
Cunf: A Tool for Unfolding and Verifying
Petri Nets with Read Arcs

César Rodríguez and Stefan Schwoon

LSV (ENS Cachan & CNRS & INRIA), France

Abstract. Cunf is a tool for building and analyzing unfoldings of Petri
nets with read arcs. An unfolding represents the behaviour of a net by
a partial order, effectively coping with the state-explosion problem stem-
ming from the interleaving of concurrent actions. C-net unfoldings can
be up to exponentially smaller than Petri net unfoldings, and recent work
proposed algorithms for their construction and verification. Cunf is the
first implementation of these techniques, it has been carefully engineered
and optimized to ensure that the theoretical gains are put into practice.

1 Overview

Petri nets are a model for concurrent, distributed systems. Unfoldings are a
well-established technique for verifying properties of Petri nets; their use for this
purpose was initially proposed by McMillan [6]. The unfolding of a (Petri) net is
another net of acyclic structure that fully represents the state-space (reachable
markings) of the first, see, e.g., fig. 1 (c). Because unfoldings represent behaviour
by acyclic structures rather than by interleaved actions, they are often exponen-
tially smaller than the state-space of N , and never larger than it.

Recently, the unfolding construction was extended to Petri nets with read arcs,
also called contextual nets (c-nets) [2]. This extension is partially motivated by
the fact that c-net unfoldings can yet again be exponentially smaller than Petri
net unfoldings. In this paper, we present Cunf the first tool for constructing
and analyzing c-net unfoldings, freely available from [8]. The theoretical basis of
the tool was presented in [2, 1, 9].

We assume the reader is familiar to Petri nets [7]. A c-net is a Petri net where
in addition to the ordinary arcs (arrows) between places and transitions, one
may use read arcs. Figure 1 (a) shows a c-net, read arcs are the undirected lines;
we say that t2 reads p4. A marking enables t2 if it puts tokens on places p1 and
p4; but firing t2 only consumes the token in p1, the token in p4 remains there.

Every c-net can be seen as the marking-equivalent Petri net that results from
replacing read arcs for pairs of arcs, as in fig. 1 (a) and (b). Although both nets
have the same markings, remark, however, that t1, t2 are concurrent in (a), both
read p4 at the same time, but not in (b), as they compete for the token in p4.

The unfolding of a bounded c-net N is another well-defined, finite, acyclic
c-net PN , where each place (resp. transition) of PN is labelled by a place
(resp. transition) of N and such that runs of PN are labelled by runs of N .

D. Van Hung and M. Ogawa (Eds.): ATVA 2013, LNCS 8172, pp. 492–495, 2013.
c© Springer International Publishing Switzerland 2013

Cunf: A Tool for Unfolding and Verifying Petri Nets with Read Arcs 493

p5

(a) (b) (c)

p4

t1

t2

t4

t3

p1 p2 p3

p6

p7

p5

p1 p2 p3

t1

t3
p4

t2

p5 t4 p6

p7

t4t4t4t4

p3p2p1

t1

p4

p7p7p7p7 p7

p4p4

p5

t4

p6p4 p4

p6

t3

t3t2

t2

Fig. 1. (a) a c-net; (b) its encoding into a Petri net; (c) unfolding of (b)

The crucial property of PN is that for every marking m of N , it contains a mark-
ing m′ labelled by m.1 Reachability on N is a PSPACE-complete problem which,
however, reduces to an NP-complete problem on PN . The decreased complexity
comes from PN being acyclic. Thus, PN can be seen as a symbolic representation
of the reachable markings of N , particularly compact for concurrent systems.

Abstractly, this explains why c-net unfoldings can be even smaller than plain
unfoldings. The unfolding of fig. 1 (a), which is isomorphic to (a), exploits that
t1, t2 are concurrent and leaves them unmodified. The unfolding of (b), however,
need to unfold the loops around p4, explicitly producing all interleavings of the
reading transitions t1, t2 — up to exponentially many of them for n readers.

