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Abstract

We investigate the question of whether a query Q can be answered using a set V of views.

We first define the problem in information-theoretic terms: we say that V determines Q if V

provides enough information to uniquely determine the answer to Q. Next, we look at the

problem of rewriting Q in terms of V using a specific language. Given a view language V and

query language Q, we say that a rewriting language ℛ is complete for V-to-Q rewritings if every

Q ∈ Q can be rewritten in terms of V∈ V using a query in ℛ, whenever V determines Q. While

query rewriting using views has been extensively investigated for some specific languages, the

connection to the information-theoretic notion of determinacy, and the question of completeness

of a rewriting language, have received little attention. In this paper we investigate systematically

the notion of determinacy and its connection to rewriting. The results concern decidability of

determinacy for various view and query languages, as well as the power required of complete

rewriting languages. We consider languages ranging from first-order to conjunctive queries.

1 Introduction

The question of whether a given set of queries on a database can be used to answer another query
arises in many different contexts. Recently, this has been a central issue in data integration, where
the problem is framed in terms of query rewriting using views. In the exact local as view (LAV)
flavor of the problem, data sources are described by views of a virtual global database. Queries
against the global database are answered, if possible, by rewriting them in terms of the views
specifying the sources. A similar problem arises in semantic caching: answers to some set of queries
against a data source are cached, and one wishes to know if a newly arrived query can be answered
using the cached information, without accessing the source. Yet another framework where the same
problem arises (only in reverse) is security and privacy. Suppose access to some of the information
in a database is provided by a set of public views, but answers to other queries are to be kept secret.
This requires verifying that the disclosed views do not provide enough information to answer the
secret queries.

The question of whether a query Q can be answered using a set V of views can be formulated
at several levels. The most general definition is information theoretic: V determines Q (which we
denote V↠Q) iff V(D1) = V(D2) implies Q(D1) = Q(D2), for all database instances D1 and D2.
Intuitively, determinacy says that V provides enough information to uniquely determine the answer
to Q. However, it does not say that this can be done effectively, or using a particular query language.
The next formulation is language specific: a query Q can be rewritten using V in a language ℛ iff
there exists some query R ∈ ℛ such that Q(D) = R(V(D)) for all databases D. Let us denote
this by Q ⇒V R. As usual, there are two flavors to the above definitions, depending on whether
database instances are unrestricted (finite or infinite) or restricted to be finite. The finite flavor is
the default in all definitions, unless stated otherwise.
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What is the relationship between determinacy and rewriting? Supposeℛ is a rewriting language.
Clearly, if Q⇒V R for some R ∈ ℛ then V↠Q. The converse is generally not true. Given a view
language V and query language Q, ifℛ can be used to rewrite a query Q in Q using V in V whenever
V↠Q, we say that ℛ is a complete rewriting language for V-to-Q rewritings. Clearly, a case of
particular interest is when Q itself is complete for V-to-Q rewritings, because then there is no need
to extend the query language in order to take advantage of the available views.

Query rewriting using views has been investigated in the context of data integration for some
query languages, primarily conjunctive queries (CQs). Determinacy, and its connection to rewriting,
has not been investigated in the relational framework. For example, CQ rewritings received much
attention in the LAV data integration context, but the question of whether CQ is complete as a
rewriting language for CQ views and queries has not been addressed.

In this paper we undertake a systematic investigation of these issues. We consider view languages
V and query languages Q ranging from first-order logic (FO) to CQ and study two main questions:

(i) is it decidable whether V↠Q for V in V and Q in Q?

(ii) is Q complete for V-to-Q rewritings? If not, how must Q be extended in order to express such
rewritings?

It is easily seen that determinacy becomes undecidable as soon as the query language Q is
powerful enough so that satisfiability of sentences in Q becomes undecidable. The same holds if
validity of sentences in V is undecidable. Thus, (i) is moot for such languages, in particular for FO
queries and views. However, determinacy is also undecidable for much weaker languages. Indeed, we
show undecidability even for views and queries expressed as unions of conjunctive queries (UCQs).
This is shown by a direct reduction of the word problem for finite monoids, known to be undecidable
[25]. The question remains open for CQs, and appears to be quite challenging. Determinacy is shown
to be decidable for special classes of CQs, such as Boolean or monadic CQs.

Before summarizing our results on question (ii), we mention two problems that are closely
related, and that can be fruitfully used to gain insight into (ii). Suppose V↠Q. Consider the query
QV associating to each view answer V(D) the corresponding query answer Q(D), where D is a
database instance. In other words1 , Q = QV ∘V. To answer (ii), it is useful to understand the
properties of the queries QV, since this provides information on the rewriting language needed to
express them. One useful piece of information is the complexity of computing the answer to QV

given a view instance V(D), also known as the query answering problem. We occasionally consider
the complexity of query answering as a tool for resolving (ii). Other useful information on QV

concerns properties such as (non-)monotonicity, closure under extensions, etc. Again, we use such
information to establish properties required of a language for rewriting Q using V.

We consider again languages ranging from FO to CQ. We only mention the results for some
key combinations of query and view languages, that imply the results for most other combinations.
In the unrestricted case, FO turns out to be complete for FO-to-FO rewritings, as a consequence
of Craig’s Interpolation theorem [13]. Unfortunately this does not extend to the finite case: FO is
no longer complete for FO-to-FO rewritings, and indeed the query answering problem for this case
is Turing complete. In fact, we show that any language complete for FO-to-FO rewritings must
express all computable queries.

1For mappings f and g such that the image of g is included in the domain of f , the composition f ∘ g is the
mapping defined by f ∘ g(x) = f(g(x)).
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For views expressed in weaker languages, less powerful rewriting languages are needed. If views
are expressed in ∃FO (existential FO), FO is still not complete for ∃FO-to-FO rewritings. However,
both ∃SO and ∀SO (existential and universal second-order logic formulas) are complete for such
rewritings. In fact, this is a lower bound: we show that every language complete for ∃FO-to-FO
rewritings must be able to express all queries in ∃SO ∩ ∀SO. The lower bound holds even if views are
restricted to UCQs. The proof uses results on the expressive power of implicit definability [28, 22].
It turns out that FO does not become complete as a rewriting language even if queries are in CQ¬

(CQ with safe negation). This uses the fact, shown by Gurevich, that there exist order-invariant
queries defined by FO with access to an order on the domain that are not definable in FO without
order (see Exercise 17.27 in [2]).

The case of CQs is of particular interest in the context of answering queries using views, and
has been intensively studied. The conventional wisdom has been that CQs must be complete for
CQ-to-CQ rewritings. Surprisingly, we show that this is not the case. We do this by exhibiting a
set of CQ views V and query Q such that V↠Q but QV is non-monotonic. Thus, no monotonic
language can be complete for CQ-to-CQ rewritings. The same is shown for CQ ∕= and UCQs.

Given the above, it is natural to ask whether CQ (and similarly CQ ∕= and UCQ) remain complete
in the case when the mapping QV is monotonic. We answer this in the affirmative, for CQ as well
as CQ ∕= and UCQ.

What is then the rewriting power needed for CQ-to-CQ rewritings? A plausible candidate for
a complete language for CQ-to-CQ rewritings would be FO. We are able to show that for all CQ
views V and query Q for which V determines Q in the unrestricted case, there is an effective FO
rewriting of Q using V. The question remains open in the finite case, for which the best known
upper bounds remains ∃SO ∩ ∀SO.

Finally, we provide several special classes of CQ views and queries for which CQ remains complete
for rewriting, and for which determinacy is decidable. One such class consists of monadic CQ views
and arbitrary CQ queries. Another class consists of Boolean CQ views and queries. Beyond these,
CQ can only remain complete for very limited classes of views. Indeed, we show that non-monotonic
rewrite languages are required even for very simple CQ views whose patterns are trees, and that
differ from simple paths by a single edge. We show that CQ remains complete for a binary view
consisting of one simple path.

Related work Answering queries using views arises in numerous contexts including data integra-
tion [38], query optimization and semantic caching [16], data warehousing [5], support of physical
data independence by describing storage schemas as views [17, 37, 39], etc. The problem comes in
several flavors, depending on assumptions on the views and their use. Mainly, the different settings
vary along these dimensions:

(i) assumptions on the views: these may be exact (i.e. contain precisely the set of tuples in their
definitions), or just sound (they provide only a subset of the tuples in the answer)

(ii) how the views are used: query rewriting requires reformulating the query using the views, in
some query language. One may require an equivalent rewriting, or just a maximally contained
one. Another use of views is called query answering. This consists of finding all certain answers
to a query given an instance of the view [1].

In our investigation, we focus on exact view definitions, and equivalent query rewritings, with the
accompanying information-theoretic notion of determinacy. We also consider the complexity of the
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query answering problem, but only in the case when the view determines the query (so the certain
and possible answers coincide). Results on equivalent query rewriting using exact views have focused
primarily on CQs and UCQs. It is shown in [29] that it is NP-complete whether a given (U)CQ
query has an equivalent (U)CQ rewriting in terms of given (U)CQ views. Several polynomial-time
special cases are identified for CQs in [14]. Answering queries using views in the presence of binding
patterns is considered in [34]. Views and queries defined by CQs with arithmetic comparisons over
dense orders are considered in [4], where it is shown that the existence of an equivalent rewriting
using Datalog with comparisons is decidable. The problem for recursive queries is considered in [18],
where it is shown that it is undecidable if a Datalog query can be rewritten using some Datalog
program in terms of a set of CQ views. Answering queries using views in semi-structured databases
represented by directed labeled graphs is considered in [9, 10, 11]. Here the views and queries are
defined by regular path expressions, possibly including inverse edge navigation. In [9] it is shown
that the exact rewriting problem is 2expspace-complete.

The relation of rewriting to the information-theoretic notion of determinacy has received little
attention. In [23, 24], Grumbach and Tininini consider the problem of computing an aggregate
function using a given set of aggregate functions including count, average, sum, product, maximum.
In particular, [24] introduces the notion of subsumption of a query by a view, which is identical
to our notion of determinacy. Using this, they define completeness of a rewriting algorithm, and
produce such an algorithm for simple aggregate functions on a single relation. Despite the similarity
in flavor, none of the results transfer to the setting we consider.

In [11], the authors consider the notion of lossless view with respect to a query, in the context
of regular path queries on semi-structured data. A set of views is lossless with respect to a query
if for every database, the views are sufficient to answer the query. Losslessness is considered under
the exact view assumption and under the sound view assumption. In the first case, losslessness is
equivalent to determinacy and it remains open whether losslessness is decidable for regular path
views and queries. In the second case, losslessness is shown to be decidable using automata-theoretic
techniques. Again, these results have no bearing upon ours because of the differences in the settings
and because we consider exact views.

In the context of view updates, Bancilhon and Spyratos introduced the notion of view comple-
ment [6]. The complement of a view is another view so that together they uniquely determine the
underlying database. This information-theoretic notion is a special kind of determinacy: a view
and its complement determine the identity query on the database.

Suppose a set of views V does not determine a query Q. In this case one is typically interested to
compute from a view extent E the certain answers to Q. For exact views, the set of certain answers
is certQ(E) = ∩{Q(D) ∣ V(D) = E}. The data complexity of computing certQ(E) from E has
been studied by Abiteboul and Dutschka [1] for various query and view languages (for both exact
and sound views). The rewriting problem for exact views is to find a query R in some rewriting
language ℛ, such that for every extent E of V, R(E) = certQ(E). If such R exists for every V ∈ V
and Q ∈ Q, let us say that ℛ is complete for V-to-Q rewritings of certain answers. Clearly, if
V↠Q then for every database D, Q(D) = certQ(V(D)). Thus, for exact views, every rewriting
language that is complete for V-to-Q rewritings of certain answers must also be complete for V-to-Q
rewritings according to our definition. In particular, our lower bounds on the expressive power of
languages complete for V-to-Q rewritings still hold for languages complete for V-to-Q rewritings
of certain answers. Also, upper bounds shown in [1] on the data complexity of computing certain
answers for exact views also apply to the data complexity of computing QV in our framework.
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For sound views, certQ(E) = ∩{Q(D) ∣ E ⊆ V(D)}. If V↠Q, it is easily seen that certQ(E) =
QV(E) for all E in the image of V iff QV is monotonic, i.e. V(D1) ⊆ V(D2) implies Q(D1) ⊆
Q(D2). In this case, the upper bounds shown in [1] on the data complexity of computing certQ for
sound views also apply to the data complexity of computing QV. Likewise, if a language ℛ can be
used to rewrite certQ in terms of V for sound views, and QV is monotonic, then ℛ can be used to
rewrite Q in terms of V in our sense.

In a broader historical context, the topic of this paper is related to the notion of implicit de-
finability in logic, first introduced by Tarski [36]. The analog of completeness of a language for
view-to-query rewritings is the notion of completeness for definitions of a logical language, also
defined in [36]. In particular, FO was shown to be complete for definitions by Beth [7] and later
by Craig [15], as an application of his Interpolation Theorem. Maarten Marx provides additional
historical perspective on problems related to determinacy and rewriting [30].

Recent work following up on the results of [35, 31] has sought to identify additional classes of
views and queries that are well behaved with respect to determinacy and rewriting. In [3], Foto
Afrati considers the case of path queries asking for nodes connected by a path of given length in a
binary relation representing a directed graph. It is shown there that determinacy is decidable for
path views and queries, and FO rewritings of the path query in terms of the path views can be
effectively computed (see Remark 5.3). Taking a different approach, Maarten Marx considers in [30]
syntactic restrictions FO and UCQ yielding packed FO and UCQ, and shows for these fragments
decidability of determinacy and completeness for rewritings (see Remarks 3.11, 5.23).

