
Fault Diagnosis using Timed Automata

Patricia Bouyer1?, Fabrice Chevalier1?, and Deepak D’Souza2 ??

1 LSV – CNRS UMR 8643 & ENS de Cachan
61, avenue du Président Wilson, 94230 Cachan, France.

e-mails: {bouyer,chevalie}@lsv.ens-cachan.fr
2 Dept. of Computer Science & Automation
Indian Institute of Science, Bangalore, India.
e-mail: deepakd@csa.iisc.ernet.in

Abstract. Fault diagnosis consists in observing behaviours of systems, and in
detecting online whether an error has occurred or not. In the context of discrete
event systems this problem has been well-studied, but much less work has been
done in the timed framework. In this paper, we consider the problem of diagnos-
ing faults in behaviours of timed plants. We focus on the problem of synthesizing
fault diagnosers which are realizable as deterministic timed automata, with the
motivation that such diagnosers would function as efficient online fault detectors.
We study two classes of such mechanisms, the class of deterministic timed au-
tomata (DTA) and the class of event-recording timed automata (ERA). We show
that the problem of synthesizing diagnosers in each of these classes is decidable,
provided we are given a bound on the resources available to the diagnoser. We
prove that under this assumption diagnosability is 2EXPTIME-complete in the
case of DTA’s whereas it becomes PSPACE-complete for ERA’s.

1 Introduction

The problem of fault diagnosis involves detecting whether a given system (which we
call a plant) has undergone a fault, based on a particular external observation of an exe-
cution of the plant [SSL+95,SSL+96]. More precisely we are given a detailed model of
the plant – say as a finite state machine – based on internal unobservable events as well
as externally observable events of the plant. Some of the internal actions correspond to
faults. A diagnoser for such a plant is a function which given a sequence of observable
events generated by the plant, tells us whether an internal fault happened or not. Not all
plants are diagnosable (in the sense that such a function may not exist) – for example
a plant which produces the two behaviours aub and afb, where u and f are internal
events with f being the faulty one, and a and b are observable events, is not diagnos-
able since from the observable sequence ab it is impossible to tell whether f happened
or not.

Our interest in this paper lies in the fault diagnosis problem for timed plants. Here
we are given a plant modelled as a timed automaton. The timed automata of Alur and
Dill [AD94] are a popular model for time-dependent systems that extend classical finite

? Work partly supported by ACI Cortos, a program of the french ministry of research.
?? Part of this work was done during a visit to LSV, ENS Cachan.

state machines with real-time clocks. These clocks can record the passage of time in
states, and can be used to guard the occurrence of transitions. A timed automaton gen-
erates timed sequences of events – i.e. an alternating sequence of real-valued delays and
events. The fault diagnosis problem for timed plants is thus to detect faulty behaviours
from a given timed sequence of observable events of the plant.

This problem is considerably more difficult in the timed case than in the discrete
case. In the discrete case one deals with classical regular languages which have robust
closure properties and relatively efficient algorithms for determinization and checking
emptiness. Thus one can obtain a diagnoser by essentially determinizing the model
of the plant. In the timed setting the problem is compounded by the fact that timed
automata are a very expressive formalism. While their language emptiness problem is
decidable, they are not determinizable, nor closed under complementation [AD94].

The problem in the timed setting has been studied by Tripakis in [Tri02] where a
variety of results have been shown. In particular, it is shown to be decidable to check
whether a given timed plant is diagnosable or not, and a diagnoser can be constructed as
an online algorithm whenever the plant is indeed diagnosable. The diagnosis algorithm
in [Tri02] is based on state estimation; it is somewhat complex, since it involves keeping
track of several possible control states and zones that the clock values can be in, with
every observable action or time delay of the plant. A natural question that one may ask
here is: when is there a diagnoser which is realizable as a deterministic timed automaton
(DTA)? Such a DTA would lead to a more efficient online diagnosis algorithm, since
with each observable event or time delay there is a single deterministic move in the
DTA.

In this paper we consider two deterministic mechanisms namely general DTA’s and
Event Recording automata (ERA) [AFH94]. For general DTA’s we show that it is decid-
able to check whether a given timed plant has a diagnoser realizable as a DTA, provided
we are given a bound on the resources (i.e. the number of clocks and set of constants)
available to the diagnoser. Whenever such a diagnoser exists, we are able to synthesize
one. The technique used is to relate the existence of a DTA diagnoser to a winning
strategy for a player in a classical state-based two player game.

The decision procedure runs in 2EXPTIME in the size of the plant. We show that
this high complexity is unavoidable in that the problem is 2EXPTIME-complete. The
completeness argument is based on a reduction from the halting problem of an alternat-
ing Turing machine which uses exponential space.

We also look at the problem for a restricted class of DTA’s called Event Recording
Automata [AFH94]. These are a determinizable subclass of timed automata, in which
there is an implicit clock attached to each action. We show that the problem of deciding
whether there is a diagnoser realizable as an ERA – again given a bound on the resources
we allow for the diagnoser – is decidable in PSPACE. Once again the problem is shown
to be complete for PSPACE.

