simple
processes. However, it is interesting to notice that protocols with deterministic behavior are
usually not modelled within our fragment since a single channel is used for all communica-
tions. We think however that using a single channel does not provide enough information
to the attacker since he is not able to schedule exactly the messages to the processes and he
does not know from which process a message comes from while this information is usually
available (via e.g. TP adresses). For example, a role emitting the constant a twice would be
modelled by P, = out(c,a).out(c, a) while two roles emitting each the constant a would be
modeled by P, = out(c,a) | out(c,a). Then P, and P, are observationally equivalent while
the two protocols could be distinguished in practice, which is reflected in our modelling in
simple processes.
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In [21], we have shown that simple processes are determinate (see Definition 4.4). Indeed,
since each basic process has its own channel to send and receive messages, all the commu-
nications are visible to the attacker. Moreover, the attacker knows exactly who is sending a
message or from whom he is receiving a message.

Proposition 6.1 [21] Any simple process is determinate.

Hence, relying on Theorem 4.1, to decide observational equivalence for simple processes,
it remains to show how to decide trace equivalence. First, we can show that trace equivalence
is exactly captured by a notion of symbolic trace equivalence. Moreover, since for simple pro-
cesses without replication, there are a finite number of symbolic traces, we have the following
result.

Theorem 6.1 [21] Let E be a subterm convergent equational theory. Let A and B be two
simple processes without else branch nor replication. The problem whether A and B are
observationally equivalent is co-NP-complete.

The decidability of observational equivalence follows from the fact that symbolic equiv-
alence of (positive) constraint systems is decidable for subterm convergent equational the-
ories [Bau05, CR11]. The NP-TIME decision procedure for non-observational equivalence
works as follows:

e Guess a symbolic (annotated) trace tr;

e Compute (in polynomial time) the corresponding initial constraint system C (resp. C’)
associated to A (resp. B);

e Check whether C and C’ are in symbolic equivalence.

Due to a result first proved by M. Baudet [Bau05], we know that the last step can be done
in NP-TIME for convergent subterm theories thus we deduce that the overall procedure is NP-
TIME. NP-hardness is obtained using the usual encoding [RT03]. Recently, M. Rusinowitch
and Y. Chevalier [CR11] proposed another decision procedure based on an extension of the
small attack property. They show that, if two processes are not equivalent, then there must
exist a small witness of non-equivalence. A decision of equivalence can be derived by checking
every possible small witness.

6.2.3 The case of general processes

The class of simple processes appears to be sufficient to represent most of the cryptographic
protocols. However, even if private and/or anonymous channels are not accurate, they are
useful for modelling purposes. Hence, it may be interesting to go beyond this class of simple
processes. In [28, 5], relying on constraint systems, we have proposed a symbolic semantics
for the full applied pi without replication. As in the previous approaches, by treating inputs
symbolically, our semantics avoids potentially infinite branching of execution trees due to the
inputs from the environment.

The semantics of the applied pi calculus is not well-suited for defining such a symbolic
semantics. In particular, defining a symbolic structural equivalence which is both sound and
complete seems impossible. The absence of sound and complete symbolic structural equiva-
lence significantly complicates the proofs showing that the symbolic semantics we proposed
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is sound and complete w.r.t. the concrete one. This lead us to define a more restricted se-
mantics which will provide an intermediate representation of applied pi calculus processes.
These intermediate processes are a selected (but sufficient) subset of the original processes.
One may think of them as being processes in some kind of normal form. This calculus is of
independent interest. Actually, we have partly reused this intermediate calculus to obtain the
result presented in Section 6.2.2. This intermediate calculus has also been reused by J. Liu
and H. Lin [LL10] to propose a complete symbolic bisimulation in presence of replication.

Then, we have proposed a definition of symbolic labelled bisimilarity based on the notion
of symbolic equivalence of constraint systems. Note that since the processes we consider are
not simple, we can not assume that one symbolic move of a process can be mimicked by a
single symbolic move in the other process. Because of this, our technique suffers from several
sources of incompleteness. For instance, we are not able to establish that the two following
processes are bisimilar.

P, = in(c,z).out(c,a)

Q1 = in(c,x).if x = a then out(c,a) else out(c, a)

In our setting, the instantiation of input variables is postponed until the point at which
they are actually used. This allows one to not decide the instantiation of the variable when
the input has to be performed but later on. This instantiation may depend on the choice
that has been made to reach that point. Hence, this prevents us to establish that the two
following processes are bisimilar.

P, = wvei.in(eg, x).(out(cy,b) | in(e1,y) | if © = a then in(cy, 2).out(ce, a))

Q2 = wvecr.in(eg, x).(out(cr,b) | in(cr,y) | in(er, 2).if £ = a then out(cg,a))

Although our symbolic bisimulation is not complete, as shown above, we are able to
prove observational equivalence on interesting examples. Actually, our symbolic bisimula-
tion is sufficiently complete to deal with examples of anonymity properties (vote-privacy,
receipt-freeness, ...) arising in protocol analysis. Again, we can directly build on exist-
ing works [Bau05, CR11] and obtain a decision procedure for our symbolic bisimulation for
the class of subterm convergent equational theories and processes that do not contain else
branches.

Related work. Recently, a relatively simple symbolic transition system and bisimulation
equivalence that is fully abstract w.r.t. concrete bisimulation has been proposed for psi-
calculi [BJPV09, JVP10]. Psi-calculi can be more general than other proposed extensions of
the pi-calculus such as the applied pi calculus that we consider here. In psi-calculi, they are
helped significantly by the absence of structural equivalence rules which are rather complex
in the applied pi calculus.

6.3 Decision procedure for symbolic equivalence

In [17], we have proposed a procedure to decide symbolic equivalence. We consider pairing,
signature, symmetric and asymmetric encryptions only. Our main goal was to provide a
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procedure together with an efficient implementation. The main result stated in [17] is a
decision procedure for symbolic equivalence of an initial pair of constraint systems.

Theorem 6.2 [17] Given an initial pair (C,C'), it is decidable whether C ~g C'.

This result in itself is already known (e.g. [Bau05, CR11]), but the known algorithms
cannot yield any reasonable implementation. Even, the recent algorithm proposed by A. Tiu
and J. Dawson [TD10] has not been implemented and should probably be improved to lead
to a reasonable implementation. Similarly, in [CR11], they show that, if two processes are not
equivalent, then there must exist a small witness of non-equivalence. However, the number
of small witnesses is very large as all terms of size smaller than a given bound have to be
considered. Consequently, neither this method nor the previous one have been implemented.