The present paper is the extended version of the conference publications [35, 31].

Organization After introducing some basic concepts in Section 2, we discuss determinacy and
rewriting for FO queries and views in Section 3. We then proceed with unions of conjunctive
queries and views in Section 4, and conjunctive queries and views in Section 5. We end with brief
conclusions.

2 Preliminaries

We begin with some basic definitions and notation. Unless otherwise indicated, we follow standard
terminology (see [2] and [27]).

A database schema � is a finite set of relation symbols with associated non-negative arities. A
relation with arity zero is referred to as a proposition. We assume fixed an infinite domain dom of
values. A database instance D over � associates a relation D(R) of appropriate arity with values
from dom to each relation symbol R in � (true/false for propositions). The active domain of an
instance D consists of the set of elements in dom occurring in D and is denoted adom(D). The
set of all instances over � is denoted by ℐ(�). By default, all instances are assumed to be finite
unless otherwise specified. In terms of classical logic, a database instance is a relational structure
whose universe is the active domain of the instance. In some proofs, we will need to apply known
results of model theory that apply to classical relational structures, whose universe may strictly
include the active domain. In this case, we will explicitly use the term relational structure. Queries
are defined as usual, as computable mappings from instances of an input schema to instances of
an output schema that are generic, i.e. commute with isomorphisms of dom (e.g., see [2]). We
assume familiarity with the query languages in Figure 1. As usual for two queries q and q′, we
denote by q ⊆ q′ the fact that over all instances D, q(D) is always a subset of q′(D). As usual,
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notation language

FO first-order logic over relations

∃FO existential FO

∃SO existential second-order logic

∀SO universal second-order logic

CQ conjunctive queries without =, ∕=, constants

UCQ unions of conjunctive queries

(U)CQ= (U)CQs extended with =, ∕=
(U)CQ ∕=

Figure 1: Query languages used in the paper

unless otherwise specified, constant values from dom may be used in queries. These are not part of
the schema, and are always interpreted as themselves. This differs from constants in classical logic,
which are part of the vocabulary and are interpreted as arbitrary values from the universe of the
structure. Given a query ', we define its active domain adom(') to be the set of constant values
used in '. Given a database instance D, we denote adom(D,') = adom(D) ∪ adom('). The
semantics of ' over an instance D is defined with respect to the universe adom(D,'). In particular,
if ' is a first-order logic formula, all variables (free and quantified) range over adom(D,'). If ' is
in second-order logic, its first-order variables range over adom(D,') and its second-order variables
range over relations over adom(D,'). The semantics for relational structures is defined as usual
with respect to the specified universe.

Let � and �V be database schemas. A view V from ℐ(�) to ℐ(�V) is a set consisting of one
query ℐ(�)→ ℐ({V }) for each V ∈ �V. We refer to � and �V as the input and output schemas of
V, respectively.

Consider a query Q over schema � and a view V with input schema � and output schema �V.
We say that V determines Q, denoted V↠Q, iff for all D1, D2 ∈ ℐ(�), if V(D1) = V(D2) then
Q(D1) = Q(D2). Let R be a query over ℐ(�V). We say that R is a rewriting of Q using V iff
for each D ∈ ℐ(�), Q(D) = R(V(D)). In other words, Q = R ∘V. This is denoted by Q ⇒V R.
Note that several R’s may satisfy this property, since such R’s may behave differently on instances
in ℐ(�V) that are not in the image of V. The notions of determinacy and rewriting are related as
there is a query R such that Q⇒V R iff V↠Q.

Let Q be a query language and V a view language. A query language ℛ is complete for V-to-Q
rewritings iff for every Q ∈ Q and V ∈ V for which V↠Q, there exists R ∈ ℛ such that Q⇒V R.

The notions of determinacy and rewriting come in two flavors: finite and unrestricted, depending
on whether instances are restricted to be finite. We always assume the finite variant unless explicitly
stated otherwise.

We next present some basic but useful observations about determinacy and rewriting.

Proposition 2.1 Let Q and V be languages such that satisfiability of sentences in Q is undecidable
or validity of sentences in V is undecidable. Then it is undecidable whether V↠Q, where Q is in
Q and V is a set of views defined in V.

Proof: Suppose first that satisfiability of sentences in Q is undecidable. Let ' be a sentence in Q
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over database schema �. Consider the database schema �∪{R} where R is unary. Let V be empty
and Q = ' ∧R(x). Clearly, V↠Q iff ' is unsatisfiable.

Next, suppose validity of sentences in V is undecidable. Let ' be a sentence in V over schema
�. Consider the database schema � ∪ {R} with R unary, and V consisting of the view ' ∧ R(x).
Let Q consist of the query R(x). Clearly, V↠Q iff ' is valid. □

Corollary 2.2 If V is FO or Q is FO, it is undecidable whether V↠Q for views V in V and queries
Q in Q.

In looking for fragments of FO for which determinacy might be decidable, it is tempting to
reduce determinacy to satisfiability testing. This can be done as follows. Let � be a database
schema and V and Q be views and a query over �. Let �1 and �2 be two disjoint copies of �, and
Vi, Qi (i = 1, 2) versions of V and Q operating on �1 and �2. Consider the FO sentence ' over
�1 ∪ �2:

∀x̄(V1(x̄)↔ V2(x̄)) ∧ ∃ȳ(Q1(ȳ) ∧ ¬Q2(ȳ)).

Clearly, V↠Q iff ' is not finitely satisfiable. Unfortunately, even for CQ views and queries, '
does not belong to an FO fragment known to have a decidable satisfiability problem [8]. Thus, we
need to take advantage of the finer structure of the query languages we consider in order to settle
decidability of determinacy.

Finally, suppose V↠Q. Let then QV be the mapping associating to every instance V(D) in the
image of V the corresponding Q(D). Note that QV is defined only on the image of V. Therefore
when we say “QV is computable” we mean that for any instance S in the image of V, QV(S) is
computable. Similarly, genericity of QV only applies to the image of V.

Proposition 2.3 Suppose V and Q are computable views and queries without constants, over
database schema �, and V↠Q. Let QV be the mapping associating to every instance in the im-
age of V the corresponding value of Q. Then QV is generic and computable. In particular, for
all D ∈ ℐ(�): (i) adom(Q(D)) ⊆ adom(V(D)), and (ii) every permutation of dom that is an
automorphism of V(D) is also an automorphism of Q(D).

Proof: Let f be a permutation of dom. Let S = V(D). Then QV(f(S)) = QV(f(V(D))) =
QV(V(f(D))) = Q(f(D)) = f(Q(D)) = f(QV(V(D))) = f(QV(S)). Thus, QV is generic, and (i)
and (ii) are immediate consequences. To compute QV on input S in the image of V, find some D
over � for which Q(D) = S, which is guaranteed to exist. Then compute Q(D). □

Remark 2.4 Suppose V and Q are as in Proposition 2.3 and QV halts on every instance in the
image of V. One may wonder if QV can be extended to a computable, halting query on all of ℐ(�V).
A simple recursion-theoretic argument shows that this is not the case. In fact, there exist V and
Q both in FO for which V↠Q but QV cannot be extended to a halting computable query on all of
ℐ(�V).

3 FO Queries and Views

In this section we investigate determinacy and rewriting for FO queries and views. Determinacy is
clearly undecidable for FO in view of Corollary 2.2. We therefore focus on rewriting. Is FO complete
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for FO-to-FO rewritings? The answer turns out to be radically different in the unrestricted and the
finite cases.

We begin by considering the unrestricted variant. Recall that in the unrestricted case, database
instances are allowed to be arbitrary (finite or infinite). We denote the fact that V determines Q
for unrestricted instances by V

∞

↠ Q.
Theorem 3.1 below follows from the work of Beth and Craig [7, 15]. We include a direct proof

here for the sake of self containment.

Theorem 3.1 In the unrestricted case, FO is complete for FO-to-FO rewritings.

Proof: The general idea of the proof is simple, if V
∞

↠ Q then QV does not depend on the database
D but only on V(D). In other words QV is invariant under the choice of D, assuming V(D) remains
fixed. This property can be specified in FO. Then, using Craig interpolation theorem, all reference
to D can be removed from the specification above, yielding a first-order formula which turns out to
be the desired FO rewriting.

In developing the details, some care is needed because Craig’s interpolation theorem applies
to relational structures while the notion of determinacy involves database instances. Recall from
Section 2 that a relational structure explicitly provides a universe that may be larger than the
active domain of the same structure viewed as a database instance. In order to cope with this
technical difference, we will explicitly restrict all quantifications to the active domain in the formula
expressing that V determines Q, and use an extension of Craig’s interpolation theorem that yields
an interpolant that also quantifies over the active domain.

In this proof we will consider extensions of relational schemas with a finite set of constant
symbols. If the schema contains constants, an instance over the schema provides values to the
constants in addition to the relations. For FO sentences ',  over the same schema, we use the
notation ' ∣=  to mean that every structure (finite or infinite) satisfying ' also satisfies  . We
also use the notation ∃(∀)x̄ ∈ U for a unary symbol U and vector of variables x̄ = x1 . . . xm as
shorthand for ∃(∀)x1 ∈ U . . . ∃(∀)xm ∈ U .

Let � be the database schema, �V = {V1, ⋅ ⋅ ⋅ , Vk} be the output schema of V, and �1, ⋅ ⋅ ⋅ , �k
be the corresponding queries defining V. Suppose V

∞

↠ Q where V and Q are FO views and queries
over schema �.

Let �1, �2 be disjoint copies of �. Let n be the number of free variables of Q and let c̄ be
n constant symbols. Let U1, U2, UV be three new unary symbols. We now consider relational
structures over the schema � = �1 ∪�2 ∪�V ∪{c̄, U1, U2, UV }. The intended meaning of a structure
over � is that its projection over �1 and �2 form two database instances having the same view which
is the projection of the structure over �V. Moreover U1, U2 and UV are respectively the active
domain of relations occurring in �1, �2 and �V .

For i = 1 or i = 2 we denote by Qi the query obtained from Q by replacing every symbol from
� with its copy in �i, by enforcing that every free variable belongs to Ui and by restricting each
quantification to range over Ui. For all j ≤ k we define similarly copies �1j and �2j of �j by restricting

the range of quantification in the appropriate way. Finally we denote by �iadom the formula stating
that the elements of Ui appear in some relation of �i.

For i = 1 or 2, consider the following formula which will be denoted by Vi = �V in the sequel:

⋀

j=1,⋅⋅⋅ ,k

∀x̄ ∈ UV �ij(x̄)↔ Vj(x̄) ∧
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∧
⋀

j=1,⋅⋅⋅ ,k

∀x̄ ∈ Ui �
i
j(x̄)→ x̄ ∈ UV ∧ ∀x ∈ UV ∃ȳ ∈ Ui

⋁

j=1,⋅⋅⋅ ,k

�ij(ȳ, x)

This formula says that (i) when restricted to the elements of UV , Vj is indeed the jth view of
the database i, (ii) the elements of UV contains at least the elements of the view of the restriction
of the database i to elements of Ui, and (iii) UV contains only elements of the view of database i
restricted to elements Ui. Altogether this says that the restriction of Vj to elements of UV is exactly
the jth view of the restriction to elements of Ui of the database i.

The following result is now a simple consequence of the fact that V(D) determines Q.

Claim 3.2

(�1
adom ∧V

1 = �V ∧Q
1(c̄)) ∣= [(�2

adom ∧V
2 = �V)→ Q2(c̄)] (1)

Proof: Let D be a relational structure over � such that D ∣= (�1
adom∧V

1 = �V∧Q
1(c̄)). We need to

show that D ∣= [(�2
adom∧V

2 = �V)→ Q2(c̄)]. For this we further assume that D ∣= �2
adom∧V

2 = �V
and we show that D ∣= Q2(c̄).

For i = 1 or i = 2, let Di be the database instance over � constructed from D by keeping
only the restriction of the relations of �i to the elements of Ui. Let S be the database instance
constructed from D by keeping only the restriction of the relations of �V to the elements of UV .

By definition of V1 = �V and V2 = �V we have V(D1) = S =V(D2). Let ā be the interpretation
in D of the constants c̄. As the free variables of Q1 were restricted to elements of U1, from D ∣= Q1(c̄)
we have D1 ∣= Q(ā). Hence, because V

∞

↠ Q we must have D2 ∣= Q(ā). By construction of Q2 this
implies that D ∣= Q2(c̄) as required. □

Notice now that the formula of the left-hand side of (1) contains only symbols from �1 ∪ �V ∪
{c̄, U1, Uv} and all quantifications are restricted to elements either in U1 or in UV , while the formula
of the right-hand side contains only symbols from �2 ∪ �V ∪ {c̄, U2, UV } and all quantifications are
restricted to elements either in U2 or in UV . Hence, by the relativized Craig’s Interpolation Theorem
proved by Martin Otto [32] there exists a sentence �(c̄) that uses only symbols from �V ∪ {c̄, UV }
where all quantifications are restricted to elements of UV and such that:

(�1
adom ∧V

1 = �V ∧Q
1(c̄)) ∣= �(c̄) (2)

�(c̄) ∣= [(�2
adom ∧V

2 = �V)→ Q2(c̄)] (3)

Note first that as quantifications in � are restricted to elements of UV we can assume that � does
not contain any atom of the form UV (y) where y is a quantified variable (otherwise we replace it by
true). Let now Θ be the formula obtained from � by ignoring the restriction of the quantifications
to UV , by replacing c̄ with free variables x̄ and by replacing all terms of the form UV (c) where c is
a constant by true.