Other recent works show an increasing interest in partial observability (e.g. learn-
ing [GJL04]); this increases complexity of systems as several control problems become
undecidable under partial observability [DM02,BDMP03] . However it seems useful to
combine this issue with on-the-fly analysis (for example monitoring [KT04] or run-time
model-checking [KPA03]). This work puts together these two aspects: the framework

is fault diagnosis of partially observable systems and the deterministic mechanisms we
consider fit the online constraint.

The plan of the paper is as follows. After introducing notations and definitions in
section 2, we will present the problem of fault diagnosis (section 3), starting with results
from [Tri02] and going on to the problem we look at. We then present our result on
the class of deterministic timed automata (section 4) and then on the class of event-
recording automata (section 5). The paper contains only sketches of proof. Detailed
proofs can be found in [Che04] (written in french).

2 Preliminaries

For a set Γ , let Γ ∗ be the set of finite sequences of elements in Γ .

Timed words. We consider a finite set of actions Σ and as time domain the set
�

≥0 of
non-negative rationals. A timed word over Σ is a sequence in (Σ ∪

�
≥0)

∗, i.e. a finite
sequence ρ = γ1, γ2, . . . where each γi is either an event in Σ or a delay in

�
≥0.3

A set of timed words will be called a timed language. If ρ is a timed word, we define
time(ρ) to be the sum of all delays in ρ. If Σ ′ ⊆ Σ and if ρ is a timed word, we denote
by πΣ′(ρ) its projection over the alphabet Σ ′, which means that we erase actions not
in Σ′. For example, if Σ′ = {a, c} ⊆ {a, b, c} = Σ, then πΣ′(0.5, a, 0.7, b, 0.3, c) =
0.5, a, 0.7, 0.3, c which reduces naturally to the timed word 0.5, a, 1, c. This operation
extends in a natural way to timed languages.

Clocks, operations on clocks. We consider a finite set X of variables, called clocks. A
clock valuation over X is a mapping v : X →

�
≥0 that assigns to each clock a time

value. We use 0 to denote the valuation which sets each clock x ∈ X to 0. If t ∈
�

≥0,
the valuation v + t is defined as (v + t)(x) = v(x) + t for all x ∈ X . If Y is a subset
of X , the valuation v[Y ← 0] is defined as: for each clock x, (v[Y ← 0])(x) = 0 if
x ∈ Y and is v(x) otherwise.

The set of constraints (or guards) over a set of clocks X , denoted G(X), is given
by the syntax “g ::= (x ∼ c) | (g ∧ g)” where x ∈ X , c ∈

�
≥0 and ∼ is one of <,

≤, =, ≥, or >. We write v |= g if the valuation v satisfies the clock constraint g, and is
given by v |= (x ∼ c) if v(x) ∼ c and v |= (g1 ∧ g2) if v |= g1 and v |= g2. The set
of valuations over X which satisfy a guard g ∈ G(X) is denoted by JgKX , or just JgK
when X is clear from the context.

Symbolic alphabet and timed automata. Let Σ be an alphabet of actions, and X a
finite set of clocks. A symbolic alphabet Γ based on (Σ,X) is a finite subset of G(X)×
Σ × 2X . As used in the framework of timed automata [AD94], a symbolic word γ =
(gi, bi, Yi)1≤i≤k ∈ Γ

∗ gives rise to a set of timed words, denoted tw(γ). We interpret
the symbolic action (g, b, Y) to mean that action b can happen if the guard g is satisfied,
with the clocks in Y being reset after the action. Formally, let ρ = d0, a1, d1, a2, . . . be
a timed word. Then ρ ∈ tw(γ) if there exists a sequence v = (vi)i≥1 of valuations such

3 Following [Tri02], we use this definition of timed words, a more classical definition of timed
words as in [AD94] could be used as well.

that for all i ≥ 1, ai = bi, vi−1 + di−1 |= gi and vi = (vi−1 + di−1)[Yi ← 0] (with the
convention v0 = 0).

A timed automaton (TA for short) is a tuple A = (Σ,X,Q, q0, F,−→, Inv) where
Σ is a finite alphabet of actions, X is a finite set of clocks, Q is a finite set of states,
q0 ∈ Q is the initial state, F ⊆ Q is the set of final states,−→⊆ Q×Γ×Q is a finite set
of transitions over some symbolic alphabet Γ based on (Σ,X), and Inv : Q → G(X)
is an invariant function. The timed automaton A is said to be deterministic if, for every
state, the set of symbolic actions enabled at that state is time-deterministic, i.e. do not
contain distinct symbolic actions (g, a, Y) and (g′, a, Y ′) with JgK∩Jg′K 6= ∅. The class
of deterministic timed automata is denoted DTA. An event-recording automaton (ERA
for short) [AFH94] is a timed automaton (Σ,X,Q, q0, F,−→, Inv) where X = {xa |

a ∈ Σ} and q
g,a,Y
−−−→ q′ implies Y = {xa}. Informally the clock xa stores the time

elapsed since the last occurrence of action a. We extend the above definitions to allow
ε-transitions (or silent transitions) in our timed automata [BDGP98].

For convenience, we will assume that all guards in timed automata are compatible

with invariants in the following sense. If q
g,a,Y
−−−→ q′ is a transition, we want that JgK be

included in JInv(q)K, and [Y ← 0]JgK be included in JInv(q′)K. If it is not the case, it is
easy to transform the timed automaton so that this condition holds.