6.3.1 Our algorithm in a nutshell

Our decision algorithm works by rewriting pairs of constraint systems that have been extended
to keep track of some information (for instance, we consider equations between recipes), until
a trivial failure or a trivial success is found. These rules are branching: they rewrite a pair of
constraint systems into two pairs of constraint systems. Transforming the pairs of constraints
therefore builds a binary tree. Termination requires to keep track of some information, that is
recorded using a set F' of flags attached to each deducibility constraint (e.g. NoConsy,...). The
flags are additional constraints that restrict the recipes. The complete set of transformation
rules can be found in [17]. Below, we only present some instances of those rules to explain
how the algorithm works. They are displayed for a single constraint system only.

Rule CONSgenc:

? ?
Xl,il—p tl; XQ,“—F tQ; X;SGHC(Xl,XQ)

2

X, Fp senc(ty,t2)

?
X, { I_F—i—NoConssenc Senc<t17 t2)

If NoConsgenc ¢ F and X7, Xo are fresh variables.
This rule simply guesses whether the top symbol of the recipe used to deduce senc(t1,t2)

is senc or not. Either it is, and then we can split the constraint, or it is not and we add a flag
forbidding this.

Rule EQ-LEFT-LEFT:

?
G bR u; PR Ul Ul = U

DR u1; G2DpR, U2
)

G br ut; PR U2 Ul # U

This rule covers the comparisons that an attacker could perform at various stages. This
equality rule guesses equalities between terms known by the attacker.
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Rules above are displayed for a single constraint system only. We explain here how they
are extended to pairs of constraint systems. If one of the constraint systems is |, then we
proceed as if there was a single constraint. Otherwise, the indices ¢ and the recipes X, (
(resp. X1, X2, (1,(2) matching the left side of the rules must be identical in both constraints:
we apply the rules at the same positions in both constraint systems. We have to explain now
what happens when, on a given pair (C,C’) a rule can be applied on C and not on C’ (or the
converse). Therefore, the rule CONSgenc, when applied to pairs of constraint systems comes

?
in three versions: either the rule is applied on both sides or, if X, i - senc(¢1,t2) is in C, and
?

X,iF zis in C’, we may apply the rule on the pair of constraint systems, adding to C’ the
equation x L senc(z1, x2) where 21 and x5 are fresh variables. The third version is obtained
by switching C and C’. Note that this may introduce new variables, that yield a termination
issue. For the rules EQ-LEFT-LEFT, we require that at least one new non-trivial equality (or
disequality) is added to one of the two constraint systems (otherwise there is a trivial loop).
For all rules, if a rule is applicable on one constraint and not the other, we do perform the
transformation, however replacing a constraint with | when a condition becomes false.

Our algorithm can be stated as follows:

e Construct, from an initial pair of constraint systems (Co, C{)) a tree, by applying as long
as possible a transformation rule to a leaf of the tree.

e If, at some point, there is a leaf to which no rule is applicable and that is labeled (C, L)
or (L,C) where C #1, then we stop with Cy %5 CJ.

e Otherwise, if the construction of the tree stops without reaching such a failure, return
CO s Cé

Our algorithm can also be used to decide static equivalence of frames, as well as the
(un)satisfiability of a constraint system (this can be used to decide reachability properties —
see Chapter 2). Furthermore, in case of failure, a witness of the failure can be returned, using
the equations of the non-_1 constraint.

Termination requires to keep track of some information, that is recorded using flags. In
general the rules might not terminate. Fortunately, there is however a simple and complete
strategy that avoids the non-terminating behaviours. Our transformation rules are sound: if
all leaves are success leaves, then the original pair of constraint systems is equivalent. They
are finally complete: if the two original constraint systems are equivalent then any pairs of
constraint systems resulting from a rewriting steps are also equivalent.

6.3.2 Implementation: the ADECS tool

An Ocaml implementation of the procedure described in [17], as well as several examples, are
available at http://www.lsv.ens-cachan.fr/~cheval/programs/index.php (around 5000
lines of Ocaml). The implementation closely follows the transformation rules that we de-
scribed. For efficiency reasons, a strategy on checking the rules applicability has been designed
in addition.

We checked the implementation on examples of static equivalence problems, on examples of
satisfiability problems, and on symbolic equivalence problems that come from classical proto-
cols such as the Needham-Schroeder protocol [NS78], the hanshake protocol [GLNS93],...On
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all examples the tool terminates in less than a second (on a standard laptop). Note that the
input of the algorithm is an initial pair of constraints: checking the equivalence of protocols
would require in addition an interleaving step, that could be expensive.

We cannot really compare with other tools (there are no such tools); we simply tested the
program on some home made benchmarks as well as on some constraint systems derived from
well-known protocols from the literature.

6.4 Perspectives

The transformation we proposed in Section 6.1 to expand the scope of PROVERIF is quite
promising. It is simple and the suitability of our translator is demonstrated by analysing
several case studies coming from different applications such as e-voting and vehicular ad hoc
networks. Actually, it remains room to improve the PROVERIF tool. One possible direction
will be to extend the PROVERIF tool in order to be able to deal with more equational theories,
such as exclusive-or or trapdoor commitment. A way to achieve this would be to exploit the
finite variant property that has been introduced in [38] in order to get rid of some algebraic
properties. R. Kiisters and T. Truderung used this technique in [KT11]. In particular, they
analyse protocols relying on exclusive-or using the PROVERIF tool. To achieve this, they
have to get rid of the algebraic properties of the exclusive-or operator since PROVERIF is
not able to deal with these properties. However, they only consider trace security properties
(secrecy and authentication). Their result does not apply for equivalence-based property.
The exclusive-or operator will be particularly useful to analyse RFID protocols [BCdH10] for
which privacy-type properties such as untraceability [ACRR10, BCdH10] play an important
role.