We now show that Θ is a rewriting of Q using V.
Let D be a database instance over � and let S be V(D). We need to show that for all tuples ā

of elements of D we have ā ∈ Q(D) iff ā ∈ Θ(S).
Let D be the relational structure whose universe is the active domain of D and whose relations

of �1, �2 and �V are respectively the corresponding relations of D and S, where c̄ is interpreted as
ā and where U1, U2 and UV are the active domains of relations respectively in �1, �2 and �V.

9



Assume first that ā ∈ Q(D). By construction of D and because of the restrictions on the
quantifications we have D ∣= (�1

adom ∧ V
1 = �V ∧ Q

1(c̄)). From (2) we have D ∣= �(c̄). By
construction of Θ, this implies that ā ∈ Θ(S).

Assume now that ā ∈ Θ(S). By construction of D and Θ this implies that D ∣= �(c̄). Hence
from (3) we have D ∣= [(�2

adom ∧V
2 = �V)→ Q2(c̄)]. Now by construction D ∣= �2

adom ∧V
2 = �V.

Therefore D ∣= Q2(c̄). As Q2 restricts its quantification to U2 which is the active domain of D this
implies ā ∈ Q(D). □

The proof of Theorem 3.1 relies crucially on Craig’s Interpolation Theorem. This fundamental
result in model theory holds for unrestricted instances but fails in the finite case [19]. Indeed,
Theorem 3.1 does not hold in the finite case, as shown next.

Example 3.3 Let � be a database schema and �≤ the extension of � with a binary relation “≤”.
Let '(≤) be an FO sentence over �≤. Let  be the FO sentence checking that ≤ is a linear order.
Now consider the set of views V with �V = � ∪ {R }, where R is zero-ary. V returns the value
of  (in R ) and the content of R for each R ∈ �. Let Q' be the query  ∧ '(≤). It it easy to
verify that if ' is order invariant (i.e. its answer is independent of the choice of the order relation
≤) then V↠Q'. If FO is complete for FO-to-FO rewritings in the finite, then there exists an FO
query � over �V = �∪{R } such that Q' is equivalent to �. On ordered finite instances, this means
that '(≤) is equivalent to �(true/R ), obtained by replacing the proposition R with true in �.
However, Gurevich has shown that there exist order-invariant FO queries '(≤) expressing queries
that are not finitely definable in FO (see Exercise 17.27 in [2]). This is a contradiction.

The following characterizes the expressive power needed for completeness wrt FO-to-FO rewrit-
ing in the finite case.

Theorem 3.4 If ℛ is complete for FO-to-FO rewritings (for finite instances) then ℛ expresses all
computable queries.

Proof: Let M be an arbitrary Turing machine expressing a total, computable generic query q whose
inputs and outputs are graphs (the argument can be easily extended to arbitrary schemas). More
precisely, consider a directed graph G with sets of nodes adom(G), and ≤ a total order on the nodes.
We consider a standard encoding enc≤(G) of G as a string in {0, 1}∗ of length ∣adom(G)∣2 whose
⟨i, j⟩-th position in lexicographic order is 1 iff ⟨ai, aj⟩ ∈ E where ai and aj have rank i resp. j with
respect to the order ≤. M computes q iff M on input enc≤(G) halts with output enc≤(q(G)), for
every total order ≤ on adom(G). Consider the database schema � = {R1, R2,≤, T} where R1, R2

and ≤ are binary, and T is ternary. The intended meaning is that R1 is the input graph, ≤ is a
total order over some set D ⊇ adom(R1) with adom(R1) as initial elements, and T represents a
halting computation of M on input enc≤(R1), with output enc≤(R2). More specifically, T (i, j, c)
holds if in the i-th configuration of M , the content of the j-th tape cell is c (the position of the head
and the state are encoded in tape symbols). In the encoding, i is represented by the element of
rank i in the ordering ≤. Using standard techniques (see for instance [2]) one can construct an FO
sentence 'M over � stating that ≤ is indeed a total order including adom(G) as initial elements, and
that T is a correct representation of a halting computation of M on input enc≤(R1), with output
enc≤(R2). Let V be the view with �V = {S1} defined by QS1

= 'M ∧R1(x, y), and Q be the query
'M ∧R2(x, y).
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We claim that V↠Q and Q = q ∘ V. Indeed if V is empty then either 'M is false or R1 is
empty. In both cases Q is empty (note that by genericity q(∅) = ∅) and so Q = q ∘V. If V is not
empty then 'M holds and V returns R1. As 'M holds, Q equals R2 = q(R1). Thus, Q = q ∘V. □

In terms of complexity, Theorem 3.4 says that there is no complexity bound for the query
answering problem for FO views and queries. It is clearly of interest to identify cases for which one
can show bounds on the complexity of query answering. We next show that for views restricted to
∃FO, the complexity of query answering is NP ∩ co-NP. The bound is tight, even when the views
are further restricted to UCQs. This will be shown using a logical characterization of NP ∩ co-NP

by means of implicit definability [28, 22].
Recall that Fagin’s Theorem shows that ∃SO expresses NP, and ∀SO expresses co-NP (see

[27]). Thus, to show the NP ∩ co-NP complexity bound it is sufficient to prove the completeness
of ∃SO and ∀SO for ∃FO-to-FO rewritings. We do this next.

Theorem 3.5 ∃SO and ∀SO are both complete for ∃FO-to-FO rewritings.

Proof: Let V be a view from ℐ(�) to ℐ(�V) defined in ∃FO. Let S be an instance over ℐ(�V) in
the image of V. We start with the following lemma showing that among the database instances D
such that V(D) = S there is one of size polynomial in ∣S∣.

Lemma 3.6 Let V be defined in ∃FO and k be the maximum number of variables and constants in
a view definition of V, in prenex form. If S ∈ ℐ(�V) and S is in the image of V then there exists
D ∈ ℐ(�) such that V(D) = S and ∣adom(D)∣ ≤ k∣adom(S)∣k.

Proof: Let S,V be as in the statement. Let D′ ∈ ℐ(�) be such that V(D′) = S. Consider V ∈ V

with corresponding view QV and let c̄ be a tuple in S(V ) (its arity is at most k). Each such c̄ is
witnessed by an assignment �c̄ extending c̄ to the existentially quantified variables of QV . Let A be
the set of all elements of D′ occurring in �c̄ for some tuple c̄ of S. Let D be the restriction of D′

to A. By construction, each assignment �c̄ still witnesses c̄. Therefore, S ⊆ V(D). Because V is in
∃FO, V is closed under extension, so V(D) ⊆ V(D′) = S. Altogether V(D) = S and adom(D) = A
has size bounded by k∣adom(S)∣k. □

Assume now that Q is in FO and that V↠Q. Recall that QV is the mapping associating to
every instance S in the image of V the corresponding value of Q. Recall that, by Proposition 2.3,
adom(QV(S)) ⊆ adom(S). By Lemma 3.6 a non-deterministic polynomial algorithm for checking
whether a tuple c̄ over adom(S) is in QV(S) goes as follows: guess a database instance D over � of
size polynomial in ∣S∣, check that V(D) = S and check that c̄ ∈ Q(D). Also from Lemma 3.6 we
have the following universal polynomial algorithm: For all database instances D of size polynomial
in ∣S∣, if V(D) = S, check that c̄ ∈ Q(D). The first algorithm is in NP while the second is in
co-NP. By Fagin’s theorem this implies that c̄ ∈ QV(S) can be expressed by both ∃SO and ∀SO
formulas '(c̄). By universality of constants, it follows that there are ∃SO and ∀SO formulas '(x̄)
defining QV. □

We next show that Theorem 3.5 is tight, i.e. every rewriting language complete for ∃FO-to-FO
rewritings must be able to express all properties in ∃SO ∩ ∀SO. In fact, the lower bound holds even
for UCQ-to-FO rewritings.
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Theorem 3.7 Let � be a schema. For every query q on instances over � , definable in ∃SO ∩ ∀SO,
there exists a set V of UCQ views and an FO sentence Q such that V↠Q and QV defines q.

Proof: We use a result of [28] (see also [22]) on the expressive power of implicit definability over
finite instances. We briefly recall the result and related definitions. Let � be a database schema.
Let q be a query over � returning a k-ary relation. Such a query q is said to be implicitly definable
over � if there exists a schema � ′ = � ∪ {T, S̄}, where T is k-ary and S̄ are new relation symbols,
and a FO(� ′) sentence '(T, S̄) such that (i) for all D ∈ ℐ(�) there exists a sequence S̄ of relation
over adom(D) such that D ∣= '(q(D), S̄) and (ii) for all relations T and S̄ over adom(D) we have
D ∣= '(T, S̄) implies T = q(D).

The set of queries implicitly definable over � is denoted by GIMP(�). We use the following
known result [28, 22]: GIMP(�) consists of all queries whose data complexity is NP ∩ co-NP. In
view of Fagin’s Theorem, this yields:

Theorem 3.8 [28, 22] GIMP(�) consists of all queries over � expressible in ∃SO ∩ ∀SO.

Thus, to establish Theorem 3.7 it is enough to show that every language complete for UCQ-to-FO
rewritings must express every query in GIMP(�).

Let � be a schema and q a query in GIMP(�). Thus, there exists an FO sentence '(T, S̄) over
� ′ = � ∪ {T, S̄} such that q is implicitly defined over � by '(T, S̄). We may assume wlog that
'(T, S̄) uses only ∧,¬, ∃.

We construct Q and V as follows. We first augment � ′ with some new relation symbols. For
each subformula �(x̄) of ' with n free variables consider two relation symbols R� and R̄� of arity
n. In particular, R' is a proposition. Let � be the set of such relations, and � ′′ = � ′ ∪ �.
Given D ∈ ℐ(� ′), the intent is for R� to contain �(D(� ′)) and for R̄� to be the complement of R�
(for technical reasons, R̄� is needed even when ¬� is not a subformula of '). The interest of the
auxiliary relations is that ' can be checked by verifying that each R� has the expected content using
a straightforward structural induction on �. This is done by checking simple connections between
the relations in �:

(1) R̄� = adom(D)k − R�, R¬� = R̄�,

(2) R�1∧�2(x̄, ȳ, z̄) = R�1(x̄, ȳ) ∧R�2(ȳ, z̄), and

(3) R∃x �(x,ȳ)(ȳ) = ∃x R�(x,ȳ)(x, ȳ).

Let  be an FO(� ′′) formula which checks that all relations R�, R̄� ∈ � satisfy (1)-(3) above. Let
Q be the query  ∧'(T, S̄)∧ T (x̄). Thus, for for D ∈ ℐ(� ′′) satisfying ' and for which additionally
the relations of D(�) satisfy (1)-(3), Q(D) returns D(T ) = q(D(�)).

We now define a set V of UCQ views. On input D ∈ ℐ(� ′′), a first subset V� of V simply
returns D(�). In particular, V� provides the active domain A of D. A second set of views, V�,
allows verifying whether the relations in � satisfy (1)-(3) without providing any information on
D(T ). Specifically, V� contains the following:

(i) Views allowing to check (1). To verify that R̄� is the complement of R�, we use two views:
the first is defined by R�(x̄)∧ R̄�(x̄) and the second R�(x̄)∨ R̄�(x̄). If k is the arity of R�, (1)
holds iff the first view returns ∅ and the second returns Ak.
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(ii) Views allowing to check (2). Let �(x̄, ȳ, z̄) = �1(x̄, ȳ) ∧ �2(ȳ, z̄), where x̄, ȳ, z̄ are disjoint
sequences of free variables. We use three views. The first is defined by R�1(x̄, ȳ)∧R�2(ȳ, z̄)∧
R̄�(x̄, ȳ, z̄), the second by R�(x̄, ȳ, z̄)∧ R̄�1(x̄, ȳ), and the third by R�(x̄, ȳ, z̄)∧ R̄�2(ȳ, z̄). Note
that (2) holds for � iff the three views return the empty set.

(iii) Views allowing to check (3). Let �(ȳ) = ∃x�1(x, ȳ). We use two views. The first is defined
by ∃xR�1(x, ȳ) ∧ R̄�(ȳ), and the second by ∃xR�1(x, ȳ) ∨ R̄�(ȳ). If k is the arity of � then (3)
holds iff the first view is empty while the second is Ak.

Finally, V contains a view V' that returns the value of R', which coincides with that of '. We
now claim that V↠Q. Consider D ∈ ℐ(� ′′). As described above, the views V� provide enough
information to determine if the relations in � satisfy (1)-(3). In particular, this determines the
value of  . If  is false then Q(D) = ∅. If  is true, V' provides the value of '. If ' is false then
Q(D) = ∅. If ' is true then Q(D) returns D(T ) = q(D(�)) which is uniquely determined by D(�)
by definition of GIMP. Since V� provides D(�), it follows that V↠Q.