A path in a TA A is a finite sequence of consecutive transitions:

q0
g1,a1,Y1
−−−−−→ q1 . . . qk−1

gk,ak,Yk−−−−−→ qk, s.t ∀1 ≤ i ≤ k, (qi−1, gi, ai, Yi, qi) ∈−→

The path is said to be accepting in A if it ends in a final state qk ∈ F .
A timed automaton A can then be interpreted as a classical finite automaton on the

symbolic alphabet Γ . Viewed as such, A accepts (or generates) a language of symbolic
words, Lsym (A) ⊆ Γ ∗, constituted by the labels of the accepting paths in A. We will
be more interested in the timed language generated by A, denoted L(A), and defined
by L(A) = tw(Lsym (A)).

Synchronized product. Let Ai = (Σi, Xi, Qi, q
i
0, Fi,−→i, Invi) be two timed au-

tomata. Without loss of generality we assume that X1 and X2 are disjoint. The syn-
chronized product of A1 and A2 is defined as the timed automaton A1 ‖ A2 =
(Σ,X,Q, q0, F,−→, Inv) where Σ = Σ1 ∪ Σ2, X = X1 ∪ X2, Q = Q1 × Q2,

q0 = (q01 , q
0
2), F = F1×F2 and (q1, q2)

g,a,Y
−−−→ (q′1, q

′
2) whenever one of the following

conditions holds:

– a ∈ Σ1 ∩Σ2 and there exist q1
g1,a,Y1
−−−−→1 q

′
1 and q2

g2,a,Y2
−−−−→2 q

′
2 with g = g1 ∧ g2

and Y = Y1 ∪ Y2

– a ∈ Σi \Σj (with i 6= j), there exists qi
g,a,Y
−−−→i q

′
i and q′j = qj

This synchronized product is the classical composition where both components syn-
chronize on common actions.

Region automata. Region automata have been proposed in [AD94] for abstracting
timed behaviours. Regions are classes of an equivalence relation over valuations which

satisfy the nice property that two equivalent valuations have equivalent (time and dis-
crete) successors. The region automaton construction is the core of the decidability
proof for checking emptiness of timed automata. We will make use of the region au-
tomaton in Lemma 2. In the following if A is a timed automaton, we will denote its
region automaton byR(A).

Granularity. In the following, we will consider models with bounded resources, for
example the subclass of DTA’s using 5 clocks and integer constants smaller than 7.
Fixing resources of models has been frequently done in the past in several contexts: sat-
isfiability of timed µ-calculus [LLW95], controller synthesis [DM02,BDMP03], testing
[KT04]. In all cases, fixing the resources helps in getting decidability results, and it is
quite natural when our aim is to synthesize a system (with given physical resources).

We formalize this notion by defining a measure of the clocks and constants used in a
set of constraints. A granularity is a tuple µ = (X,m,max) whereX is a set of clocks,
m is a positive integer and max : X −→

�
≥0 a function which associates with each

clock of X a positive rational number. The granularity of a finite set of constraints is
the tuple (X,m,max) where X is the exact set of clocks mentioned in the constraints,
m is the least common multiple of the denominators of the constants mentioned in the
constraints, and max records for each x ∈ X the largest constant it is compared with. A
granularity ν = (X ′,m′,max

′) is said to be finer than a granularity µ = (X,m,max)
(or equivalently µ is said to be coarser than ν) if X ⊆ X ′, m divides m′ and for all
x ∈ X max

′(x) ≥ max (x). A constraint g is called µ-granular if it belongs to some set
of constraints of granularity µ (note that a µ-granular constraint is also ν-granular for
any granularity ν finer than µ). We denote the set of all µ-granular constraints by G(µ).
A constraint g ∈ G(µ) is called µ−atomic if for all g′ ∈ G(µ), either JgKX ⊆ Jg′KX

or JgKX ∩ Jg′KX = ∅. Let atomsµ denote this set of µ-atomic constraints. By the
granularity of a timed automaton, we will mean the granularity of the set of constraints
used in it. For such an automaton, the granularity µ represents its resources in terms
of clocks and constants. We denote by DTAµ (resp. ERAµ) the class of DTA’s (resp.
ERA’s) whose granularity is coarser than µ. Let µ = (X,m,max) be a granularity over
Σ, we denote by Γµ the symbolic alphabet over µ (i.e. the set atomsµ ×Σ × 2X) and
Uµ the universal single-state automaton over symbolic alphabet Γµ.

Let µ = (X,m,max) be a granularity over the alphabetΣ and ν = (X ′,m′,max
′)

be a granularity finer than µ over Σ ′ ⊇ Σ. For (g′, a′, Y ′) ∈ atomsν × Σ
′ × X ′ a

symbolic letter over ν, we define the projection (g′, a′, Y ′)�µ as follows: let g be the
unique µ-atomic constraint such that Jg′KX′ ⊆ JgKX′ , Y = Y ′∩X , then (g′, a′, Y ′)�µ is
defined to be (g, a′, Y) if a′ ∈ Σ and ε (the empty word) if a′ /∈ Σ. If µ is a granularity
and A a TA whose granularity is finer than µ, we denote by A�µ the TA in which every
transition label is replaced by its projection on µ.

3 The Fault Diagnosis Problem

In this section, we present the problem of fault diagnosis for timed systems. First we
recall basic definitions and existing work and then we present our approach which in-
volves fault diagnosis by timed automata.