Despite the extensions described above, there will remain situations where PROVERIF
will not be able to conclude. For instance, this is typically what happens in the case study
described in [ACRR10]. They study the e-passport protocol and they report an attack on
the French version. They also show that other nations, like UK, Germany, Ireland, and
Russia have avoided this linkability attack. However, PROVERIF is unable to prove the
desired equivalence property since the two processes involved in this equivalence are not in
diff-equivalence and it seems difficult to come with a transformation or an encoding allowing
us to go beyond this situation. Actually, the other methods presented in this chapter will not
allow us to conclude on this case study that uses a conditional with an else branch. However,
it seems possible to extend these techniques to overcome this limitation. As future work, it
would be interesting to extend the class of processes we considered in different ways. For
example, we would like to extend our decision result to else branches. This would require
adding disequality tests in set of constraints and adapting the procedure for deciding symbolic
equivalence of constraint systems accordingly. This will still not be sufficient to deal with the
e-passport case study. In order to be able to establish the equivalence, it is necessary to extend
symbolic equivalence of pairs of constraint systems to pairs of sets of constraint systems. We
are currently investigating these different aspects. Lastly, in order to get an automatic tool
for deciding equivalence of processes, we have to move from symbolic equivalence between
constraint systems (or sets of constraint systems) to equivalence between processes. This
requires computing all interleavings of actions, a step which could be prohibitive from the
computation time point of view. Hence, in order to get an efficient procedure, it is necessary
to come with some optimisations in order to reduce the search space and the number of
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interleavings. This problem is not specific to equivalence-based properties and has already
been studied in the context of trace-based properties [CJM03, MVB10]. However, discarding
some “symbolic” interleavings appears to be challenging for equivalence-based properties such
as those studied in this chapter.
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YMBOLIC techniques showed to be a very useful approach for the modelling and analysis
S of security protocols: they improved our understanding of security protocols, allowed
discovering flaws [Low96], and provided support for protocol design [DDMP04]. These tech-
niques also resulted in the creation of powerful automated analysis tools (e.g. [Bla01, BMVO05,
ABBT05, Cre08b]), and impacted on several protocol standards used every day, e.g. [CJST08].
However, these analyses usually consider that the protocol is executed in isolation, ignoring
other protocols that may be executed in parallel. The assumption that another parallel pro-
tocol cannot interfere with the protocol under investigation is valid if the two protocols do not
share any secret data (such as cryptographic keys or passwords). But if such data is shared
between protocols, then this assumption is not valid.

Under certain conditions, we may have that
if P and P, are secure then P | P, is secure.

For example, in the context of applied pi calculus [AF01]), “is secure” is often formalised
as observational equivalence to some specification. We have that P, =~ S; and P, ~ S
imply P, | P, ~ Sj | Sa, where S; and Ss are specifications, and therefore the security
of the composition follows from the security of each protocol. Here, the compositionality of

109
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security relies on two facts. First, as mentioned, security means observational equivalence
to a specification; the attacker is an arbitrary context, and P; =~ S; means P; and S; are
equivalent in any environment. Second, by forming the composition P; | P, we have made
the assumption that P; and P, do not share any secret.

Now suppose that P, and P, do share a secret key k. To prove that their security composes,
one would like to show that

if new k.P, and new k.P» are secure then new k.(P; | P3) is secure.

Note in particular that new k.(P; | P;) is different from (new k.P;) | (new k.P,) because
the later refers to two different secrets as they have different scope. In contrast with the
previously mentioned composition result, this one does not hold in general.

In this chapter, we consider this notion of parallel composition under long-term keys (or
passwords). First, we propose a result that allows one to safely compose different protocols
that share some long-term keys (see Section 7.1). Unfortunately, this transformation relies on
a static tag and can not be applied to compose sessions coming from the same protocol. Hence,
in Section 7.2, we provide a more involved transformation that allows us to compose sessions.
In both results, we consider trace security properties such as secrecy and authentication.
Lastly, we investigate the case of password-based protocols. In particular, we provide a
syntactic condition to ensure that a user can use the same password for different protocols
without compromising the security of his password. This also relies on a tagging scheme to
avoid interaction between messages coming from different protocols. This result is described
in Section 7.3.

7.1 Composing different protocols sharing keys

Consider for example the two following naive protocols.

Py: A— B: aenc(Ng,pk(B))

P, : A— B: aenc(s,pk(B)) BoA: N,

In protocol P;, the agent A simply sends a secret s encrypted under B’s public key. In
protocol P», the agent sends some fresh nonce to B encrypted under B’s public key. The
agent B acknowledges A’s message by forwarding A’s nonce. While P; executed alone easily
guarantees the secrecy of s, even against an active adversary, the secrecy of s is no more
guaranteed when the protocol Ps is executed. Indeed, an adversary may use the protocol Ps
as an oracle to decrypt any message. More realistic examples illustrating interactions between
protocols can be found in e.g. [KSW97].

7.1.1 Main result

In this section, we first introduce and discuss the hypotheses we need to safely compose
protocols. This result is only stated informally. A formal statement together with its detailed
proofs can be found in [29, 7].
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Disjoint encryption. To avoid a ciphertext from a protocol P; to be decrypted in another
protocol P», we consider protocols that satisfies disjoint encryption, i.e. any two encrypted
sub-messages coming from two different protocol specifications cannot be unified. However,
protocols that use common keys (e.g. common public keys) may not enjoy the disjoint en-
cryption property. A way to force disjoint encryption is to use tags. Requiring that two
protocols satisfy disjoint encryption can be very easily achieved in practice: it is sufficient for
example to add the name of the protocol in each encrypted term.
Continuing our example, let us consider the two slightly modified protocols.

P): A— B: aenc((2,N,),pk(B))

P/: A— B: aenc((1,s),pk(B
1 ({1,5).pK(E)) boa
Our main composition theorem will ensure that P| can be safely executed together with P,
without compromising the secrecy of s.

Critical long-term keys. Disjoint encryption is not a sufficient condition. Indeed critical
long-term keys should not be revealed in clear. Consider for example the following two
protocols. Note that they satisfy disjoint encryption since P; has no encrypted subterm.

P;: A— B: aenc((1,s),kq) Pi: A—B: kg

The security of protocol Ps is compromised by the execution of Py. Thus we will require
that long-term keys (except possibly the public ones) do not occur in plaintext in the protocol.
This is not a real restriction since not disclosing the long term private keys in plaintext (even
under encryption) corresponds to a prudent practice.

Main result. We show that two protocols can be safely composed as soon as they satisfy
the disjoint encryption assumption and that critical long-term keys do not appear in plain-
text. Our result works for protocols that are built on pairing, symmetric and asymmetric
encryptions, signatures, and hash functions. We prove this composition result for a class of
security properties that includes secrecy and different kinds of authentication (e.g. aliveness,
agreement).

To establish this result, we rely on constraint systems (see Chapter 2). We prove our
composition result by contradiction and we first show that messages from two combined
protocols do not need to be mixed up to mount an attack. For this purpose, we use the
simplification rules presented in Section 2.1.3. This set of rules allow us to control the form
of the execution traces.

Related work. A result closely related to ours is the one of Guttman and Thayer [GT00].
They show that two protocols can be safely executed together without damaging interactions,
as soon as the protocols are “independent”. The independence hypothesis requires in partic-
ular that the set of encrypted messages that the two protocols handle should be different. As
in our case, this can be ensured by giving each protocol a distinguishing value that should
be included in the set of encrypted messages that the protocol handles. However, the major
difference with our result is that this hypothesis has to hold not only on the protocol speci-
fication but also on any valid execution of the protocol. In particular, considering again the
protocol Py, an agent should not accept a message of the form aenc((2, senc((1,m), k), pk(B))
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while he might not be able to decrypt the inside encryption and detect that it contains the
wrong identifier.