Now consider QV. By definition, QV computes q(D(�)) on instances D ∈ ℐ(�V)) extending
D(�) to �V with relations ∅ or adom(D(�))k for the view relations in V� corresponding to the
case when ' is satisfied by the pre-image of the view, as described in (i)-(iii), and with true for
V', corresponding to the case when the pre-image satisfies '. This extension is trivial, and easily
expressible from D(�), hence QV has the same complexity as q. □

Note that Theorem 3.7 requires only UCQ views and therefore Theorem 3.5 is also tight when
views are restricted to UCQs. As an immediate consequence of Theorem 3.7 any language not
capturing NP ∩ co-NP fails to be complete for UCQ-to-FO rewritings. As this is the case for
Datalog¬ and fixpoint logic2 FO+LFP [27] we have:

Corollary 3.9 Datalog¬ and FO+LFP are not complete for UCQ-to-FO rewritings.

We can show that FO is not a complete rewriting language even if the views are restricted to
CQ¬, where CQ¬ is CQ extended with safe negation.

Proposition 3.10 FO is not complete for CQ¬-to-FO rewritings.

Proof: We revisit Example 3.3. We use a strict linear order < rather than ≤. As in the example,
we use schemas � and �<, an FO sentence  checking that < is a strict total order, and the FO
query Q' =  ∧ '(<) for some order-invariant FO(�<) sentence ' which is not FO-definable over
� alone.

Let V consist of the following views:

1. x < y ∧ y < x

2. x < y ∧ y < z ∧ ¬(x < z),

3. for each pair of relationsR1, R2 ∈ � and appropriate i, j, one viewR1(. . . , xi, . . .)∧R2(. . . , xj , . . .)∧
¬(xi < xj) ∧ ¬(xj < xi)

4. for each R ∈ �, one view returning R.

2FO+LFP is FO extended with a least fixpoint operator, see [19]. For the definitions of Datalog variants, see [2].
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We claim that V↠Q'. First, note that  holds (i.e. < is a strict total order on the domain)
iff views (1) and (2) are empty and the view (3) contains all the tuples (a, a) for a in adom(R).
Indeed, this ensures antisymmetry (1), transitivity (2), and totality (3). If any of these views is not
empty, then  is false so Q' is false. Otherwise, Q' returns the value of '(<) on the relations in
�<, which by the order invariance of '(<) depends only on the relations in �. These are provided
by the views (5). Thus, V↠Q' and QV allows defining '(<) using just the relations in �, which
cannot be done in FO. □

Remark 3.11 In work subsequent to [35, 31], Maarten Marx identifies a well-behaved fragment
of FO with respect to determinacy and rewriting [30]. The fragment, called packed FO (PFO), is
an extension of the well-known guarded fragment [21]. In a nutshell, guarded FO is restricted by
allowing only quantifiers of the form ∃x̄(R(x̄, ȳ) ∧ '(x̄, ȳ)) where R(x̄, ȳ) is an atom, and '(x̄, ȳ)
is itself a guarded formula with free variables x̄, ȳ. In terms of the relational algebra, guarded FO
corresponds to the semi-join algebra [26]. Packed FO relaxes the guarded restriction by allowing as
guards conjunctions of atoms so that each pair of variables occurs together in some conjunct. The
results in [30] show that infinite and finite determinacy coincide for PFO, determinacy is decidable
in 2-exptime, and PFO is complete for PFO-to-PFO rewritings. Similar results are obtained for
the packed fragment of UCQ, see Remark 5.23.

4 UCQ Views and Queries

We have seen that determinacy is undecidable for FO views and queries, and indeed for any query
language with undecidable satisfiability problem and any view language with undecidable validity
problem. However, determinacy remains undecidable for much weaker languages. We show next
that this holds even for UCQs. The undecidability result is quite strong, as it holds for a fixed
database schema, a fixed view, and UCQs with no constants.

Theorem 4.1 There exists a database schema � and a fixed view V over � defined by UCQs, for
which it is undecidable, given a UCQ query Q over �, whether V↠Q.

Proof: The proof is by reduction from the word problem for finite monoids: Consider a finite set
H of equations of the form x ⋅ y = z, where x, y, z are symbols. Let F be an equation of the form
x = y. Given a monoid (M, ∘), the symbols are interpreted as elements in M and ⋅ as the operation
∘ of the monoid. Given H and F as above, the word problem for finite monoids asks whether H
implies F over all finite monoids. This is known to be undecidable [25].

For the purpose of this proof, we will not work directly on monoids but rather on monoidal
operations. Let X be a finite set. A function f : X×X → X is said to be monoidal if it is complete
(total and onto) and defines an associative operation. The operation of a monoid is always monoidal
due to the presence of an identity element. It is immediate to extend Gurevich’s undecidability result
to monoidal functions by augmenting a monoidal function, if needed, with an identity element.

We construct a view V and, given H and F as above, a query QH,F such that V ↠QH,F iff H
implies F over all finite monoidal functions. We proceed in two steps. We construct V and QH,F
in UCQ=, then we show how equality can be removed.

Consider the database schema � = {R, p1, p2} where R is ternary and p1, p2 are zero-ary (propo-
sitions). We intend to represent x ⋅ y = z by R(x, y, z).
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A ternary relation R is monoidal if it is the graph of a monoidal function. That is, R is the graph
of a (i) complete (ii) function which is (iii) associative. We construct a view V which essentially
checks that R is monoidal.

In order to do this we check that

(i) {x ∣ ∃y, z R(x, y, z)} = {y ∣ ∃x, z R(x, y, z)} = {z ∣ ∃x, y R(x, y, z)},

(ii) {(z, z′) ∣ ∃x, yR(x, y, z) ∧R(x, y, z′)} = {(z, z′) ∣ z = z′},

(iii) {(w,w′) ∣ ∃x, y, z, u, v R(x, y, u) ∧R(u, z, w) ∧
R(y, z, v) ∧R(x, v, w′)} = {(w,w′) ∣ w = w′}.

This is encoded in the view V as follows.
Let �1(x, y, z) be R(x, y, z), �2 be p1 ∨ p2, �3 be p1 ∧ p2, and, for each equation � of the form

S = T in the list above let �� be (p1∧S)∨ (p2∧T ). Let V consist of the queries �1, �2, �3 defining
the views V1, V2, V3 and �� defining the view V� for each of the three equations � above.

We thus have: If D1 and D2 are such that V(D1) = V(D2) and exactly one of p1, p2 is true in
D1 and the other in D2, then R is monoidal. Indeed, for each equation � above, V�(D1) = V�(D2)
together with the assumption on p1 and p2 imply that R satisfies �. Note that (i) guarantees that R
is total and onto, (ii) says that R is a function, and (iii) ensures associativity. Thus R is monoidal.

We now define QH,F . Given H and F = {x = y}, with x, y occurring in H, we set  H,F (x, y)
to ∃ū

⋀
u1⋅u2=u3∈H

R(u1, u2, u3) (in the formula all the variables are quantified except for x and y).
Let QH,F (x, y) be (p1 ∧ p2) ∨ (p1 ∧  H,F (x, y) ∧ x = y) ∨ (p2 ∧  H,F (x, y)).

We claim that V↠QH,F iff H implies F over all finite monoidal functions.
Assume first that H implies F on all finite monoidal functions. Consider D1 and D2 such that

V(D1) = V(D2). If V3 is true then QH,F (D1) = QH,F (D2) = adom(R) × adom(R). If V3 and V2
are false then QH,F (D1) = QH,F (D2) = ∅. In the remaining case exactly one of p1, p2 is true in
D1 and in D2. If it is the same for D1 and D2 then we immediately have QH,F (D1) = QH,F (D2).
Otherwise we have that D1 and D2 agree on R (by V1) and R is monoidal (by the remark above).
Since H implies F on monoidal functions,  H,F (x, y)⇒ x = y. This yields QH,F (D1) = QH,F (D2).

Assume now that V↠QH,F . Let R be a monoidal graph. Consider the extension D1 of R with
p1 true and p2 false, and the extension D2 of R with p1 false and p2 true. We have D1 ∣= p1 ∧ ¬p2,
D2 ∣= ¬p1 ∧ p2 and V(D1) = V(D2). Therefore QH,F (D1) = QH,F (D2) and  H,F (x, y) ⇒ x = y.
Thus R verifies H implies F .

In the above, equality is used explicitly in the formula for the view and query. Equality can be
avoided as follows. A relation R is said to be pseudo-monoidal if the equivalence relation defined
by z ≃ z′ iff ∃x, y R(x, y, z) ∧R(x, y, z′) is a congruence with respect to R and R/ ≃ is a monoidal
function.

The property that≃ is a congruence with respect to R can be enforced by the following equalities,
ensuring that equivalent z and z′ cannot be distinguished using R:
{(u, v, z, z′) ∣ ∃x, y R(x, y, z)∧R(x, y, z′)∧R(z, u, v)} = {(u, v, z, z′) ∣ ∃x, y R(x, y, z)∧R(x, y, z′)∧

R(z′, u, v)},
{(u, v, z, z′) ∣ ∃x, y R(x, y, z)∧R(x, y, z′)∧R(u, z, v)} = {(u, v, z, z′) ∣ ∃x, y R(x, y, z)∧R(x, y, z′)∧

R(u, z′, v)}, and
{(u, v, z, z′) ∣ ∃x, y R(x, y, z)∧R(x, y, z′)∧R(u, v, z)} = {(u, v, z, z′) ∣ ∃x, y R(x, y, z)∧R(x, y, z′)∧

R(u, v, z′)}.
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It is easily seen that for every R satisfying the above equalities, ≃ is a congruence.
We now modify V by replacing the query that checks that R is the graph of a function (equation

(ii)) by a set of queries corresponding to the new equations above and, replacing in the others all
equalities x = y by ∃u, v R(u, v, x) ∧ R(u, v, y). We also modify the query QH,F , by replacing all
equalities x = y by ∃u, v R(u, v, x) ∧R(u, v, y).

As before, we can show that V↠QH,F iff H implies F over all finite pseudo-monoidal relations.
The latter is undecidable, since implication over finite pseudo-monoidal relations is the same as
implication over finite monoidal functions. This follows from the fact that every finite monoidal
function is in particular a finite pseudo-monoidal relation, and every finite pseudo-monoidal relation
can be turned into a finite monoidal function by taking its quotient with the equivalence relation ≃
defined above.

Finally, note that the zero-ary relations p1 and p2 can be avoided in the database schema if
so desired by using instead two Boolean CQs over some non-zero-ary relation, whose truth values
are independent of each other. For example, such sentences using a binary relation P might be
p1 = ∃x, y, z P (x, y) ∧ P (y, z) ∧ P (z, x) and p2 = ∃x, y P (x, y) ∧ P (y, x). □

We next turn to the question of UCQ-to-UCQ rewritings. Unfortunately, UCQ is not complete
for UCQ-to-UCQ rewritings, nor are much more powerful languages such as Datalog ∕=. Indeed, the
following shows that no monotonic language can be complete even for UCQ-to-CQ rewritings. In
fact, this holds even for unary databases, views, and queries.

Proposition 4.2 Any language complete for UCQ-to-CQ rewritings must express non-monotonic
queries. Moreover, this holds even if the database relations, views, and query are restricted to be
unary.

Proof: Consider the schema � = {R,P} where R and P are unary. Let V be the set consisting of
three views V1, V2, V3 defined by the following queries:

�1(x) : ∃uR(u) ∧ P (x)
�2(x) : R(x) ∨ P (x)
�3(x) : R(x).

Let Q(x) be the query P (x). It is easily seen that V↠Q. Indeed, if R ∕= ∅ then V1 provides the
answer to Q; if R = ∅ then V2 provides the answer to Q. Finally, V3 provides R. Therefore, V↠Q.
Now consider QV, associating Q(D) to V(D). We show that QV is not monotonic. Indeed, let
D1 be the database instance where P = {a, b} and R is empty. Let D2 consist of P = {a} and
R = {b}. Then V(D1) = ⟨∅, {a, b}, ∅⟩, V(D2) = ⟨{a}, {a, b}, {b}⟩, so V(D1) ⊆ V(D2). However,
Q(D1) = {a, b}, Q(D2) = {a}, and Q(D1) ∕⊆ Q(D2). □

We next show a similar result for CQ ∕= views and CQ queries.

Proposition 4.3 Any language complete for CQ ∕=-to-CQ rewritings must express non-monotonic
queries. Moreover, this holds even if the views and query are monadic (i.e. they answers are unary
relations).

Proof: Let � = {R}, where R is binary. Consider the view V consisting in three views V1, V2, V3
defined as follows: �1(x) = ∃y R(x, y) ∧ R(y, x), �2(x) = ∃y R(x, y) ∧ R(y, x) ∧ x ∕= y and
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�3(x) = ∃y R(x, x) ∧ R(x, y) ∧ R(y, x) ∧ x ∕= y. Consider the query Q(x) defined by R(x, x). It
is easy to check that V↠Q. Indeed Q can be defined by (V1 ∧ ¬V2) ∨ V3. Consider the databases
instances D and D′ where R is respectively {(a, a)} and {(a, b), (b, a)}. Then V(D) = ⟨{a}, ∅, ∅⟩,
V(D′) = ⟨{a, b}, {a, b}, ∅⟩, Q(D) = {a} and Q(D′) = ∅. Thus, V(D) ⊂ V(D′) but Q(D) ∕⊆ Q(D′).
Therefore Q cannot be rewritten in terms of V using a monotonic language. □

From Proposition 4.2 and Proposition 4.3 we immediately have:

Corollary 4.4 Datalog ∕= is not complete for CQ ∕=-to-CQ rewritings or for UCQ-to-CQ rewritings,
even if the views and query are restricted to be monadic.