3.1 Existing Work

In this section we present the basic notions and the main results from [Tri02].

For the rest of the paper, Σo denotes an alphabet of observable events while Σu

denotes an alphabet of unobservable events. We assume that Σo and Σu are disjoint.
Given a timed word ρ, its observation is its projection over Σo, i.e. πΣo

(ρ). In what
follows, we will simply write π instead of πΣo

. A run ρ = β1, β2, . . . , βp is called
faulty if there exists i ∈ � such that βi = f . It is called ∆-faulty if for one such i,
time(βi+1, . . . , βp) ≥ ∆.

A plant is a tuple P = (Σo, Σu, Q, q0,−→, X, Inv) where (Σo ∪Σu, X,Q, q0, Q,
−→, Inv) is a TA (thus a plant has all states final). A run of the plant is simply a timed
word generated by the plant. Given a plant P , we denote by L∆f (P) the set of∆-faulty
runs of P and L¬f (P) the set of non-faulty runs of P . From now on, when there is no
ambiguity, L∆f (P) (resp. L¬f (P)) will be denoted L∆f (resp. L¬f).

Fault diagnosis aims at computing a function which, given an observation, decides
if a fault has occurred or not, and which always announces faults at most ∆ time units
after it has occurred. Such a function should announce a fault on all ∆-faulty runs and
should not announce a fault on non-faulty runs; this is captured by the next definition,
which is an equivalent reformulation of Tripakis’ notion of diagnosability.

Definition 1. A plant P is called ∆-diagnosable if there exists a recursive language L
such that

π(L∆f) ⊆ L ⊆ π(L¬f)c .

This definition raises the following computational problem where ∆ ∈
�

≥0:

Problem 1 (∆-diagnosability) Given a plant P , decide whether P is ∆-diagnosable
or not.

This problem is solved in [Tri02]:

Theorem 1 ([Tri02]). ∆-diagnosability is PSPACE-complete.

3.2 Diagnosability by Automata

The problem solved in [Tri02] is very general: the diagnoser is only supposed to be
recursive, which, in practice, may be a complex algorithm. The algorithm proposed in
[Tri02] is based on state estimation in a TA with ε-transitions, its complexity to diagnose
faults from an observation is doubly exponential in the size of the plant and in the size
of the observation, though an algorithm based on regions (and no more on zones) with
a complexity exponential in both the size of the plant and of the observation could be
proposed as well.

This high complexity in the size of the observation is not satisfactory if we want to
perform “online diagnosis”, i.e. if we want the diagnoser to detect faults from real-time
observations of the system.

This has motivated the definition of diagnosability using timed automata: we are
no more looking for a diagnoser which may be a general algorithm but for a diagnoser

which will be a timed automaton. With such a diagnoser, the complexity of detecting
faults online will no more be (doubly) exponential in the length of the observation since
after each observable action the diagnoser has just to make a single deterministic move.
We formalize this notion of diagnosability using timed automata as follows.

Definition 2. Let C be a class of timed automata. Let P be a plant. We say that P is
∆-C-diagnosable whenever there exists some θ ∈ C such that

π(L∆f) ⊆ L(θ) ⊆ π(L¬f)c .

We call such a θ a ∆-C-diagnoser for P .

The sets of diagnosers which will be of interest to us are deterministic mechanisms
like DTA’s and ERA’s. In the sequel we will study the following problem, where ∆ ∈

�
≥0 and C is a class of automata:

Problem 2 (∆-C-diagnosability) Given a plant P , decide whether P is ∆-C-diagno-
sable or not.

x = 1,
u,

x := 0
x = 0, f

x = 0, a

0 < x < 1, a

Fig. 1. Plant diagnosable but not DTA-diagnosable

We first notice that this problem is distinct from problem 1: every DTA-diagnosable
plant is diagnosable, but some diagnosable plants are not DTA-diagnosable as illus-
trated by the plant in Fig. 1. Indeed, a diagnoser will announce a fault if action a hap-
pens at an integer date (this can not be expressed by a DTA, as shown in [BDGP98]).

4 Diagnosability with Deterministic Timed Automata

We do not consider the general problem of ∆-DTA-diagnosability but we restrict our-
selves to the case when the resources of the diagnoser are fixed. We thus consider in this
section the ∆-DTAµ-diagnosability problem: we aim at constructing diagnosers which
are DTA’s with a fixed granularity µ over Σo. In this framework, our main theorem is
the following.

Theorem 2. Let µ be a granularity over observable events and ∆ ∈
�

≥0. The ∆-
DTAµ-diagnosability problem is 2EXPTIME-complete.

Before presenting the proof of this theorem, let us first state the two following useful
lemmas: the first lemma states that we can construct timed automata recognizing non-
faulty and ∆-faulty runs while the second one explains how behaviours of the plant can
be seen “through” the granularity µ.

Lemma 1. Let P be a plant and ∆ ∈
�

≥0. We can construct in polynomial time timed
automata with ε-transitionsP¬f and P∆f such that L(P¬f) = π(L¬f) and L(P∆f) =
π(L∆f).