Another result has been obtained by Andova et al. for a broader class of composition
operations [ACST08]. Their result does not allow one to conclude when no typing hypothesis
is assumed (that is, when agents are not required to check the type of each component of a
message) or for protocols with ciphertext forwarding, that is, when agents have to forward
unknown message components. Recently, V. Cortier and §. Ciobaca have extended the result
presented in this section in different ways [CC10]. First, they consider a broader class of cryp-
tographic primitives. Second, their result allows one to consider various ways of combining
protocols such as sequentially or in parallel, possibly with inner replications. They have to
assume that protocols do not share any cryptographic primitives unless they are tagged. This
means that their result does not allow one to compose protocols that rely on pairs without
tagging them.

7.1.2 Applications

Security protocols can be analyzed using several existing tools, e.g. [Bla01, ABBT05]. The
security of a protocol P is however guaranteed provided that no other protocols share any of
the private data of P. Our result shows that, once the security of an isolated protocol has
been established, this protocol can be safely executed in an environment that may use some
common data provided disjoint encryption is satisfied (and that long term private keys are
not sent in plaintext). This condition is easy to check but might not be satisfied by existing
protocols. A simple way to ensure it is to add the name of the protocol each time a party
performs an encryption.

For security reasons however, most protocols actually make use of different keys. Here,
we provide a simple criteria for safely composing protocols that share keys. This would allow
to save both memory (for storing keys) and time since generating keys is time consuming
in particular in the case of public key encryption. For example, the SSI. protocol should
contain the name “ss|” in any of its encrypted messages. This would ensure that no harmful
interaction can occur with any other protocols even if they share some data with the SSL
protocol, provided that these other protocols are also tagged. In other words, to avoid harmful
interaction between protocols, one should simply use a tagged version of them.

There are also situations were running different protocols with common keys already occur.
We provide three examples of such cases.

e It is often the case that several versions of a protocol can be used concurrently. In this
case and for backward compatibility reasons, the same keys can be used in the different
versions of the protocol, which may lead to potentially dangerous interactions.

e When encrypting emails the same public key can be used for two distinct encryp-
tion protocols: the PGP protocol (Pretty Good Privacy) and its open source version
OPENPGP. Note that the PGP protocol contains also other sub-protocols such as
digitally signing message, all sharing the same public key infrastructure.

e In the slightly different context of APIs, J. Clulow [Clu03b] discovered an attack when
the VISA PIN verification values (PVV) protocol and the IBM CCA API share the
same verification key.
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7.2 Composing sessions of the same protocol

An obvious situation where we have to do composition in presence of shared long-term keys
is when we want to compose sessions coming from the same protocol. However, in such a
situation, the transformation proposed in Section 7.1 that consists of adding a static tag in
each encrypted subterm can not be applied.

In [24], we have proposed a more involved protocol transformation which maps a protocol
that is secure for a single session to a protocol that is secure for an unbounded number of
sessions. To achieve this, we rely on dynamic tags. This provides an effective strategy to
design secure protocols: (7) design a protocol intended to be secure for one protocol session
(this can be efficiently verified with existing automated tools); (7¢) apply our transformation
and obtain a protocol which is secure for an unbounded number of sessions.

7.2.1 Transformation

Given an input protocol P, our transformation will compute a new protocol P which consists
of two phases. The transformation, using the informal Alice-Bob notation, is described in
Figure 7.1. The k-tagging of u with tag, denoted [u]sg, consists in adding tag inside each
encrypted subterm of u. Note that, the Alice-Bob notation only represents what happens in
a normal execution, 7.e. with no intervention of the attacker. Of course, in such a situation,
the participants agree on the same session identifier 7 used in the second phase.

Let P be a k-party protocol.

Phase 1 Phase 2
Ay — Ay s omy Ay — All: (A1, Ny) Ai, = Ay 0 [mals

P = : P = : :
Ai, = Aj, 0 my Ap — All: (Ag, Ny) Aiy = Ajy o [muls
where 7 = (tag,, ..., tag;) with tag, = (A;, NV;)

Figure 7.1 - Our transformation in Alice-Bob notation.

During the first phase, the protocol participants try to agree on some common, dynam-
ically generated, session identifier 7. For this, each participant sends a freshly generated
nonce N; together with his identity A; to all other participants. Note that if broadcast is
not practical or if not all identities are known to each participant, the message can be sent
to some of the participants who forward the message. At the end of this preamble, each
participant computes a session identifier: 7 = ((Ay, N1),..., (Ag, Ni)). Note that an active
attacker may interfere with this initialization phase and may intercept and replace some of
the nonces. Hence, the protocol participants do not necessarily agree on the same session
identifier 7 after this preamble. In fact, each participant computes his own session identifier,
say Tj.

During the second phase, each participant j executes the original protocol in which the
dynamically computed identifier is used for tagging each application of a cryptographic prim-
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itive. In this phase, when a participant opens an encryption, he will check that the tag is in
accordance with the nonces he received during the initialization phase. In particular he can
test the presence of his own nonce.

7.2.2 Main result

Our result states that if a protocol (obtained after application of our transformation) admits
an attack that may involve several honest and dishonest sessions, then there exists an attack
which only requires one honest session of each role. The situation is however slightly more
complicated than it may seem at first sight since there is an infinite number of honest sessions,
which one would need to verify separately. Actually we can avoid this combinatorial explosion
thanks to the following result [CLCO4a]: when verifying secrecy properties it is sufficient
to consider one single honest agent (which is allowed to “talk to herself”). Hence we can
instantiate all the parameters with the same honest agent.

Our dynamic tagging is useful to avoid interaction between different sessions of the same
role in a protocol execution and allows us for instance to prevent man-in-the-middle attacks.
A more detailed discussion showing that static tags are not sufficient follows in Section 7.2.3.
To obtain our composition result, we need also to forbid long-term secrets in plaintext position
(even under an encryption).

Our result holds for the same class of protocols as the one presented in Section 7.1. We
only prove this result for secrecy properties. However, since then, M. Arapinis has extended
this result to deal with some other trace properties [Ara08]. The bound on the number of
sessions that have to be considered depends on the underlying security property.