Proposition 4.2 provides a lower bound of sorts for any rewriting language complete for UCQ-to-
UCQ rewritings or for CQ ∕=-to-CQ rewritings. Note that it also follows from Theorem 4.1 that UCQ
is not complete for UCQ-to-UCQ rewritings. Indeed, by Theorem 3.9 in [29], it is decidable if a UCQ
query Q can be rewritten in terms of a set of UCQ views V using a UCQ. Therefore, completeness
of UQC for UCQ-to-UCQ rewritings would contradict the undecidability of determinacy.

Recall that, from Theorem 3.5, we know that ∃SO and ∀SO are both complete for UCQ-to-UCQ
rewritings and for CQ ∕=-to-CQ rewritings. It remains open if we can do better. In particular, we
do not know if FO is complete for UCQ-to-UCQ rewritings or for CQ ∕=-to-CQ rewritings.

5 Conjunctive views and queries

Conjunctive queries are the most widely used in practice, and the most studied in relation to
answering queries using views. Given CQ views V and a CQ query Q, it is decidable whether Q can
be rewritten in terms of V using another CQ ([29]). But is CQ complete for CQ-to-CQ rewriting?
Note that this would immediately imply decidability of determinacy for CQ views and queries, by
the above result of [29]. Surprisingly, we show that CQ is not complete for CQ-to-CQ rewriting.
Moreover, the decidability of determinacy for conjunctive views and queries remains open, and
appears to be a hard question. The problem is only settled for some special fragments of CQs,
described later in this section.

5.1 CQ is not Complete for CQ-to-CQ Rewriting

In this section, we show that CQ is not complete for CQ-to-CQ rewriting. In fact, no monotonic
language can be complete for CQ-to-CQ rewriting.

Before proving the main result of the section, we recall a test for checking whether a CQ query
has a CQ rewriting in terms of a given set of CQ views. The test is based on the chase.

Let � be a database schema and Q(x̄) a CQ over � with free variables x̄. In this section, we will
use the standard technique of identifying each conjunctive query with an instance called its frozen
body. To this end, let var be an infinite set of variables disjoint from dom, such that all variable
used in conjunctive queries belong to var. Instead of instances over dom, we will consider in this
section instances over the extended domain dom ∪ var. Now we can associate an instance to a
conjunctive query Q as follows. The frozen body of Q, denoted [Q], is the instance over � such that
(x1, . . . , xk) ∈ R iff R(x1, . . . , xk) is an atom in Q. Note that (x1, . . . , xk) may contain constants
(from dom) as well as variables (from var). For a set V of CQs, [V] is the union of the [Q]’s for
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all Q ∈ V. For a mapping � from variables to variables and constants, we denote by �([Q]) the
instance obtained by applying � to all variables in [Q].

A homomorphism from an instance I to an instance J over the extended domain dom ∪ var is
a classical homomorphism that is the identity on dom. Recall that a tuple c̄ is in Q(D) for a CQ
Q and database instance D iff there exists a homomorphism ℎ from [Q] to D such that ℎ(x̄) = c̄.
In this case we say that ℎ witnesses c̄ ∈ Q(D), or that c̄ ∈ Q(D) via ℎ.

Let V be a CQ view from ℐ(�) to ℐ(�V). Let S be a database instance over ℐ(�V) and C a set
of elements. We define the V-inverse of S relative to a domain C, denoted V

−1
C (S), as the instance

D over � defined as follows. Let V be a relation in �V, with corresponding query �V (x̄). For every
tuple c̄ belonging to V in S, we include in D the tuples of �([�V ]) where �(x̄) = c̄ and � maps every
variable of [�V ] not in x̄ to some new distinct value not in adom(S) ∪ C. For the reader familiar
to the chase, V−1

C (S) is obtained as a chase of S with respect to the tuple generating dependencies
∀x̄(V (x̄)→ ∃ȳ�V (x̄, ȳ)), where V ∈ �V and �V is the body of the query defining V in V, in which
all values introduced as witnesses are outside adom(S) and C. To simplify, we usually assume that
C consists of the entire active domain of D when V

−1 is applied, and omit specifying it explicitly.
Thus, all witnesses introduced by an application of V−1 are new elements.

The following key facts were also observed in [17]:

Proposition 5.1 Let Q(x̄) be a CQ (with free variables x̄) and S = V([Q]). Let 'V(x̄) be the CQ
over �V for which ['V] = S. We have the following:

(i) S ⊆ V ∘V−1(S);

(ii) Q ⊆ 'V ∘V;

(iii) If x̄ ∈ Q(V−1(S)) then Q ≡ 'V ∘V. In particular, V↠Q.

(iv) If Q has a CQ rewriting in terms of V, then 'V is such a rewriting.

Proof: Part(i) is obvious from the definition of V−1(S).
For part (ii) notice that by definition of 'V, the frozen body of 'V ∘V is isomorphic to V

−1(S).
The inclusion then follows from the fact that there is a homomorphism from V

−1(S) to [Q] pre-
serving x̄. To see this, recall that every tuple s̄ ∈ V ([Q]) is witnessed by a homomorphism ℎs̄ from
[�V ] to [Q] and also induces an copy of [�V ] in V

−1(S). The union of all the ℎs̄ yields the desired
homomorphism from V

−1(S) to [Q].
Consider now (iii). If x̄ ∈ Q(V−1(S)) then there is a homomorphism from [Q] to V

−1(S) fixing
x̄. As the body of 'V ∘V is V

−1(S), it follows that 'V ∘V ⊆ Q and we conclude using (ii).
It remains to show (iv). Suppose that qV is a CQ rewriting of Q using V. In particular we have

for all D, Q(D) = qV ∘V(D). We show that x̄ ∈ Q(V−1(S)) and we conclude using (iii). We have
x̄ ∈ Q([Q]). Hence x̄ ∈ qV(V([Q])) = qV(S). By (i), S ⊆ V ∘V−1(S). Because qV is conjunctive,
so monotonic, we also have x̄ ∈ qV(V ∘V−1(S)). But qV(V ∘V−1(S)) is qV ∘V(V−1(S)). Hence
x̄ ∈ Q(V−1(S)). □

Note that Proposition 5.1 applies both to the finite and unrestricted cases.
We can now show the following.

Theorem 5.2 CQ is not complete for CQ-to-CQ rewriting.
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Proof: We exhibit a set of CQ views V and a CQ Q such that V↠Q but x̄ ∕∈ Q(V−1(S)), where
S = V([Q]). By Proposition 5.1, this shows that Q has no CQ rewriting in terms of V.

Let the database schema consist of a single binary relation R. Consider the set V consisting of
the following three views (with corresponding graphical representations):

V1(x, y) = ∃�∃�[R(�, x) ∧R(�, �) ∧R(�, y)] x← �→ � → y
V2(x, y) = ∃�[R(x, �) ∧R(�, y)] x→ �→ y
V3(x, y) = ∃�∃�[R(x, �) ∧R(�, �) ∧R(�, y)] x→ �→ � → y

Let Q(x, y) = ∃a∃b∃c[R(a, x) ∧R(a, b) ∧R(b, c) ∧R(c, y)] x← a→ b→ c→ y.
We first show that V↠Q. To do so, we prove that the formula

'(x, y) : ∃d[V1(x, d) ∧ ∀e(V2(e, d)→ V3(e, y)]

is a rewriting of Q using V. In other words, for each database D over � and u, v ∈ adom(D),
⟨u, v⟩ ∈ Q(D) iff '(u, v) holds on the instance V (D).

Suppose ⟨u, v⟩ ∈ Q(D) via a homomorphism ℎ. Note that we have ⟨x, c⟩ ∈ V1([Q]), via a
homomorphism ℎ′. It follows that ℎ∘ℎ′ is a homomorphism from [V1] toD mapping ⟨x, c⟩ to ⟨u, ℎ(c)⟩.
We let d = ℎ(c) and from the above we have ⟨u, d⟩ ∈ V1(D). Now because there is an edge ⟨c, y⟩
in [Q] we have an edge ⟨d, v⟩ in D. Therefore for every e such that ⟨e, d⟩ ∈ V2(D), ⟨e, v⟩ ∈ V3(D).
Thus, '(u, v) holds on V (D). Conversely, suppose '(u, v) holds on V (D). Then there exists d such
that ⟨u, d⟩ ∈ V1(D), so by definition of V1 there exist �, � such that R(�, u) ∧ R(�, �) ∧ R(�, d)
holds in D. But then ⟨�, d⟩ ∈ V2(D) so by definition of ', ⟨�, v⟩ ∈ V3(D). It follows that there exist
b′, c′ such that R(�, b′) ∧ R(b′, c′) ∧ R(c′, v) holds in D. This together with the fact that R(�, u)
holds in D, implies that ⟨u, v⟩ ∈ Q(D). Thus, '(x, y) is a rewriting of Q using V, so V↠Q.

In view of Proposition 5.1, it remains to show that ⟨x, y⟩ ∕∈ Q(V−1(S)), where S = V([Q]).
Clearly, S = V([Q]) is the instance:

V1
x c
b c
c y

V2
a c
b y

V3
a y

and V
−1(S) is depicted in Figure 2.

It is easily checked that ⟨x, y⟩ does not belong to Q applied to the above instance. Thus, Q has
no CQ rewriting in terms of V. □

Remark 5.3 A different and somewhat simpler proof of Theorem 5.2 has recently been exhibited
in [3]. It extends the technique in the above proof by providing an infinite set of examples of CQ
views and queries for which the view determines the query but the query has no CQ rewriting in
terms of the view. The examples involve path queries Pn(x, y) on a binary relation R stating that
there is a path of length n from x to y in R (n > 1). For instance, it is shown that {P3, P4}↠P5

but P5 has no CQ rewriting in terms of P3 and P4. However, P5 has the FO rewriting

P5(x, y) ≡ ∃z[P4(x, z) ∧ ∀v(P3(v, z)→ P4(v, y))].
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a �1 1 y

�2 3 4

�3

c �5 �5 b

�6

�6 x

Figure 2: The graph of V−1(S) (elements in adom(S) are in boldface).

Remark 5.4 Note that Theorem 5.2 holds in the finite as well as the unrestricted case. This shows
that Theorem 3.3 in [35], claiming that CQ is complete for CQ-to-CQ rewriting in the unrestricted
case, is erroneous. Also, Theorem 3.7 in [35], claiming decidability of determinacy in the unrestricted
case as a corollary, remains unproven. The source of the problem is Proposition 3.6 in [35], which is
unfortunately false (the views and queries used in the above proof are a counterexample). Specifically,
part (5) of that proposition would imply that (x, y) ∈ Q(V−1(S))) for V and Q in the proof of
Theorem 5.2, which is false.

As a consequence of the proof of Theorem 5.2 we have:

Corollary 5.5 No monotonic language is complete for CQ-to-CQ rewriting.

Proof: Consider the set of CQ views V and the query Q used in the proof of Theorem 5.2. It
was shown that V↠Q. Consider the database instances D1 = [Q] and D2 = R where R is the
relation depicted in Figure 2. By construction, V(D1) ⊂ V(D2). However, ⟨x, y⟩ ∈ Q(D1) but
⟨x, y⟩ /∈ Q(D2), so Q(D1) ∕⊆ Q(D2). Thus the mapping QV is non-monotonic. □

5.2 Completeness for monotonic mappings

To show that CQ is not complete for CQ-to-CQ rewritings, we exhibited in the proof of Theorem 5.2
a set V of CQ views and a CQ query Q such that V↠Q and QV is non-monotonic. One might
wonder if there are always CQ rewritings in the cases when QV is monotonic. An affirmative answer
is provided by the following result.

Theorem 5.6 Let V be a set of CQ views and Q a CQ query such that V↠Q. If QV is monotonic,
then there exists a CQ rewriting of Q using V.

Proof: Let V be a set of CQ views and Q(x̄) a CQ query (with free variables x̄) such that V↠Q
and QV is monotonic. We use the notation of Proposition 5.1. Let D1 = [Q] be the database
consisting of the body of Q, and D2 = V

−1(V([Q]). By construction, V(D1) ⊆ V(D2). Since QV

is monotonic, Q(D1) ⊆ Q(D2). Note that x̄ ∈ Q(D1). It follows that x̄ ∈ Q(D2), so by (iii) of
Proposition 5.1, 'V is a CQ rewriting of Q using V. □
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Another way to look at Theorem 5.6 is as a kind of “gap theorem”. Indeed, the theorem says
that adding “small” features such as inequality, constants, or union to CQs does not increase its
power as a language for CQ-to-CQ rewritings. Instead, in order to obtain any increase in rewriting
power, one has to augment CQs all the way to a non-monotonic language.

A similar result can be obtained for some languages beyond CQs. Consider UCQs. Recall that
no monotonic language can be complete for UCQ-to-UCQ rewriting, because, as in the case of CQs,
there are UCQ views V and query Q such that V↠Q and QV is non-monotonic (see Proposition
4.2). A similar situation holds for CQ ∕= views and CQ queries (see Proposition 4.3). It turns out
that the completeness result of Theorem 5.6 can be extended to these cases, as shown next.

Theorem 5.7 (i) Let V ∈CQ ∕= and Q ∈ (U)CQ. If V↠Q and QV is monotonic, then there exists
R ∈ (U)CQ such that Q⇒V R. (ii) Let V ∈ UCQ and Q ∈ UCQ. If V↠Q and QV is monotonic,
then there exists R ∈ UCQ such that Q⇒V R.