Proof (Sketch). P¬f is constructed from P as follows: erase transitions labelled by f
(to prevent P from making faults), replace all transitions labelled by u ∈ Σu by ε-
transitions and make all states final.
Before constructing P∆f , we modify the plant P , and con-
struct a new plant P ′, which has the same observations as
P , and in which information on whether the current run is
∆-faulty or not is stored in the current state of P ′. P ′ is
constructed as three copies of P , say P1,P2 and P3: doing
a fault in P1 leads to P2; in P2 the automaton behaves like
P for ∆ time units before switching to P3 by an unobserv-
able action u. This can easily be formalized using a fresh
clock z which is reset when a fault is done in P1 (leading
to plant P2), adding an invariant z ≤ ∆ in all locations of
P2 and as soon as z = ∆, a transition labelled by u leads to
P3. In the following we will assume that the plant is already
given asP ′ and will call states ofP1 “non-faulty” and states
of P3 “∆-faulty”.
To get P∆f , we just replace transitions labelled by u ∈ Σu

by ε-transitions in P ′ and mark all states of P3 as final.
It is not difficult to check that this automaton recognizes
π(L∆f).

f
z := 0

(z ≤ ∆)

z = ∆
u

P3

P2

P1

ut

The following lemma is a consequence of the region automata construction:

Lemma 2. Let A be a timed automaton and µ a granularity. The region automaton
R(A ‖ Uµ)�µ recognizes the set

Lsym (R(A ‖ Uµ)�µ) = {γ ∈ Γ ∗
µ | ∃ρ ∈ L(A) s.t. π(ρ) ∈ tw(γ)}

4.1 ∆-DTAµ-Diagnosability is in 2EXPTIME

In [BDMP03], the control problem under partial observability is proved to be in 2EX-
PTIME using a timed game construction. A similar construction can be carried out, but
we present here a direct construction which gives more intuition.

Lemma 3. ∆-DTAµ-diagnosability is in 2EXPTIME.

Proof (Sketch). Let P = (Σo, Σu, Q, q0,−→, X, Inv) be a plant and µ = (Y,m,max)
a granularity over Σo. We will construct a classical (untimed) safety game GP,µ,∆: it is
a two-player turn-based perfect information game over a finite graph where one player
wants to stay in the “safe” states, whereas the other player wants to enforce an “unsafe”
state. We refer to [GTW02] for basics results on games. In our case, the two players

are the “diagnoser” and the “environment”, and player “diagnoser” will have a winning
strategy in game GP,µ,∆ if and only if P is ∆-DTAµ-diagnosable.

The arena of the game is constructed as follows: we first compute the region au-
tomaton R of P∆f ‖ Uµ. Its granularity is finer than µ, because it takes into account
clocks and constraints from Uµ. To express that not everything can be observed, we
project this automaton over the granularity µ to getR�µ (intuitively this represents how
runs can be seen “through” the granularity µ). This automaton (considered as a finite
automaton over the alphabet Γµ) is not deterministic and has ε-transitions, we thus de-
terminize it as a classical finite automaton by the usual subset construction and denote
K the result. A state of K is a set {(q1, R1), · · · , (qk, Rk)} where qi’s are states of P
andRi’s regions; being in such a state means that according to the observation the plant
can be in a state (qi, vi) with vi ∈ Ri.

Finally GP,µ,∆ is obtained fromK by splitting every transition q
g,a,Y
−−−→ q′ ofK into

two transitions q
g,a
−−→ (q, g, a) and (q, g, a)

Y
−→ q′ where (q, g, a) is a new state. The

intuition behind this split is that player “environment” chooses which action is done and
at what time this action is done (state q will thus be an “environment” state) whereas
player “diagnoser” chooses which clocks are reset (the state (q, g, a) is a “diagnoser”
state). The forbidden states of this safety game are those states of K which contain both
“non-faulty” and “∆-faulty” states ofR�µ.

Using lemma 2, we can prove that player “diagnoser” has a winning strategy in the
game GP,µ,∆ to avoid the forbidden states if and only if P is ∆-DTAµ-diagnosable.
GP,µ,∆ is a simple untimed game with a safety objective, it is easy to synthesize po-
sitional winning strategies when some exist. Such a winning strategy can be obtained
from GP,µ,∆ by erasing some of the reset transitions (i.e. transitions labelled by some
subset Y). From this automaton, we can easily synthesize a diagnoser for P (by taking
as final those states where all regions are ∆-faulty and merging q

g,a
−−→ (q, g, a) with

(q, g, a)
Y
−→ q′ into q

g,a,Y
−−−→ q′).

The complexity of extracting winning strategies from safety (untimed) games is lin-
ear in the size of the arena, the complexity of deciding whether a ∆-DTAµ-diagnoser
exists (and constructing it) is thus doubly exponential because the size of R is expo-
nential in the size of P and µ (see [AD94]) and the size of K is exponential in the size
ofR thus doubly exponential in the size of P and µ. ut

Example 1. We illustrate the proof on a small example: consider the following plant,
the granularity µ = ({y}, 1, 0) and the delay ∆ = 0.

q0 q1

f

¬f

a, x := 0

x > 0, f.a

x = 0, a

The notation f.a is for an action f immediately followed by an a. This plant is ∆-
DTAµ-diagnosable: a diagnoser resetting his clock when reading the first a will be able
to diagnose P simply by checking the value of his clock when reading the second a.