7.2.3 Other ways of tagging

We have also considered an alternative, slightly different transformation that does not include
the identities in the tag, i.e., the tag is simply the sequence of nonces. In that case we obtain
a different result: if a protocol (one obtained after applying our transformation) admits an
attack then there exists an attack which only requires one (not necessarily honest) session
for each role. In this case, we need to additionally check for attacks that involve a session
engaged with the attacker. On the example of the Needham-Schroeder protocol [NS78], the
man-in-the-middle attack is not prevented by this weaker tagging scheme. However, the result
requires one to also consider one dishonest session for each role, hence including the attack
scenario. In both cases, it is important for the tags to be collaborative, i.e. all participants
do contribute by adding a fresh nonce.

Finally, different kinds of tags have also been considered in [AD07, BP03, RS03]. However
these tags are static and have a different aim. While our dynamic tagging scheme avoids
confusing messages from different sessions, these static tags avoid confusing different messages
inside a same session and do not prevent that a same message is reused in two different sessions.
Under some additional assumptions (e.g. no temporary secret, no ciphertext forwarding),
several decidability results [RS05, Low99] have been obtained by showing that it is sufficient
to consider one session per role. But those results can not deal with protocols such as the
YAHALOM protocol or those that rely on a temporary secret. In the framework we consider
here, the question whether such static tags would be sufficient to obtain decidability is still
an open question (see [ADOT]).
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7.3 Composing protocols sharing passwords

While the absence of shared keys between different protocols is obviously desirable, it is not
always possible or realistic. For example, password-based protocols are those in which a user
picks a password which forms one of the secrets used in the protocol. It is unrealistic to assume
that users never share the same passwords between different applications. We consider the
situation in which secret data may be shared between protocols, and we particularly focus on
password-based protocols. We investigate under what conditions we can guarantee that such
protocols will not interfere with each other.

Additionally, the notion of security we consider is resistance to guessing attacks (see Sec-
tion 4.3.1). If the attacker’s interaction with the protocol during the first phase is limited to
eavesdropping, then the attack is called passive; if the attacker can participate fully with the
protocol, then it is active. In this section, we sum up the results fully developed in [25].

Related work. As we have seen in the two previous subsections, the problem of secure
composition has been approached by several authors. However, none of the works cited above
deals with composing resistance against guessing attacks. They consider secrecy in term of
deducibility or authentication properties. To the best of our knowledge only S. Malladi et
al. [MAFMO02] have studied composition w.r.t. guessing attacks. They point out vulnerabili-
ties that arise when the same password is used for different applications and develop a method
to derive conditions that a protocol has to follow in order to be resistant against guessing at-
tacks. However, applying their methods to particular protocols is not always straightforward.
Moreover, their work relies on the definition of guessing attack due to Lowe [Low04] which
relies on a particular set of cryptographic primitives. Our results are general and independent
of the underlying equational theory.

7.3.1 Passive case

We first established a composition result in the passive case for resistance against guessing
attacks. We first show the equivalence of three definitions of resistance against guessing
attacks: the first definition is in accordance with the one stated in Definition 4.5. The second
one is due to R. Corin et al. [CDEO05]. The last definition is given in a composable way and
establishes our composition result (see Corollary 7.1).

Proposition 7.1 [25] Let ¢ be a frame such that ¢ = new w.¢/ and @' be a sequence of fresh
names. The three following statements are equivalent:

1. neww.(¢/ | {7/z}) ~ new ' .neww.(¢' | {7 /z}),
2. ¢ ~ neww.¢,
3. ¢ ~ ¢ {" /a}-

Now, by relying on Proposition 7.1 (item 3.), it is easy to show that resistance to guessing
attack against @ for two frames that share only the names @ is a composable notion. This is
formally stated in the corollary below:

Corollary 7.1 [25] Let ¢; = neww.¢, with (i = 1,2) be two frames such that neww.(¢) | )
is also a frame (this can be achieved by using a-renaming).
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If ¢1 and ¢ are resistant to guessing attacks against w then new w.(¢) | ¢b) is also
resistant to guessing attacks against w.

Applications. In the case of password-only protocols, i.e., protocols that only share a
password between different sessions and do not have any other common long-term shared
secrets we have the following direct consequence. We can prove resistance against guessing
attacks for an unbounded number of parallel sessions by proving only resistance against
guessing attacks for a single session. An example of a password-only protocol is the well-
known EKE protocol [BM92], which has also been analysed in [CDEO05].

Corin et al. [CDEO5] analysed one session of this protocol in the passive case (with a
slight difference in the modelling). It directly follows from our composition result that the
protocol is secure against a passive attacker for any number of sessions as the only secret
shared between different sessions is the password w.

7.3.2 Active case

In the active case, contrary to the passive case, resistance against guessing attacks does not
compose: even if two protocols separately resist against guessing attacks on w, their parallel
composition under the shared password w may be insecure. Hence, there is no hope to obtain
a general composition result. To reach our goal, we consider a restricted class of protocols:
the class of well-tagged protocols.

Intuitively, a protocol is well-tagged w.r.t. a secret w if all the occurrences of w are of the
form h(a,w). We require that h is a hash function (i.e., h does not occur in any equation
modelling the equational theory), and « is a name, which we call the tag. The idea is that
if each protocol is tagged with a different name (e.g. the name of the protocol) then the
protocols compose safely.

Note that a protocol can be very easily transformed into a well-tagged protocol: if new w.A
is a process resistant to guessing attacks against w, then the transformed process is obtained by
replacing any occurrence of the password w by h(a, w). We have shown that resistance against
guessing attacks is preserved by our transformation. The simplicity of our transformation
should also ensure that the functionalities of the protocol are preserved as well. A rigorous
proof of this would require a formal definition of what it means to “preserve the functionalities”
of a protocol.

Theorem 7.1 [25] Let new w.A’ be a process resistant to guessing attacks against w, then
we have that new w.(A'{MN@w) / V) is also resistant to guessing attacks against w.

We show that any two well-tagged protocols that are separately resistant to guessing
attacks can be safely composed provided that they use different tags. The following theorem
formalizes the intuition that replacing the shared password with a hash parametrized by the
password and a tag is similar to using different passwords which implies composition. We
consider an arbitrary equational theory E, provided there is no equation for h.

Theorem 7.2 [25] Let Ay and Az be two well-tagged processes w.r.t. w such that the pro-
cess Ay (resp. Aa) is a-tagged (resp. [-tagged) and neww.(Ay | Aa) is a process (this can be
achieved by using a-renaming).

If neww.A1 and neww.As are resistant to guessing attacks against w and o # 3, then we
have that neww.(Ay | A2) is also resistant to guessing attacks against w.
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Assuming that any attack only uses a finite number of sessions, our composition result
holds for an unbounded number of sessions, i.e. if two well-tagged protocols are separately
resistant against guessing attacks for an unbounded number of sessions then their parallel
composition is also resistant to guessing attacks for an unbounded number of sessions.