Proof: For proving part (i) we will make use of results of Abiteboul and Duschka [1] on rewriting
of certain answers to queries, in terms of sound views. For the sake of self containment, we briefly
recall these results.

Let V be a set of views and Q a query over the same database schema. In the context of
data integration, it is often of interest to consider sound views of a database D with respect to V.
An instance E of �V is a sound view of D with respect to V iff E ⊆ V(D). Given an instance
E over �V that is a sound view of some database with respect to V, and a query Q, one is
typically interested to compute the set of certain answers to Q with respect to V, defined as
certQ(E) = ∩{Q(D) ∣ E ⊆ V(D)}.

Now suppose V ∈CQ ∕= and Q ∈ Datalog. We call an instance E over �V a sound view with
respect to V iff E ⊆ V(D) for some database instance D. Note that, due to the presence of
inequalities in V, not every instance over �V is a sound view.

Theorem 4.3 in [1] states that the inequalities in V do not affect the certain answers to Q, so
can be eliminated. More precisely:

Lemma 5.8 (Theorem 4.3 in [1]) Let V ∈CQ ∕= and Q ∈ Datalog. Let V− be obtained from V by
removing all inequalities. Then for every sound view E with respect to V, certQ(E) with respect to
V equals certQ(E) with respect to V−.

We next consider the rewriting question for certain answers and sound views. In this context,
the question is to find a query P over �V such that P (E) = certQ(E) for every sound view E with
respect to V. We use again a result from [1], that provides a rewriting of certQ in terms of V when
V ∈ CQ and Q ∈ Datalog.

Lemma 5.9 (consequence of Theorem 4.2 in [1]) Let V ∈ CQ and Q ∈ Datalog. There exists a
query P ∈ Datalog, computable from V and Q, such that for every instance E over �V, certQ(E) =
P (E) under the sound view semantics.

Now consider V and Q as in (i). Recall that certQ(E) = ∩D{Q(D) ∣ E ⊆ V(D)}. Since V ↠Q,
certQ(E) = ∩S{QV(S) ∣ E ⊆ S ∧S = V(D)}. Since QV is monotonic, QV(E) = certQ(E) for each
E in the image of V. Hence, for every database D, Q(D) = certQ(V(D)). Thus, it is enough to find
a rewriting for certQ. By Lemma 5.8, we can assume that V contains no inequalities. By Lemma
5.9, there exists a Datalog program P over �V that computes certQ, so is also a rewriting of Q with
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respect to V. Since P expanded with the view definition is an infinite union ∪i≥0'i of conjunctive
queries over the input database and Q is a finite union of conjunctive queries over the same, it easily
follows that Q is equivalent to a finite union of conjunctive queries among {'i ∣ i ≥ 0}, so can be
rewritten as a finite union of conjunctive queries over V. Furthermore, if Q is in CQ then Q is
equivalent to a single conjunctive query among {'i ∣ i ≥ 0}. Note that this provides an alternative
proof to Theorem 5.6.

Now consider (ii). The proof is an extension of that of Theorem 5.6. For readability, we sketch

the proof for the case when V consists of a single UCQ view V . Let V (v̄) =
n⋁

i=1

Vi(v̄) where each

Vi(v̄) is a CQ and v̄ are the free variables. Similarly, let Q(q̄) =
m⋁

j=1

Qj(q̄) where each Qj(q̄) is a CQ

and q̄ are the free variables. We use the notation developed in the proof of Proposition 5.1. Thus,
for each Qj we denote by [Qj ] the frozen body of Qj and let Sj = V ([Qj ]). Let 'V (q̄) be the UCQ

∃ȳ
m⋁

j=1

⋀

t̄∈Sj

V (t̄) where ȳ contains all the bound variables of Q.

We claim that 'V defines QV . In other words, Q is equivalent to 'V ∘ V .
Consider Q ⊆ 'V ∘ V . Let  j = ∃ȳ(

⋀
t̄∈Sj

V (t̄)) ∘ V . Clearly, it is enough to show that Qj ⊆  j
for every j, 1 ≤ j ≤ m. Let us fix such j. Let Σj be the set of mappings � from Sj to {1, . . . , n} such
that t̄ ∈ V�(t)([Qj ]) for every t ∈ Sj . For each � ∈ Σj , let  �j (q̄) be the CQ whose free variables are q̄

and whose frozen body is [ �j ] =
∪

t̄∈Sj

V −1
�(t̄)

(t̄). Using distributivity of conjunction over disjunction,

 j =
⋁
�∈Σj

 �j . Thus,  �j ⊆  j for every � ∈ Σj . On the other hand, by construction there exists

a homomorphism from each [ �j ] to [Qj ] fixing q̄. It follows that Qj ⊆  �j for every � ∈ Σj . This
together with  �j ⊆  j implies that Qj ⊆  j .

Now consider 'V ∘ V ⊆ Q. Clearly, it is enough to show that  j ⊆ Q for every j, 1 ≤ j ≤ m.
Let Σj and  �j be defined as above (� ∈ Σj). As noted above,  j is equivalent to

⋁
�∈Σj

 �j . Thus,

it is enough to show that  �j ⊆ Q for each �. Consider the database instances D1 = [Qj ] and
D2 = [ �j ]. By construction, V (D1) = V ([Qj ]) = Sj ⊆ V (D2). Since QV is monotonic, it follows
that Q(D1) ⊆ Q(D2). However, q̄ ∈ Q(D1), so q̄ ∈ Q(D2) and there is i, 1 ≤ i ≤ m, such that
q̄ ∈ Qi(D2). Thus, there is a homomorphism from [Qi] to [ �j ] fixing q̄, and so  �j ⊆ Qi ⊆ Q. Since
 j =

⋁
�∈Σj

 �j , it follows that  j ⊆ Q. □

5.3 Effective FO rewriting in the unrestricted case

As shown above, CQ is not complete for CQ-to-CQ rewriting. What is the rewriting power needed
of a complete language? In the finite case, it is open whether FO is sufficient, and the best known
upper bounds remain ∃SO and ∀SO. In the unrestricted case, we know from Theorem 3.1 that FO is
complete for CQ-to-CQ rewriting. However, this does not necessarily guarantee effective rewritings.
We next show that such effective FO rewritings do indeed exist for CQ-to-CQ rewritings. Recall
that it is open whether finite and unrestricted determinacy coincide for CQ views and queries.

First, we review a characterization of determinacy in the unrestricted case, based on the chase.
Let V be a set of CQ views and Q(x̄) a CQ over the same database schema �. We construct two
possibly infinite instances D∞ and D′

∞ such that V(D∞) = V(D′
∞) as follows. We first define
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inductively a sequence of instances {Dk, Sk, Vk, V
′
k, S

′
k, D

′
k}k≥0, constructed by a chase procedure.

Specifically, Dk, D
′
k are instances over the database schema �, and Sk, Vk, V

′
k, S

′
k are instances over

the view schema �V. We will define D∞ =
∪
kDk and D′

∞ =
∪
kD

′
k. For the basis, D0 = [Q], S0 =

V0 = V([Q]), S′
0 = V ′

0 = ∅, and D′
0 = V

−1(S0). Inductively, V ′
k+1 = V(D′

k), S
′
k+1 = V ′

k+1 − Vk,
Dk+1 = Dk ∪V

−1(S′
k+1), Vk+1 = V(Dk+1), Sk+1 = Vk+1 − V ′

k+1, and D′
k+1 = D′

k ∪V
−1(Sk+1)

(recall that new witnesses are introduced at every application of V−1).
Referring to the proof of Theorem 5.2, note that the instance depicted in Figure 2 coincides with

D′
0.

Example 5.10 We illustrate with a simple example the first steps in the chase construction.
Consider a database schema consisting of a single binary relation R. Consider the binary view
V (u, v) = ∃zR(u, v) ∧R(u, z) ∧R(z, v). Consider the Boolean query Q defined by ∃x, yR(x, x) ∧
R(x, y). We construct the first steps of the chase, specifically D0, V0, D

′
0, V

′
1 , D1, V1. Since all in-

stances are binary, we represent them as directed graphs.

By definition, D0 = [Q] is the graph x y

Clearly, V0 = V(D0) is the same graph x y

We can now compute D′
0 = V

−1(V0) and obtain the graph

x y

a b where a and b are
distinct new variables.

Next, V ′
1 = V(D′

0) is the graph

x y

a b

Recall that S′
1 = V ′

1 − V0 and D1 = D0 ∪V
−1(S′

1). Thus, D1 is the graph

x y

d a e c b

where c, d, and e are distinct new variables.

Finally, V1 = V(D1) is the graph
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x y

d a e c b

It can be easily seen that the chase never terminates for this example, so D∞ and D′
∞ are

infinite instances. Although immaterial to the chase construction, note that {V } ↠ Q. Indeed, Q
is equivalent to ∃x∃y(V (x, x) ∧ V (x, y)). □

We will use the following properties.

Proposition 5.11 Let D∞ and D′
∞ be constructed as above. The following hold:

1. V(D∞) = V(D′
∞).

2. There exist homomorphisms from D∞ into [Q] and from D′
∞ into [Q] that are the identity on

dom([Q]).

3. For every pair of database instances I, I ′ such that V(I) = V(I ′) and ā ∈ Q(I) via homomor-
phism � (from [Q] to I), there exists a homomorphism from D′

∞ into I ′ mapping each free
variable x of Q occurring in D′

∞ to the corresponding �(x) in ā.

Proof: Consider (1). Recall that D∞ =
∪
kDk and D′

∞ =
∪
kD

′
k. Since V are CQs and the

sequences of sets {Dk}k≥0 and {D′
k}k≥0 are non-decreasing, V(D∞) =

∪
k≥0V(Dk) and V(D′

∞) =∪
k≥0V(D′

k). We show that V(Dk) ⊆ V(D′
k). Recall that by definition V(Dk) is Vk = V ′

k ∪ Sk
and that D′

k is D′
k−1 ∪V

−1(Sk). Because V is CQ, we have V ′
k ∪V ∘V−1(Sk) ⊆ V(D′

k). By (i)
of Proposition 5.1, Sk ⊆ V ∘ V−1(Sk) and hence V(Dk) ⊆ V(D′

k). Similarly we can show that
V(D′

k) ⊆ V(Dk+1). It follows that V(D∞) = V(D′
∞).

Next, consider (2). First, note that, by construction, dom(Dk) ∩ dom(D′
k) = dom(Vk) (recall

that Vk = V(Dk)). We show by induction the following.

(†) for each k ≥ 0 there exist homomorphisms ℎk from Dk to [Q] and ℎ′k from D′
k to [Q] that agree

on their common domain dom(Vk) and are the identity on dom(Vk)∩dom([Q]). Furthermore,
ℎk+1 extends ℎk and ℎ′k+1 extends ℎ′k.

For k = 0, D0 = [Q] and D′
0 = V

−1(V([Q])) so ℎ0 is the identity and ℎ′0 extends ℎ0 to the
new witnesses in V

−1(V([Q])). In particular, ℎ0 and ℎ′0 agree on dom(D0) ∩ dom(D′
0) = dom(V0).

Now let k ≥ 0 and suppose ℎi and ℎ′i have the desired properties for 0 ≤ i ≤ k. In particular,
ℎk extends ℎ0, and since ℎ0 is the identity on dom([Q]), ℎk is also the identity on [Q]. We define
ℎk+1 and ℎ′k+1 as follows. Recall that S′

k+1 = V(D′
k) − V(Dk) and Dk+1 = Dk ∪ V

−1(S′
k+1).

By construction, there exists a homomorphism f from V
−1(S′

k+1) to D′
k that is the identity on

dom(Dk) ∪ dom(D′
k) (since new witnesses are used in every application of V

−1). It follows that
f ∘ ℎ′k is a homomorphism from V

−1(S′
k+1) to [Q] that agrees with ℎk on dom(Dk) ∩ dom(D′

k) so
on dom(Dk) ∩ dom(V−1(S′

k+1)). Let ℎk+1 be the union of ℎk and f ∘ ℎ′k (so in particular ℎk+1

extends ℎk). Thus, ℎk+1 is a homomorphism from Dk+1 to [Q] that is the identity on dom([Q]).
Next, recall that D′

k+1 = D′
k ∪V

−1(Sk+1), where Sk+1 = V(Dk+1) −V(D′
k). By definition, there

is a homomorphism g from V
−1(Sk+1) to Dk+1 that is the identity on dom(Dk+1). It follows that
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g ∘ ℎk+1 is a homomorphism from V
−1(Sk+1) to [Q] that is the identity on [Q] and agrees with ℎ′k

on their common domain. Let ℎ′k+1 be the union of ℎ′k and g ∘ ℎk+1. In view of the above, ℎ′k+1

is a homomorphism from D′
k+1 to [Q] that agrees with ℎk+1 on dom(Vk+1) and is the identity on

dom(Vk+1) ∩ dom([Q]). This completes the induction. By construction, ℎk+1 extends ℎk and ℎ′k+1

extends ℎ′k for every k ≥ 0. This proves (†).
To prove (2), let ℎ = ∪k≥0ℎk and ℎ′ = ∪k≥0ℎ

′
k. Since ℎk+1 extends ℎk and ℎ′k+1 extends ℎ′k for

each k ≥ 0, ℎ and ℎ′ are well-defined homomorphisms from D∞, resp. D′
∞, to [Q], that are the

identity on dom([Q]).
Now consider (3). Let I, I ′ be database instances as in the statement. We prove by induction

the following.