The game constructed in the previous proof is depicted on the next picture:

GP,µ,∆

q0
x=y=0

q1
x=y=0

q1
y >0=x

f

x>0=y

f

x, y >0

¬f

x=y=0

¬f f

x=y=0 x>0=y

¬f f

y >0=x x, y >0

y = 0, a

y > 0, a

y := 0

y := 0

y > 0, a

y = 0, a

y > 0, a

y := 0

y := 0

y := 0

The states that player diagnoser must avoid in the above game are the gray states
which contain both faulty and non-faulty regions (informally states in which the diag-
noser cannot know if the run of the plant is faulty or not). In the game, “circle”-states
belong to the “environment” player while “square”-states belong to the “diagnoser”
player. In the game-graph, it is easy to see that “diagnoser” has a winning strategy.
The problematic state is the bottom-left-most square-state: if “diagnoser” plays action
“y := 0”, he wins; if he chooses the other transition, player “environment” can win by
next playing “y > 0, a”. This confirms what we have noticed: if a diagnoser resets his
clock when reading the first a, he can diagnose correctly; but if he does not reset his
clock, he will be unable to diagnose the plant.

4.2 ∆-DTAµ-Diagnosability is 2EXPTIME-Hard

The proof uses a reduction from the halting problem of alternating Turing machines
using exponential space. We only sketch the reduction, details can be found in [Che04].

LetM be an alternating Turing machine using exponential space and let w0 be an
input for M. We will construct a plant P such that there is a ∆-DTAµ-diagnoser for
P (with µ = ({t}, 2, 1) and ∆ = 1) if and only ifM accepts w0. We somehow want
to force a potential diagnoser θ for P to play the sequence of configurations which ac-
cepts w0. The role of the plant is to give inputs to the diagnoser so that it can verify
that the diagnoser really plays the accepting sequence of configurations. The diagnoser
will have to play a sequence of configurations C0#C1# . . .#Ck where each Ci is a
configuration ofM, Ci+1 is the successor of Ci and C0 is the initial configuration en-
coding the input w0. The behaviour of P is depicted on Fig. 2. P produces a’s (on the
figure, one line of a’s corresponds to a configuration, i.e. to an exponential number of
a’s) and checks that the diagnoser plays the configurations ofM correctly by perform-
ing one test. As the decision to perform the test is done in a non-observable way (u
actions are non-observable), to be correct, a diagnoser cannot cheat and has to simu-
lateM. #’s are observable and are indexed to represent alternation ofM (in case of a
universal configuration ofM, the diagnoser has to know which transition rule the plant
wants to follow). As already said, a configuration needs an exponential number of a’s,
as the discrete structure of P cannot count, we use clocks for counting this exponential

Check initial
configuration

Check succ.
relation

u

u

a a
· · ·

#1, #2

a a
· · ·

#1, #2

Fig. 2. Shape of the plant for the reduction

number of a’s. We cannot give all details here and better refer the reader to [Che04].
Note that the two checks can be encoded by 3SAT-formulae (in conjunctive normal
form [Pap94]). We will now explain how such formulae can be encoded.

Given a 3SAT-formula ϕ we want to construct aa, x := 0 a, y := 0

Fig. 3. Choice of a variable
plant P such that P is ∆-DTAµ-diagnosable if and
only if ϕ is satisfiable. We first explain how a diag-

noser θ will choose the truth of a propositional variable p. Consider the plant in Fig. 3.
When two a’s have been done, θ will know that the plant is in the black state but it
will know the value of at most one of the two clocks x and y because θ is supposed to
have only one clock t. The choice true for p will be encoded by the fact that the clock
t has the same value as the clock x (we will say in this case that θ has stored x). We
now show how we can force a diagnoser θ to set p to true, i.e. to store clock x. Fig. 4
illustrates the construction. The main idea is that if θ stores x, after three a’s, if the

a, x := 0 a, y := 0

3

2

1

a

x < 2 ∧ y > 1

x > 2 ∧ y < 1, a

x > 2 ∧ y > 1

a

3
?, z := 0 z = 0, f z = 0, a

2
OK, z := 0 z = 0, ¬f z = 0, a

1
?, z := 0 z = 0, ¬f z = 0, a

Fig. 4. Plant ensuring that p is set to true

constraint x < 2 holds he will know that P is in state 3 whereas if the constraint x > 2
holds he may not know if P is in state 1 or in state 2 . Similarly if θ stores y, he may
hesitate between state 1 and state 3 , but ifP is in state 2 , θ knows it. To force θ storing
x, P will give him one more information which will be an observable action “OK” or
“?” with which θ will break the uncertainty between state 1 and state 2 , but not the
uncertainty between state 1 and state 3 . Thus if θ stores x he will precisely know in
which black state P is after having done four actions and will thus be able to diagnose
P correctly, but if θ stores y he may be uncertain between states 1 and 3 . and will thus
not be able to diagnose correctly P because the execution after state 1 is non-faulty
(¬f represents a non-observable non-faulty action) whereas the execution after state 3

is faulty. Of course a similar construction (breaking the uncertainty between 3 and 1)
can be done for proposition ¬p, thus enforcing clock y to be stored by a diagnoser. The
previous construction is extended to clauses of 3SAT by branching automata as the one
on Fig. 4. It’s better to explain the construction on an example. We choose the formula
p1∨¬p3 (thus ignoring p2). The left-most frame of Fig. 5 corresponds to the previously