7.4 More related work and perspectives

As we have seen in Chapter 1, there are two large classes of models for studying the security
of cryptographic protocols. On one hand, there are the symbolic models (also called Dolev-
Yao model [DY81]) in which messages sent over the network are represented by terms and
the attacker is modelled as a deduction system. This is the approach considered in this
habilitation thesis. On the other hand, there are the computational models, in which the
messages are bit-strings and the attacker is an arbitrary probabilistic polynomial time Turing
machine. Our results clearly belong to the first approach. Moreover, our main goal was to
provide syntactic criteria to ensure that different protocols (or different sessions coming from
the same protocol) can be safely composed. However, composition has also been considered in
the other approach yielding to an interesting paradigm, namely the Universal Composability
framework [Can01], which we briefly discuss below.

First, it is important to notice that the results presented in this chapter do not allow one
to compose protocols for the study of privacy-type properties. A natural extension consists
in investigating whether parallel and sequential compositions preserve trace equivalence and
more generally other behavioral equivalences that can be used to reason about security prop-
erties such as privacy. In particular, in Chapter 4, privacy in e-voting is stated by considering
an arbitrary number of voters where two honest voters play a special role. It will be interest-
ing to identify under which conditions we can safely restrict our analysis to a small number
of voters. Note that in this situation, tagging as defined in Section 7.2 can not be applied.

Another line of work is represented by the Protocol Composition Logic (see e.g. [DMRSar]),
which can be used to modularly prove security properties of protocols. In order to safely com-
pose two protocols, one has to check that each protocol satisfies some invariant used in the
security proof of the other protocol. While offering more flexibility, this criterion is not syn-
tactic and needs to be checked each time by hand. Based on approximately ten years of
experience with successive versions of the logic, PCL appears to scale well to industrial pro-
tocols. While the logic was originally developed for the symbolic model, a variant of the logic
with similar reasoning principles has also been developed for the computational model.

Our work is also related to those of R. Canetti et al. who study universal composability
of protocols [Can01] in a different context (cryptographic model). They consider composition
in a broader sense than our composition result. Indeed, they both enable composition of a
protocol with arbitrary other protocols and composition of a protocol with copies of itself.
However, in the initial approach [Can01], they do not allow shared data between protocols,
meaning that new encryption and signing keys have to be generated for each component.
Composition theorems that allow joint states between protocols are proposed in further work
(see e.g. [CRO3, BCNP04, CDPWO07]). Several limitations on the applicability of the results
are listed in a recent paper of R. Kiisters and M. Tuengerthal [KT08]. In [KT08], the authors
propose a new construction for a joint state theorem in the context of asymmetric encryption
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and signature only. This result allows in particular to compose a protocol with arbitrary
protocols using the same kind of construction: they add an identifier in each encryption.

The universal composability paradigm has been quite successful in the computational ap-
proach. Hence, it seems natural to investigate the statement of general composition theorems
(with joint states) in the symbolic settings.



Chapter 8

Conclusion and Perspectives

This habilitation thesis reports on a selection of my recent contributions to the verification of
security protocols, from the development of algorithms to decide trace-based security proper-
ties in ad hoc routing protocols or security APIs (Part I), to the study of privacy-type security
properties that play an important role in many modern applications such as electronic voting
protocols (Part II). Moreover, because of the complexity of the verification problem and the
variety of the envisioned applications, it becomes important to consider modularity issues.
Some results on this aspect have been presented at the end of this thesis (Part III).

At the end of each chapter, some further developments for the given chapter have already
been proposed. We recall the most important ones, and give also further perspectives. They
are mostly oriented to deal with new emerging applications such as electronic voting and
applications involving mobile devices, e.g. RFID tags, routing protocols in mobile ad hoc
networks, and safety-related applications in vehicular ad hoc networks.

In Section 8.1, several features needed to model up-to-date applications such as the one
mentioned above are presented. This raises several challenges since the existing verification
techniques have to be extended accordingly. As location tracking capabilities of mobile devices
are increasing, problems related to user privacy arise. Indeed user’s position and preferences
constitute personal information and improper use of them violates user’s privacy. This raises
several issues that are developed in Section 8.2. Lastly, to ensure security even when sev-
eral applications are running concurrently and to analyse protocols that become more and
more complex, composition is an important aspect that deserves to be further studied (see
Section 8.3).

8.1 Security issues in mobile ad hoc network

Today, many applications rely on mobile devices such as smart phones, RFID tags, ... For
instance, several countries have equipped their motorways with RFID payment systems (e.g.
Telepass in Italy, AutoPASS in Norway), or their public transport with RFID passes such
as Navigo in France. However, the use of RFID technology raises important security issues
and has engendered considerable controversy. Indeed, tags, which are world-readable, pose a
risk to personal location privacy. Many privacy organizations have expressed concerns in the
context of ongoing efforts to embed RFID tags in consumer products. It is thus important to
develop methods and verification tools that are suitable to analyse these applications.

119
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8.1.1 Modelling issues

Mobile ad hoc network applications have some specificities that prevent them to be analysed
by existing automated verification tools designed for analysing key-exchange and authenti-
cation protocols (e.g. AVISPA [ABB*05], PROVERIF [Bla01], ...). To develop verification
algorithms that are suitable for mobile ad hoc network applications, it is important to better
understand what are the features that play an important role and that need to be modelled
in a more accurate way. As usual, we have to achieve two antagonist goals. On the one hand,
models have to be as fine grained and expressive as possible in order to better reflect protocol
behaviours. One the other hand, models have to remain relatively simple in order to allow
the design of automatic decision procedures.

Communications. In mobile ad hoc network, there is no underlying infrastructure and
communications are done wireless. Moreover, the main mode of communication is broadcast-
ing and reception of a broadcast is restricted to single-hop neighbours. In this setting, it is
thus physically impossible to prevent a message issued by a node A to reach a node B that
is in the range of A.

Attacker. Until now, the classical Dolev-Yao attacker model [DY81] has been successfully
used to analyse security protocols. However, in the context of mobile ad hoc network ap-
plications, considering an attacker who controls the entire communication network leads to
the discovery of a number of unrealistic attacks. Hence, we have to consider a distributed
attacker who controls some nodes of the network. This results in a distributed attacker with
communication abilities that are restricted, but more realistic than the classical Dolev-Yao
attacker.

Security properties. As already mentioned, applications involving mobile devices raise
some important issues about privacy. This aspect is developed in Section 8.2. Some other at-
tacks need to be further studied, e.g. Sybil attacks [Dou02], rushing attacks [HPJO3], ... This
will conduct us to adapt our models. For instance, rushing attacks will require a precise
modelling of the time of transmission of the messages.