(‡) for each k ≥ 0 there exist homomorphisms fk from Dk to I and f ′k from D′
k to I ′ such that:

(i) f0 = �,

(ii) fk+1 extends fk and f ′k+1 extends f ′k, and

(iii) fk and f ′k agree on dom(Vk).

Clearly, (‡) suffices to prove (3). Indeed, let f = ∪k≥0fk and f ′ = ∪k≥0f
′
k. Due to (ii), f and

f ′ are well defined homomorphisms from D∞ to I, resp. D′
∞ to I ′. From (i)− (iii) it then follows

that f ′ agrees with � on every free variable x of Q occurring in D′
∞ (note that not all such free

variables must occur in D′
∞, since we do not assume that V

∞

↠ Q).
We now prove (‡). For the basis, let f0 = � (thus, (i) is satisfied). Clearly, �(V0) ⊆ V(I), so

�(V0) ⊆ V(I ′). Since D′
0 = V

−1(V0), it follows that there exists a homomorphism f ′0 from D′
0 to I ′

that agrees with � on dom(V0). But � = f0, so f ′0 agrees with f0 on dom(V0).
For the induction, suppose k ≥ 0 and fk and f ′k are constructed so that (i), (iii) hold. Since

S′
k+1 ⊆ V(D′

k) it follows that f ′k(S
′
k+1) ⊆ V(f ′k(D

′
k)) ⊆ V(I ′) = V(I). Since Dk+1 = Dk ∪

V
−1(S′

k+1), there exists an extension fk+1 of fk such that fk+1(Dk+1) ⊆ I and fk+1 agrees with f ′k
on dom(S′

k+1). Since by the induction hypothesis fk and f ′k agree on dom(Vk), and fk+1 extends
fk, it follows that fk+1 and f ′k agree on dom(V ′

k+1). Since Sk+1 ⊆ V(Dk+1), it further follows that

fk+1(Sk+1) ⊆ V(fk+1(Dk+1)) ⊆ V(I) = V(I ′).

Since D′
k+1 = D′

k∪V
−1(Sk+1), there exists an extension f ′k+1 of f ′k mapping D′

k+1 to I ′ and agreeing
with fk+1 on dom(Sk+1). This in conjunction with the fact that fk+1 agrees with f ′k on dom(V ′

k+1)
implies that fk+1 and f ′k+1 agree on Vk+1. This completes the induction. □

As a consequence of the above we have the following.

Proposition 5.12 Let V be a set of CQ views and Q(x̄) a CQ over the same database schema,
where x̄ are the free variables of Q. Then V

∞

↠ Q iff x̄ ∈ Q(D′
∞).

Proof: Suppose V
∞

↠ Q. By (1) of Proposition 5.11, V(D∞) = V(D′
∞). It follows that Q(D∞) =

Q(D′
∞). But [Q] = D0 ⊆ D∞, so x̄ ∈ Q(D∞). It follows that x̄ ∈ Q(D′

∞). Conversely, suppose
that x̄ ∈ Q(D′

∞) is witnessed by ℎ. Let I, I ′ be database instances such that V(I) = V(I ′). We
have to show that Q(I) = Q(I ′). By symmetry, it is enough to show that Q(I) ⊆ Q(I ′). Let
ā ∈ Q(I). By (3) of Proposition 5.11, there exists a homomorphism ℎ′ from D′

∞ into I ′ mapping
x̄ to ā. The composition of ℎ and ℎ′ yields a homomorphism from [Q] to I ′ mapping x̄ to ā, and
hence ā ∈ Q(I ′). □
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We are now ready to show that FO is complete for CQ-to-CQ rewriting in the unrestricted case,
and that the FO rewriting can be effectively computed. Let V be a set of CQ views andQ(x̄) be a CQ
with free variables x̄, both over database schema �. Recall the sequence {Dk, Sk, Vk, V

′
k, S

′
k, D

′
k}k≥0

defined above for each V and Q. For each finite instance S over �V, let �S be the conjunction of
the literals R(t) such that R ∈ �V and t ∈ S(R). Note that �S is simply true if S = ∅. Let k ≥ 0
be fixed. We define a sequence of formulas {'ki }

k
i=0 by induction on i, backward from k. Let �̄i be

the elements in adom(Si)− adom(V ′
i ) if i > 0 and in adom(S0)− {x̄} if i = 0. For the basis, let

'kk = ∃�̄k�Sk
.

For 0 ≤ i < k let
'ki = ∃�̄i[�Si

∧ ∀�̄′
i+1(�S′

i+1
→ 'ki+1)]

where �̄i are as above and �̄′
i+1 are the elements in adom(S′

i+1)− adom(Vi).
We now show the following.

Theorem 5.13 Let V be a set of CQ views and Q be a CQ, both over database schema �. If
V

∞

↠ Q, then there exists k ≥ 0 such that Q ∞⇒V 'k0.

Proof: Suppose V
∞

↠ Q. Let x̄ be the free variables of Q. By Proposition 5.12, there exists a
homomorphism from [Q] into D′

∞ fixing the free variables x̄ of Q. Since D′
∞ =

∪
k≥0D

′
k, it follows

that there exists i ≥ 0 for which there is a homomorphism from [Q] to D′
i fixing x̄. Let k be the

minimum such i. We claim that 'k0 is a rewriting of Q using V. We need to show that for every
database instance D, Q(D) = 'k0(V(D)).

Consider Q(D) ⊆ 'k0(V(D)). Let ū ∈ Q(D) via some homomorphism ℎ. We show that ū ∈
'k0(V(D)). To this end we construct below a tree of partial valuations of the variables in Dk into
D, extending ℎ, such that for each i ≥ 0:

1. each node at depth 2i is a valuation � of the variables of Di which is a homomorphism from
Di to D such that V(D), � ∣= �Vi ; in particular, � provides a valuation for �̄i

2. each node at depth 2i + 1 is an extension �′ of its parent valuation to the variables of V ′
i+1

such that V(D), �′ ∣= �V ′

i+1
; in particular, �′ provides a valuation for �̄′

i+1

3. the valuation at each node is consistent with the valuation at its parent node.

Note that the set of variables of 'k0 is included in the set of variables in Dk. In particular, every
valuation at level 2k provides values for all variables of 'k0.

The tree is constructed inductively as follows.

∙ the root consists of ℎ; in particular, ℎ provides a valuation for the variables in �̄0 ∪ x̄ sending
x̄ to ū. By definition, this valuation satisfies (1).

∙ consider a node at depth 2i consisting of a valuation � for the variables in Di. Then, by
construction of the tree of partial valuations ((2) and (3) above), � has one child for each of
its extensions �′ to the variables of V ′

i+1 such that V(D), �′ ∣= �V ′

i+1
. By construction, (2)

and (3) hold.
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∙ consider a node at depth 2i+1 consisting of a valuation �′. By construction of the tree of partial
valuations, V(D), �′ ∣= �V ′

i+1
, so there exists an extension � of �′ mapping {V−1(v̄) ∣ v̄ ∈ S′

i+1}

into D. By construction of Di+1, � is a homomorphism from Di+1 to D and V(D), � ∣= �Vi+1
.

Using the above tree of valuations, we can show that V(D), ℎ∣x̄ ∣= 'k0. Intuitively, each valuation
at depth 2i has as children all its extensions to �̄′

i+1 satisfying �S′

2i+1
, while each valuation at depth

2i+1 has a single child inducing an extension to �̄i+1. We show by reverse induction (from k to 0)
that the nodes at even levels 2i provide valuation for the existentially quantified variables �̄i of 'k0,
witnessing the fact that ū ∈ 'k0(V(D)). Let us denote by '̄ki the formula �Si

∧∀�̄′
i+1(�S′

i+1
→ 'ki+1),

that is 'ki without its existential quantification ∃�̄i. Let i = k and � be a valuation at level 2k. By
construction of the tree of partial valuations, V(D), � ∣= �Sk

= '̄kk. For the induction step, suppose
that for every valuation � at level 2(i+1), V(D), � ∣= '̄ki+1. Consider a valuation � at level 2i. We
have that V(D), � ∣= �Si

and for every extension �′ of � to �′
i+1 satisfying �S′

i+1
, there exists an

extension � of �′ to �̄i+1 such that V(D), � ∣= '̄ki+1. In particular, V(D), �′ ∣= ∃�̄i+1 '̄
k
i+1 = 'ki+1.

Thus,
V(D), � ∣= �Si

∧ ∀�̄′
i+1(�S′

i+1
→ 'ki+1),

which completes the induction. Thus, for i = 0, we have that V(D), ℎ∣(�̄0∪x̄) ∣= '̄k0, so V(D), ℎ∣x̄ ∣=

∃�̄0'̄
k
0 = 'k0. In other words, ū ∈ 'k0(V(D)). Thus, Q(D) ⊆ 'k0(V(D)).

Now consider 'k0(V(D)) ⊆ Q(D). Suppose ū ∈ 'k0(V(D)). We prove that there exists a
homomorphism from D′

k into D mapping x̄ to ū. Since there is a homomorphism from [Q] to D′
k

fixing x̄, this suffices to conclude.
We construct valuations ℎi of the variables in x̄ andD′

i−1 (for simplicity we assume thatD′
−1 = ∅)

into D such that ℎi induces a homomorphism of D′
i−1 into D and V(D), ℎi ∣= 'ki . Note that for

i = 0, ℎ0 simply maps x̄ to ū.
We shall use the following simple claim:

Claim 5.14 Let ℎ be a valuation of the variables in x̄ and D′
i−1 that induces a homomorphism from

D′
i−1 into D. Suppose there exists a valuation g of the variables in Si, compatible with ℎ, such that

V(D), g ∣= �Si
. Then there exists a valuation of the variables in x̄ and D′

i, extending ℎ and inducing
a homomorphism from D′

i to D.

Proof: By construction, D′
i is obtained fromD′

i−1 by adding to it V−1(Si). Because V(D), g ∣= �Si
,

g(Si) ⊆ V(D). Thus, there is a homomorphism f consistent with ℎ mapping V
−1(g(Si)) to D, and

ℎ ∪ f is a homomorphism from D′
i to D extending ℎ. □

We now construct the valuations ℎi by induction, for 0 ≤ i ≤ k + 1 (ℎk+1 is the desired
homomorphism from D′

k into D). Specifically, for each i we exhibit a valuation ℎi on the variables
in x̄ and D′

i−1 that induces a homomorphism from D′
i−1 to D and for which V(D), ℎi ∣= 'ki . For

the basis, V(D), ℎ0 ∣= 'k0 since ū ∈ 'k0(V(D)). For the inductive step, consider i, 0 ≤ i ≤ k
and suppose we have constructed ℎi such that V(D), ℎi ∣= 'ki and ℎi induces a homomorphism
from D′

i−1 to D. Suppose first that i = k. Then, as 'kk = ∃�̄k�Sk
, there exists a valuation g

of �̄k, compatible with ℎi, such that V(D), g ∣= �Sk
. By Claim 5.14 there exists an extension

of ℎk to a homomorphism ℎk+1 from D′
k to D, as desired. Suppose now that i < k. Then, as

'ki = ∃�̄i(�Si
∧ ∀�̄′

i+1(�S′

i+1
→ 'ki+1)), it is possible to extend ℎi with a valuation g of �̄i such

that V(D), (ℎi ∪ g) ∣= [�Si
∧ ∀�̄′

i+1(�S′

i+1
→ 'ki+1)]. By Claim 5.14, ℎi can then be extended
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to a homomorphism ℎi+1 from D′
i to D. It remains to show that with this valuation 'ki+1 holds

in V(D). By construction, ℎi+1 provides a valuation for all variables in S′
i+1, including �̄′

i+1.
Furthermore, because by construction S′

i+1 ⊆ V(D′
i), and ℎi+1 induces a homomorphism from D′

i

to D, ℎi+1(S
′
i+1) ⊆ V(D), so V(D), ℎi+1 ∣= �S′

i+1
. We conclude that V(D), ℎi+1 ∣= 'ki+1. This

completes the induction. □

Remark 5.15 Recall that we earlier showed in Theorem 3.1, using Craig’s Interpolation Theorem,
that for any set V of FO views and FO query Q such that V

∞

↠ Q there exists an FO rewriting
of Q using V. However, this result is not constructive, as the interpolation theorem itself is not
constructive. On the other hand, Theorem 5.13 provides a constructive algorithm to obtain the
rewriting formula. Indeed, assume that V

∞

↠ Q and V and Q are CQs. Then we know that there
is a k such that x̄ ∈ Q(D′

k). Therefore, k can be computed by generating successively the D′
i until

x̄ ∈ Q(D′
i). Once we have k, the formula 'k0 is easy to compute. Note that Theorem 5.13 works only

for CQ views and queries, while the interpolation argument applies to all FO views and queries.

5.4 Well-Behaved Classes of CQ Views and Queries

We next consider restricted classes of views and queries for which CQ remains complete for rewriting.
As a consequence, determinacy for these classes is decidable.

Monadic Views We first consider the special case when the views are monadic. A monadic
conjunctive query (MCQ) is a CQ with one free variable. We show the following.

Theorem 5.16 (i) CQ is complete for MCQ-to-CQ rewriting.
(ii) Determinacy is decidable for MCQ views and CQ queries.

Note that (ii) is an immediate consequence of (i), in view of Proposition 5.1.
Towards proving (i), we first note that it is enough to consider monadic queries. Indeed, we

show that for MCQ views, determinacy of arbitrary CQ queries can be reduced to determinacy of
MCQ queries.