Choice for p1 No choice needed for p2 Choice for p3 Breaking the
uncertainty

Fig. 5. Plant ensuring that p1 ∨ ¬p3 is true

described choice for p1, the second frame is for p2 (p2 is not used in the clause, thus no
branching is needed, but it may be used by other clauses), there is no constraint on the
choice for p2, the third frame is for the choice for p3. The last frame is for breaking the
uncertainty between conflicting runs (adding “OK” and “?” labels followed by either a
fault or no fault, as previously). It could be argued that there is no need of the frame for
p2 as p2 is not used in the clause. However, as we have a set of clauses to be satisfied,
we need to have this linear part for p2. Indeed, for a formula ϕ =

∧n
i=1 ψi with ψi

clause, the plant for ϕ will be as on Fig. 6. Non-observable action u’s role is to hide
what clause the plant is going to check. To be correct, θ must thus satisfy all clauses
(with a unique valuation for the propositional variables). This plant can be diagnosed if
and only if ϕ is satisfiable.

u

Constr. for ψ1

u Constr. for ψ2

u

Constr. for ψn

Fig. 6. Plant for a 3SAT-formula

This concludes the proof of 2EXPTIME-hardness of the ∆-DTAµ-diagnosability
problem. Note that a similar construction could be done when the diagnoser can use an
arbitrary (but fixed) number of clocks. ut

5 Diagnosability by Event-Recording Timed Automata

The class ERA [AFH94] appears as a natural class of automata for observing systems
because clocks and thus timing information are dependent on events (thus precisely
what is observed). The fundamental properties of ERA’s we will use are the following:

– ERA’s are determinizable [AFH94]
– ERA’s are “input-determined” [DT04]: after having read a timed word, the truth of

a guard is completely determined by the word itself. This implies in particular that
if w is a timed word and µ a granularity for the observable events, there exists a
unique symbolic word γ ∈ Γµ such that w ∈ tw(γ).

a

x ≥ 1, f, x := 0
x = 0, a

x < 1, a

Fig. 7. Plant DTA-diagnosable but not ERA-diagnosable

As previously we restrict to ERA’s with bounded resources and tackle the∆-ERAµ-
diagnosability problem for a fixed granularity µ. It is worth noticing first that ERA-
diagnosability is less powerful than DTA-diagnosability as illustrated by the plant on
Fig. 7: a DTA-diagnoser with one clock for this plant does not reset its clock when the
first a occurs and checks the value of its clock when the second a occurs; it announces
a fault only if the value is greater than 1. There is no ERA-diagnoser for this plant.

Deciding diagnosability for ERA’s is much easier than for DTA’s, as stated by the
next theorem. Note that the PSPACE complexity is “optimal” for the diagnosability
problem in the sense that there is no hope for finding interesting classes of diagnosers
with a lower complexity.

Theorem 3. Let µ be a granularity over observable events and ∆ ∈
�

≥0. The ∆-
ERAµ-diagnosability problem is PSPACE-complete.

Proof (Sketch). Let us first argue why ∆-ERAµ-diagnosability is PSPACE-hard. This
can easily be shown by reducing the reachability problem in a timed automaton to ∆-
ERAµ-diagnosability. Consider a timed automaton A over alphabet Σ and add two
fresh unobservable actions u and f (the fault) which are done immediately after having
reached some final state of A. The modified automaton is noted P . For every ∆ > 0,

for every granularity µ, taking Σo = Σ and Σu = {u, f}, we get that a final state is
reachable inA if and only if there is no ∆-ERAµ-diagnoser for P (in case no final state
is reachable, the diagnoser is trivial as it needs not accept anything).

We will now sketch the proof of PSPACE-membership of the problem. Let P =
(Σo, Σu, Q, q0,−→, X, Inv) be a plant and µ = (Y,m,max) a granularity over Σo.
Let S∆f = R(P∆f ‖ Uµ)�µ and S¬f = R(P¬f ‖ Uµ)�µ. Informally S∆f (resp. S¬f)
recognizes all observations that may come from ∆-faulty (resp. non-faulty) runs. The
result can finally be deduced from lemma 2 and from the following lemma:

Lemma 4. The following properties are equivalent:

(i) P is ∆-ERAµ-diagnosable,
(ii) {γ ∈ Γ ∗

µ | ∃ρ1 ∈ L¬f and ρ2 ∈ L∆f s.t. π(ρ1), π(ρ2) ∈ tw(γ)} is empty,
(iii) L(S∆f) ∩ L(S¬f) is empty.

ut

Note that if P is ∆-ERAµ-diagnosable, the proof provides a diagnoser: one can
prove that π(L∆f) ⊆ L(S∆f) ⊆ L(S¬f)c ⊆ π(L¬f)c, S∆f is a ∆-ERAµ-diagnoser
for P . Moreover, S∆f is an optimal diagnoser in the sense that it is the smallest diag-
noser (for language inclusion). This property is specific to the model of ERA’s; such a
property does not hold for the class DTAµ.