Tests on incoming messages. In mobile ad hoc network, a fundamental building block
is neighbourhood discovery protocols [PPST08]. A node must be able to determine or verify
its direct communication partners within a communication network. To model in an abstract
way the checks performed by the nodes involved in these protocols, we need to consider new
constructions such as those described in Section 2.3. Moreover, in some routing protocols (e.g.
ENDAIRA [BV04], ARIADNE [HPJO05]), during the reply phase, the nodes perform a check on
their incoming message. Typically, the reply will contain a list (the route) and a message built
recursively on this list. As a consequence, the test performed by a node can not be modelled
in an accurate way using pattern-matching only since the size of the list is not known a
priori. Other examples of protocols performing recursive operations are certification paths
for public keys (see e.g. X.509 certification paths [HFP98]) or right delegation in distributed
systems [Aur99]. Again, to model protocols manipulating lists and/or relying on recursive
tests, we have to extend existing models with new constructions.
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Mobobility. Taking into account mobility is crucial for some applications. Because of the
difficulties of the underlying verification problem, very few works take this aspect into account.
For instance, in [NH06], the topology of the network is represented by a set of graphs and it is
assumed that the current topology could be any graph in this set. Hence, mobility is modelled
in a very restrictive way. Despite the challenges raised by mobility from the verification point
of view, mobility raises also some important issues from the modelling point of view. Indeed,
what does it mean for a routing protocol to be secure if the underlying topology is changing?
For instance, we can not expect that the route received by the source is the right one if the
topology has changed after the nodes have sent their replies.

A challenge would be to establish a model in the style of the applied pi calculus allowing us
to take into account a variety of cryptographic primitives and the different aspects mentioned
above. As a first step towards this goal, it would be interesting to develop some models
dedicated to some applications. This will help us to precisely identify all the crucial aspects
that are behind these new emerging applications.

8.1.2 Verification issues

In order to be able to analyse mobile ad hoc network applications, we have to adapt the ex-
isting verification algorithms and/or to develop new ones from scratch. Indeed, the existing
techniques do not allow one for instance to reason about mobility or neighbourhood checks.
Before developing practical algorithms, it is important to identify the frontier between decid-
ability and undecidability. In particular, among the different aspects mentioned above, we
have to identify those that will lead to an undecidable model. If possible, it would be inter-
esting to identify reasonable conditions under which the verification problem would become
decidable.

Bounded number of sessions. In the context of a bounded number of sessions, many
decidability and complexity results have been obtained for classical protocols (see e.g. [RT03,
MS05]). In particular, constraint solving techniques have been quite successful (see e.g. [MS03,
CLCZ10]) and have lead to practical algorithms that are now implemented, e.g. OFMC
[BMVO05]. This method has appeared to be flexible enough to integrate some of the aspects
mentioned above, e.g. neighbourhood checks, and some simple constructions on lists. This
line of research deserves further investigations. For the moment, the decision procedures we
obtained are highly non-deterministic and can not lead to any practical algorithm. Thus, it
would be interesting to see how to obtain an implementable procedure that could be integrated
in the existing tools.

Unbounded number of sessions. Even if it is well-known that the verification problem
is undecidable in this setting for classical protocols, the modelling through Horn clauses has
been successful and has lead to some automated tool (e.g. PROVERIF). It seems relevant to
investigate this approach in the context of mobile ad hoc networks. This will require over-
approximating the protocols and probably to develop new resolution techniques or at least to
adapt the existing ones. This will allow us to obtain verification procedures in the spirit of
the one implemented in the PROVERIF tool.
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Reduction results. As already discussed, the topology of the network plays an important
role, especially in the routing application. Instead of developing results to decide the existence
of a topology that is vulnerable to an attack, we could try to obtain first some reduction
results. This will allow us to simplify our analysis by discarding some of the topologies,
concentrating on those that could lead to an attack. Moreover, in this new setting, the
attacker model we have to consider is quite complex. Clearly, in the context of routing
protocols, considering two attackers (each of them controlling one node) is stronger than
considering only one attacker. However, is it really useful to consider more than two attackers?

8.2 Privacy-type security properties

We began the study of this topic few years ago through the electronic voting application.
However, privacy is a general requirement that needs to be studied in different contexts. For
instance, a person who carries an RFID tag (in a cloth or simply because she carries her
electronic passport) can be tracked. This raises a privacy issue. The term privacy is a generic
word to represent several concepts that are formally modelled in different ways. Nevertheless,
they are often modelled by relying on the notion of observational equivalence. Indeed, in
general, we need to formalize the fact that the attacker can not see the difference between
two slightly different situations. For instance, in the context of RFID protocols, an important
privacy issue is to ensure untraceability, meaning roughly that an attacker can not distinguish
a scenario where a same tag is involved in several sessions from one that involved different
tags.

8.2.1 More algorithms for analysing equivalence-based properties

Even in the context of electronic voting, the results obtained so far are not completely satis-
factory. Indeed, among the most classical electronic voting protocols (e.g. [FOO92a, Oka96)),
some of them can still not be analysed by existing tools. Many results already exist to study
static equivalence (see Chapter 5). However, it is important to develop further algorithms
to deal with cryptographic primitives such as trapdoor bit commitment and re-encryption,
and then to develop verification tools allowing us to analyse privacy-type properties in this
context.

Unbounded number of sessions. For an unbounded number of sessions, the problem of
deciding observational equivalence is well-known to be undecidable. Nevertheless, we have
seen that the PROVERIF tool tackles this problem by providing a semi-decision procedure
that provides some useful results in some cases. To achieve this, PROVERIF relies on a strong
notion of equivalence. This notion is however too strong for the study of many privacy-
type properties, and we thus need to relax this notion. Another limitation of this tool is
the fact that it is not able to deal with primitives such as re-encryption or trapdoor bit
commitment schemes. It seems however possible to improve the PROVERIF tool such that
it will handle more primitives [KT11] and/or it will conclude in more cases by refining the
notion of equivalence [Smy10]. These directions need to be further investigated.

Bounded number of sessions. Another promising approach is to reuse the constraint
solving approach that has been quite successful to analyse trace-based security properties.
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This is one of the approaches developed in Chapter 6. However, it remains to lift the decision
procedure from constraint systems to processes. A naive approach as the one described in [21]
is not sufficient. First, because the resulting algorithm will not be implementable. Second,
because this approach works only for a certain class of processes, namely the class of simple
processes. Our goal is to go beyond this class and to propose an algorithm that is efficient in
practice. This will allows us to deal with some protocols that are out of reach of the existing
tools and even out of scope of the exiting decision procedures, e.g. private authentication
protocol [AF04], electronic passport protocol [ACRR10].