2 Cunf and Cna’s Algorithms and Their Implementation

Our toolset mainly consists of two programs: Cunf constructs unfoldings of 1-
safe (places carry 0 or 1 tokens) c-nets, and Cna (Contextual Net Analyser)
carries out verification on them.

Unfoldings are built iteratively. Cunf starts with an unfolding prefix contain-
ing just a copy of the initial marking of N . This prefix is extended with one event
(transition), called possible extension, yielding a new prefix; this is repeated until
the unfolding prefix is big enough to represent all reachable markings of N . Com-
puting the possible extensions is NP-complete, and requires solving (a variant
of) the coverability problem for sets of places of the prefix.

Cunf achieves this by a concurrency relation on the (enriched) places of the
prefix [1]. This relation can be seen as a database that serves to both solve
coverability queries and update the relation itself. Cunf spends more than 80%
of the time computing the concurrency relation. Efficient computation of the
unfolding, thus, almost entirely relies on the efficient computation of this relation,
which Cunf implements with adjacency lists. The tool uses around a dozen
optimizations for handling these lists, some of them are reported in [1, Sec. 6].
1 The reader acquainted with the literature on unfoldings may have realized that

by unfolding, or PN , in this paper we mean the unique, finite, marking-complete
branching process one builds from the c-net after fixing a complete adequate order [1].

494 C. Rodríguez and S. Schwoon

To keep the unfolding finite, certain enriched events are marked as cut-offs,
they are the pruning points of the otherwise potentially infinite branches. Intu-
itively, those are events whose history reaches a marking already reached by (the
history of) an event previously added, cf. [1].

Cunf is a mature tool that comprises around 4000 lines of C code, carefully
profiled and optimized during its 3 years of existence. It is a command-line tool,
but comes with scripts to translate the output of graphical c-net editors such
as Coloane [5]. Cunf and Cna are integrated in the Cosyverif [3] environ-
ment, which facilitates its invocation and usage. Also, several c-net generators
(Conway’s game of life, Dekker’s algorithm) are distributed with the tool [8].

Cna inputs unfoldings generated with Cunf and searches for reachable mark-
ings of the original c-net that enable no transition (deadlocks) or mark a set
of given places (coverability). Cna generates, out of the unfolding, a proposi-
tional formula whose models coincide with the (offending) traces searched by
the tool. It relies on Minisat [4] to solve the formula, and displays the trace
if it is found. Notice that once the unfolding is built, it can serve to answer
multiple queries. Around 10 optimizations for reducing the solving time are im-
plemented. We highlight, e.g., the elimination of stubborn events [9], i.e., certain
events that negatively impact the performance of Minisat’s unit-propagation;
or the reductions of the asymmetric conflict graph, see [9]. In our benchmarks,
Cna has better accumulated solving time than previously existing verification
tools [9], which proves that Cna’s algorithms are practical.

3 Experiments and Applications for the Tool

Every c-net can be encoded into an equivalent Petri net. The c-net unfolding
can be smaller, but its construction algorithm is more involved. This posed
several questions: Are c-net unfoldings smaller than ordinary ones? Can they be
computed faster? Is reachability checking practical on c-net unfoldings?

These questions drove our experiments [1,9]. Considerable effort was invested
into assuring the efficiency and correctness of the unfolder and analyser. In [1],
we applied Cunf to a benchmark of around 100 nets gathered from the unfolding
literature, comparing the results to those obtained from other well established
Petri-net based tools. Contextual unfolding was significantly faster in almost all
examples, and smaller in roughly half of them. These unfoldings had between
102 and 105 events; among the larger ones, Cunf unfolded an average rate of
25000 events per second, running on a 2.67GHz CPU.