6 Conclusion

We have shown that diagnosability using DTA’s and ERA’s is a decidable problem when
resources of the diagnoser are fixed. Moreover if a diagnoser exists, it is possible to
construct one: the size of such a diagnoser is doubly exponential in the granularity and
in the size of the plant. Thus if we assume that the diagnoser can be pre-computed,
diagnosing online becomes exponential in the granularity and in the plant, but only
linear in the length of the observation. The use of deterministic mechanisms thus allows
to construct diagnosers with short response time, which is crucial in fault detection.

We have also pointed out a significant complexity jump between two classes of po-
tential diagnosers: existence of diagnoser in the class DTA (with bounded resources) is
2EXPTIME-complete whereas it is PSPACE-complete for the class ERA (with bounded
resources). The class ERA thus appears as a natural and useful class of diagnosers.

This work is related to conformance testing where the aim is to generate testers for a
given specification. Such a problem has for example been considered in [KT04] where
an algorithm for building small testers (with fixed resources) is proposed. We think that
our approach (based on games) could be applied in such a framework as well.

As future work we aim at studying the diagnosability problem in the classes DTA
and ERA but without bounding the resources of the diagnoser. We also want to ex-
plore more precisely the links between control and diagnosability: even if we can re-
duce diagnosability to control, the result of [BDMP03] together with our 2EXPTIME-
completeness result show that diagnosability is as difficult as control for some classes
of diagnosers/controllers, which may appear intriguing.

Acknowledgment: We thank Thierry Cachat for his remarks on a draft of this paper.

References

[AD94] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science
(TCS), 126(2):183–235, 1994.

[AFH94] R. Alur, L. Fix, and T.A. Henzinger. A determinizable class of timed automata. In
Proc. 6th Int. Conf. on Computer Aided Verification (CAV’94), vol. 818 of LNCS, pp.
1–13. Springer, 1994.

[BDGP98] B. Bérard, V. Diekert, P. Gastin, and A. Petit. Characterization of the expressive
power of silent transitions in timed automata. Fundamenta Informaticae, 36(2–
3):145–182, 1998.

[BDMP03] P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with partial
observability. In Proc. 15th Int. Conf. Computer Aided Verification (CAV’2003), vol.
2725 of LNCS, pp. 180–192. Springer, 2003.

[Che04] F. Chevalier. Détection d’erreurs dans les systèmes temporisés. Master’s thesis, DEA
Algorithmique, Paris, 2004.

[DM02] D. D’Souza and P. Madhusudan. Timed control synthesis for external specifications.
In Proc. 19th Int. Symp. Theoretical Aspects of Computer Science (STACS’02), vol.
2285 of LNCS, pp. 571–582. Springer, 2002.

[DT04] D. D’Souza and N. Tabareau. On timed automata with input-determined guards.
In Proc. Joint Conf. Formal Modelling and Analysis of Timed Systems and Formal
Techniques in Real-Time and Fault Tolerant System (FORMATS+FTRTFT’04), vol.
3253 of LNCS, pp. 68–83. Springer, 2004.

[GJL04] O. Grinchtein, B. Jonsson, and M. Leucker. Learning of event-recording automata.
In Proc. Joint Conf. Formal Modelling and Analysis of Timed Systems and Formal
Techniques in Real-Time and Fault Tolerant System (FORMATS+FTRTFT’04), vol.
3253 of LNCS, pp. 379–395. Springer, 2004.

[GTW02] E. Grädel, W. Thomas, and T. Wilke, eds. Automata, Logics, and Infinite Games: A
Guide to Current Research, vol. 2500 of LNCS. Springer, 2002.

[KPA03] K.J. Kristoffersen, C. Pedersen, and H.R. Andersen. Runtime verification of timed
LTL using disjunctive normalized equation systems. In Proc. 3rd Int. Work. Runtime
Verification, Electronic Notes in Computer Science. Elsevier, 2003.

[KT04] M. Krichen and S. Tripakis. Real-time testing with timed automata testers and
coverage criteria. In Proc. Joint Conf. Formal Modelling and Analysis of Timed
Systems and Formal Techniques in Real-Time and Fault Tolerant System (FOR-
MATS+FTRTFT’04), vol. 3253 of LNCS, pp. 134–151. Springer, 2004.

[LLW95] F. Laroussinie, K.G. Larsen, and C. Weise. From timed automata to logic – and back.
In Proc. 20th Int. Symp. Mathematical Foundations of Computer Science (MFCS’95),
vol. 969 of LNCS, pp. 529–539. Springer, 1995.

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
[SSL+95] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. C. Teneketzis.

Diagnosability of discrete event systems. IEEE Transactions on Automatic Control,
40(9):1555–1575, 1995.

[SSL+96] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. C. Teneketzis.
Failure diagnosis using discrete event systems. IEEE Transactions on Control Systems
Technology, 4(2):105–124, 1996.

[Tri02] S. Tripakis. Fault diagnosis for timed automata. In Proc. 7th Int. Symp. Formal Tech-
niques in Real-Time and Fault Tolerant Systems (FTRTFT’02), vol. 2469 of LNCS,
pp. 205–224. Springer, 2002.

[Tri03] S. Tripakis. Folk theorems on the determinization and minimization of timed au-
tomata. In Proc. 1st Int. Work. on Formal Modeling and Analysis of Timed Systems
(FORMATS’03), vol. 2791 of LNCS, pp. 182–188. Springer, 2003.