8.2.2 More cryptographic primitives

In the context of equivalence-based properties, the existing algorithms do not allow us to go
beyond the subterm convergent equational theories. However, as we have already discussed,
electronic voting protocols often rely on more complex primitives in order to achieve their
goals [FO0O92a, Oka96], and RFID protocols that have power-consumption constraints often
used the exclusive-or operator as a cryptographic primitive [vDR09]. All these primitives are
out of scope of the existing algorithms.

Convergent equational theories. Several procedures already exist to deal with subterm
convergent equational theories (see e.g. [Bau05, CR11]). The PROVERIF tool also works quite
well in this setting. However, for instance, the homomorphic encryption theory, for which
static equivalence is decidable and efficient tools already exist, has not been studied in the
active setting.

Monoidal equational theories. RFID protocols often rely on the exclusive-or operator
(see e.g. [vDRO09]). It is thus important to extend the existing decision procedures for static
equivalence to deal with monoidal equational theories (including the exclusive-or theory) in
the active setting. A first step could be to study the notion of equivalence introduced by M.
Baudet [Bau05]. This notion is simpler to reason with since it only requires to study symbolic
equivalence of two constraint systems that only differ at one place. This first step will allow
us to derive interesting procedures to decide guessing attacks.

Combination. Regarding static equivalence, results allowing us to combine non-disjoint
theories are still missing. To the best of my knowledge, no combination result exist to deal
with equivalence-based properties in the active setting. A first step could be to develop
a combination algorithm for the problem studied in [Bau05] in order to decide resistance
against guessing attacks for more complex equational theories. A combination algorithm for
the problem of observational equivalence will allow us to obtain decision procedures to analyse
protocols such as RFID protocols that often rely on exclusive or and hash functions.

8.3 Composition and refinement

As we have seen, there exist several formal methods to establish that a security protocol
achieves some security goals. However, their applicability is limited to relatively small pro-
tocols that run in isolation. Actually most of the existing protocols are not meant to be
executed in isolation (e.g. the goal of a key-exchange protocol is to establish a key that will
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be used by some other protocols) and they are often composed of several sub-protocols. Thus,
the current practice is that large or composed protocols are not formally verified. We would
like to remedy this situation, and make formal methods applicable to real life systems.

Another reason for studying this problem of security-proof modularity is to better un-
derstand the works that have been done in the area of computational security. Indeed, in
this framework, a huge amount of work has been devoted to universal composability (see
e.g. [Can01]).

Several composition results have been stated in Chapter 7. More precisely, for a set of
names 7 (typically the public and private keys or some passwords), a class of protocols, an
attacker model, and a class of security properties, we give some conditions under which the
security of two individual protocols (or two sessions coming from the same protocol) new . Py
and new n. Py implies the security of the combined protocol newn.(P; | Py).

8.3.1 Composition

The results stated in Chapter 7 only concern trace-based security properties. Moreover, those
presented in Section 7.1 and Section 7.2 assume a fixed set of cryptographic primitives. Lastly,
we consider two different kinds of composition that have some common features, namely
protocols composition and sessions composition. Note also that in all the three composition
results that we have established, we achieve our goal by tagging the messages. Even if the
way we tagged the messages are different depending on the composition result we want to
achieve, they have some common features. It would be interesting to better understand the
properties that are required on the message that is used to tag the protocol messages, and to
obtain more general composition results.

For instance, resistance against guessing attacks is not the only purpose of a password-
based protocol. Thus, it would be interesting to ensure also that secrecy and authentication
properties are preserved when we compose password-based protocols.

Concerning privacy-type properties, it is well-known that composition works when the
processes do not rely on some shared secrets. However, there is no result allowing us to derive

newi.(P | P2) ~ new 1.(Q1 | Q2)

from the equivalences newn.P, ~ new n.Q)1 and newn.P, = new 1..(J2. This kind of com-
position results will be very useful. For instance, this could allow us to establish privacy in
presence of two honest voters or untraceability in presence of two different tags, and to obtain
guarantee in a setting that involves an arbitrary number of voters or tags.

Lastly, in some context (e.g. routing protocols or group protocols), the transformations
described in Chapter 7 can not be applied since the number of participants is not known
a priori. Nevertheless, we may want to avoid interaction between different sessions and to
restrict our attention to the study of a single session. The study of this aspect would allow
us to provide some prudent engineering principles in the style of [AN96] that are applicable
in the more general setting of group protocols or routing protocols.

8.3.2 Refinement

Security protocols used in practice are more and more complex and it is difficult to analyse
them entirely. Thus, some parts are usually abstracted away. For instance, we may assume
that a symmetric key has been magically established between different parties, or we may
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assume that a communication has been performed on a private or authenticated channel.
However, the interactions between the main protocol and the key-establishment protocol can
be damaging for the security of the resulting protocol.

In order to obtain guarantees on the whole protocol without analysing it entirely, we
have to develop refinement results. These results will give us conditions under which a part
of a protocol can be safely abstracted away (and in which way) without missing any attack.
Recently, several attempts have been done to obtain results in this direction (see e.g. [ACST08,
CC10]. However, these results do not allow one for instance to compose protocols that rely
on some primitives such as the exclusive-or operator and only consider some particular trace-
based security properties. It would be interesting to study refinement in a more general
setting. In particular, privacy in electronic voting is a quite complex security property to
establish and we often rely on the existence of private channels to model this kind of protocols.
In order to justify this abstraction, refinement results for equivalence-based properties are
needed.

8.3.3 Symbolic UC

The universal composability paradigm has been quite successful in the computational ap-
proach allowing to model both composition and refinement (see e.g. [Can01, BCNP04, KT08])
However, both the composition theorems and the proofs that security primitives satisfy the
hypotheses of these theorems are quite delicate in the computational world.

The idea of UC is not, however, restricted to the computational setting; instead, one
can see it as a refinement relation on protocols and programs that preserves security and
is composable. Moreover, in order to get computational security guarantees, we have seen
that there is an alternative method: using soundness theorems in the style of [AR00]. Hence,
assuming appropriate soundness results, the modularity of symbolic security proofs would
have therefore an important impact in the computational security community. Therefore, it
seems natural to investigate the statement of general composition theorems in the UC style
but considering the symbolic setting instead of the compuational one.

Actually, we have already obtained a first result in this direction [19]. While the resulting
theorems appear to be the natural counterpart of their computational versions, this work
brings the benefits of the secure composition theorems associated with simulation-based se-
curity into the symbolic world, and opens the path to the analysis of more sophisticated
protocols that can naturally be specified by the behavior of an ideal functionality.
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