Table 1 shows some experimental results. For each example, Cunf is run on
the c-net and its Petri net encoding, and deadlocked-markings are searched with
Cna. Running times, number of events in the unfoldings, and histories [1] for
c-net unfoldings are shown. The numbers for the plain unfoldings are in fact
ratios over corresponding numbers in c-net unfolding. C-net unfolding is faster
than plain unfolding in 4 cases, and slower in 3. In this 3 cases, however, it is
between 14 and 58 times smaller. Cna running times are much smaller than
Cunf’s ones, so verification seems not to be the bottleneck.

Cunf: A Tool for Unfolding and Verifying Petri Nets with Read Arcs 495

Table 1. Experimental results, see the text for more information

Net Contextual Unfoldings Plain Unfoldings
Cunf Cna Cunf Cna

Name Ddlk. Time Hist. Ev. Time Time Ev. Time
Bds(1) No 0.10 4210 1830 0.01 4.19 7.05 8.00
Byz No 2.36 8044 8044 1.68 1.35 1.83 0.23
Ftp No 16.30 50928 50928 0.06 2.26 1.80 4.19
Rw(1,2) No 0.924 49179 49179 0.01 1.42 1.00 1.50
Key(4) Yes 1.32 21742 4754 0.01 0.82 14.64 64.00
Dij(5) No 9.89 126240 10702 1.17 0.48 14.04 1.85
Dek(60) No 4.92 216120 3720 0.03 0.86 58.10 0.43

C-net unfoldings are smaller when the c-nets contain transitions that concur-
rently read common resources, as t1, t2 in fig. 1 (a). This happens naturally in
several applications. Last two examples of table 1 are models of the Dijkstra’s
and Dekker’s mutual exclusion algorithms where c-net unfoldings exhibit impor-
tant gains. Recall that in both algorithms, concurrent processes need to read
other processes’ state variables, hence the gain. Verification of mutual exclusion
protocols, we believe, could be an important application of c-net unfoldings.

Hazard checking in asynchronous circuits (ACs) [6] is another promising ap-
plication. A network of asynchronous boolean gates can be modelled by a c-net,
where each gadget encoding a boolean gate contains many read arcs [9]. Hazards
are undesirable behaviours of ACs, whose existence reduces to a coverability
question on the c-net [6]. In our experiments, we observed that signal changes in
the circuit could propagate in many different orders, which were distinguished by
Petri-net unfoldings but not by c-net unfoldings, reducing the unfolding size [9].

References

1. Baldan, P., Bruni, A., Corradini, A., König, B., Rodríguez, C., Schwoon, S.: Efficient
unfolding of contextual Petri Nets. Theo. Comp. Sci. 449, 2–22 (2012)

2. Baldan, P., Corradini, A., König, B., Schwoon, S.: McMillan’s complete prefix for
contextual nets. In: Jensen, K., van der Aalst, W.M.P., Billington, J. (eds.) ToPNoC
I. LNCS, vol. 5100, pp. 199–220. Springer, Heidelberg (2008)

3. Cosyverif Project: Cosyverif http://www.cosyverif.org
4. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A.

(eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)
5. LIP6/MoVe Team: Coloane, http://coloane.lip6.fr/
6. McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the veri-

fication of asynchronous circuits. In: Probst, D.K., von Bochmann, G. (eds.) CAV
1992. LNCS, vol. 663, pp. 164–177. Springer, Heidelberg (1993)

7. Murata, T.: Petri Nets: Properties, analysis and applications. Proc. of the
IEEE 77(4), 541–580 (1989)

8. Rodríguez, C.: Cunf, http://www.lsv.ens-cachan.fr/~rodriguez/tools/cunf/
9. Rodríguez, C., Schwoon, S.: Verification of Petri Nets with Read Arcs. In: Koutny,

M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 471–485. Springer,
Heidelberg (2012)

http://www.cosyverif.org
http://coloane.lip6.fr/
http://www.lsv.ens-cachan.fr/~rodriguez/tools/cunf/

	Cunf: A Tool for Unfolding and Verifying Petri Nets with Read Arcs
	1 Overview
	2 Cunf and Cna's Algorithms and Their Implementation
	3 Experiments and Applications for the Tool
	References