Proposition 5.17 Let V be a set of MCQ views and Q(x1, . . . , xk) a CQ query with free variables
x1, . . . , xk, over the same database schema �. Let Qi(xi) be the MCQ with free variable xi, obtained
by quantifying existentially in Q all xj for j ∕= i.

(i) if V↠Q then Q is equivalent to
k⋀

i=1

Qi(xi);

(ii) if Q =
k⋀

i=1

Qi(xi) then V↠Q iff V↠Qi(xi) for 1 ≤ i ≤ k.

Proof: Consider (i). Suppose V↠Q and consider [Q]. We show that for i ∕= j, no tuple ti of [Q]
containing xi is connected to a tuple tj of [Q] containing xj in the Gaifman graph (see [27]) of [Q].
This clearly proves (i).

Consider instances A and B over � defined as follows. Let D consist of k elements {a1, . . . , ak}.
Let A = {R(a, . . . , a) ∣ R ∈ �, a ∈ D}, and let B contain, for each R ∈ � of arity r, the cross-product
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Dr. Clearly, V(A) = V(B) (all views return D in both cases), so Q(A) = Q(B). But Q(B) = Dk,
so Q(A) = Dk. In particular, ⟨a1, . . . , ak⟩ ∈ Q(A). This is only possible if there is no path in
the Gaifman graph of [Q] from a tuple containing xi to one containing xj for i ∕= j. Part (ii) is
obvious. □

In view of Proposition 5.17, to establish Theorem 5.16 it is enough to prove that CQ is complete
for MCQ-to-MCQ rewriting. As a warm-up, let us consider first the case when V consists of a single
view V (x), and the database schema is one binary relation. Let Q(x) be an MCQ, and suppose
that V↠Q. We show that Q is equivalent to V . Since QV is a query, Q ⊆ V (Q cannot introduce
domain elements not in V ). It remains to show that V ⊆ Q. If Q(D) ∕= ∅ it follows by genericity
of QV that V (D) ⊆ Q(D); however, it is conceivable that Q(D) = ∅ but V (D) ∕= ∅. Let A = [V ]
and B = {(v, v) ∣ v ∈ V ([V ])}. Clearly, V (A) = V (B). It follows that Q(A) = Q(B). Recall
that x is the free variable of V , hence x ∈ V ([V ]) and (x, x) ∈ B. Therefore x ∈ Q(B). But then
x ∈ Q(A) = Q([V ]), so there exists a homomorphism from [Q] to [V ] fixing x. It follows that
V ⊆ Q, which completes the proof.

Unfortunately, the above approach for single views does not easily extend to multiple monadic
views. Indeed, suppose we have two views V1, V2. The stumbling block in extending the proof is the
construction of two instances A and B such that V1(A) = V1(B) and V2(A) = V2(B), and forcing
the existence of a homomorphism showing that Q can be rewritten using V1, V2. As we shall see,
the multiple views case requires a more involved construction, which is used in Lemma 5.18 below.

We will need the following notions. For any instance D, we define the type of a ∈ adom(D) to
be �(D, a) = {i ∣ a ∈ Vi(D)} which is a subset of [k] = {1, . . . , k}. A type S is realized in D if
�(D, c) = S for some c ∈ adom(D). A type S is realizable if it is realized in some D. A type is
maximal if it is maximal under set inclusion among some set of types. We also denote by #(S,D)
the number of elements c ∈ adom(D) for which �(D, c) = S.

Given two instances D and D′ over the same schema, we write D′ → D′ if there is a homomor-
phism from D′ to D. Suppose in addition that D ⊆ D′. We say that D′ retracts to D, which we
write D′ →֒ D if there is a homomorphism from D′ to D fixing the domain of D. We call such a
homomorphism a retraction.

The proof of Theorem 5.16 (i) is as follows. Let V be a set of MCQ views and Q a CQ query
with free variable x, both over database schema �, such that V↠Q. We want to show that Q has
a CQ rewriting in terms of V. By Proposition 5.17, we can assume wlog that Q is MCQ.

Set A0 = [Q] and B0 = V
−1(V([Q])). Let C = adom(V(A0)). Note that, by construction, C ⊆

adom(V(B0)). Also, note that x ∈ C. Indeed, suppose this is not the case. Let z be a new element
and let [Q]z be the instance obtained from [Q] by replacing x with z. Then V ([Q]) = V ([Q]z),
hence Q([Q]) = Q([Q]z) as V↠Q, but x ∈ Q([Q]) and x ∕∈ Q([Q]z), a contradiction.

We next prove Lemma 5.18 below, which allows us to conclude. Indeed, the lemma guarantees
the existence of A and B such that A →֒ A0, B →֒ B0, and V (A) = V (B). Then

1. x ∈ Q(A0) because A0 = [Q],

2. x ∈ Q(A) because A0 ⊆ A,

3. x ∈ Q(B) because V↠Q and V (A) = V (B), and therefore

4. x ∈ Q(B0) because B →֒ B0 (and recall that x ∈ adom(B0)).

This implies that there is a homomorphism from Q to B0 preserving x, as desired. In view of
Proposition 5.1, this implies that Q has a CQ rewriting in terms of V, which concludes the proof
of Theorem 5.16.
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We next proceed with Lemma 5.18. Note that the statement is slightly more general than we
need, since we do not even assume that V↠Q.

Lemma 5.18 Let V be a set of MCQs over a database schema �, Q an MCQ over the same schema
�, and let A0 and B0 be constructed as above. There exist finite instances A and B such that:

1. A →֒ A0,

2. B →֒ B0, and

3. V(A) = V(B).

Proof: As above, let C = adom(V(A0)). Recall that, by construction of B0, there exists a homo-
morphism ℎ from B0 to A0 preserving C. We begin with the following observations:

(i) every a ∈ C has the same type in V(A0) and V(B0), and

(ii) the maximal types realized in A0 and B0 are the same.

By construction, for every a ∈ C and V ∈ V, a ∈ V (A0) iff a ∈ V (B0). Thus, (i) holds. For part
(ii), we show that every type S realized in A0 is included in a type S′ realized in B0, and every
type S′ realized in B0 is included in a type S realized in A0. Suppose S is a type realized in A0.
Let a be such that �(A0, a) = S. By (i), since a ∈ C, �(A0, a) = �(B0, a). Thus, S ⊆ �(B0, a).
Now let S′ be a type realized in B0. Let b ∈ adom(V(B0)) be such that �(B0, b) = S′. Consider
ℎ(b) ∈ adom(V(A0)). Since ℎ is a homomorphism from B0 to A0, if b ∈ V (B0) then ℎ(b) ∈ V (A0).
Thus, S′ = �(B0, b) ⊆ �(A0, ℎ(b)). This establishes (ii).

Next, for each type S ∕= ∅, let VS be the query
⋀
i∈S Vi(xS), where xS is a fresh variable (here

Vi(xS) stands for the query over � defining the i-th view). For technical reasons, we enforce that
the VS for distinct S’s have disjoint domains. By slight abuse of notation, we use VS to denote both
the query

⋀
i∈S Vi(xS) and its frozen body, as needed. Clearly, if S ⊆ S′ then VS → VS′ .

We construct A and B in three steps.

(a) Set A1 to consist of the disjoint union of A0 with the set of instances

{VS ∣ S is realized in A0 or B0}.

Similarly, let B1 be the disjoint union of B0 with the same set of instances. Note that
�(A1, xS) = �(B1, xS) = S. This ensures that A1 and B1 realize the same set of types.
Moreover, A1 →֒ A0 and B1 →֒ B0, because A0 and B0 have the same maximal realized types
(by (ii) above) so VS →֒ A0 and VS →֒ B0 for every S realized in A0 or in B0.

(b) Now consider an arbitrary instance D and y ∈ adom(D). We can construct D′ ⊇ D such that
adom(D′) − adom(D) = {y′} as follows. Make every relation D′(R) contain all the tuples of
D(R) together with the set of tuples t′ where t ∈ D(R) and where every occurence of y in t
has been replaced with y′. It is easy to verify that every z ∈ adom(D) has the same type in D
and D′ and that y′ has the same type in D′ as y. Furthermore D′ →֒ D by the homomorphism
g which is the identity on D and where g(y′) = y. By repeatedly adding new elements to an
instance D in this way, we can increase #(S,D) for any type S realized in D to whatever
count we desire without changing the type of any other element. By an easy induction, it
follows that we can construct A2 and B2 such that A2 →֒ A1 →֒ A0 and B2 →֒ B1 →֒ B0 and
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such that for all S ⊆ [k] we have #(S,A2) = #(S,B2). In particular, this means that V(A2)
and V(B2) are isomorphic by an isomorphism � that preserves C. We assume that all new
elements added in constructing A1, A2, B1, and B2 are distinct.

(c) Let �̄ be the extension of the isomorphism � obtained in (b) with the identity on adom(A2)−
adom(V(A2)). Let A = �̄(A2) and B = B2. Clearly, A →֒ A0, B →֒ B0 and V(A) = V(B)
as desired.

□

We illustrate the constructions of Lemma 5.18 with an example

Example 5.19 Let � consist of a single binary relation E so that instances over E are directed
graphs. Let V1(x) = ∃yE(x, y) and V2(x) = ∃yE(y, x). That is, V1 returns the set of all nodes
with an outgoing edge and V2 returns the set of all nodes with an incoming edge. Consider the
query Q(x) = E(x, x), which returns the set of all nodes with a self-loop. Then A0 = {E(x, x)},
V1(A0) = V2(A0) = {x}, and B0 = {E(y, x), E(x, z)}. The types {1}, {2} and {1, 2} are all realized
in both A0 and B0, whereas ∅ is not. Furthermore,

V{1} = {E(a, b)}, V{2} = {E(c, d)} V{1,2} = {E(e, f), E(f, g)},

for some newly chosen a, b, c, d, e, f, g. In step (a) of the construction, we obtain A1 and B1 by
adding disjoint versions of V{1}, V{2}, V{1,2} to A0 and B0. This yields

A1 = {E(x, x), E(a, b), E(c, d), E(e, f), E(f, g)}

and
B1 = {E(y, x), E(x, z), E(a′, b′), E(c′, d′), E(e′, f ′), E(f ′, g′)}.

The elements of type {1} in A1 are a, c, e and in B1 they are y, a′, c′, e′. The elements of type {2}
in A1 are b, d, g and in B1 they are z, b′, d′, g′. The elements of type {1, 2} in A1 are {x, f} and in
B1 they are {x, f ′}. Notice that both A1 and B1 have two elements of type {1, 2}, but disagree on
the counts of the types {1} and {2}. In step (b) of the construction, we therefore add to A1 an
element u of type {1} and an element v of type {2} to obtain A2. We set B2 = B1 and

A2 = {E(x, x), E(a, b), E(c, d), E(e, f), E(f, g), E(u, b), E(a, v)}.

Here we obtained E(u, b) by replacing a with u in E(a, b). Similarly, we obtained E(a, v) by replacing
b with v in E(a, b). Now we define the isomorphism � from V(A2) to V(B2) as follows:

�

x x
u y
v z
a a′

b b′

c c′

d d′

e e′

f f ′

g g′
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Note that V1(A2) = {u, a, c, e, x, f} and V2(A2) = {v, b, d, g, x, f} so adom(A2)−adom(V(A2)) = ∅.
Thus, �̄ = � and step (c) yields

A = �̄(A2) = {E(x, x), E(a′, b′), E(c′, d′), E(e′, f ′), E(f ′, g′), E(y, b), E(a, z)}

while B remains equal to B2 so

B = {E(y, x), E(x, z), E(a′, b′), E(c′, d′), E(e′, f ′), E(f ′, g′)}.

This concludes the construction. Note that A →֒ A0, B →֒ B0, and V(A) = V(B) as desired. As
an aside, note that V does not determine Q, since there is no homomorphism from Q to B0. Indeed,
determinacy is not required by the lemma and the construction does not assume it.

One might wonder if the nice behavior exhibited in Theorem 5.16 for monadic CQs extends to
more powerful languages. Proposition 4.2 and Proposition 4.3 already settled this in the negative
for UCQs and CQ ∕=, by showing that QV may be non-monotonic even for monadic views and query
Q. Thus, the good behavior of CQs in the monadic case is lost with even small extensions to the
language.

Single-path views We have seen above that CQ is complete for MCQ-to-CQ rewriting. Unfor-
tunately, extending this result beyond monadic views is possible only in a very limited way. Recall
the example used in the proof of Theorem 5.2. It shows that even very simple binary views render
CQ incomplete. Indeed, the views used there are trees, and differ from simple paths by just a single
edge. In this section we show that CQ is complete (and therefore determinacy is decidable) in the
case where the database schema is a binary relation R, and V consists of a single view

Pk(x, y) = ∃x1 . . . ∃xk−1R(x, x1) ∧R(x1, x2) ∧ . . . ∧R(xk−1, y)

where k ≥ 2, providing the nodes connected by a path of length k. Note that the case where the
view in a path of length 1 is trivial since then the view provides the entire database.

We show the following.

Theorem 5.20 Let Q be a CQ query over R and k ≥ 2.
(i) If {Pk}↠Q then Q has a CQ rewriting in terms of Pk.
(ii) Given a CQ query Q, it is decidable whether {Pk}↠Q.

Proof: In view of (iv) of Proposition 5.1, the existence of a CQ rewriting is decidable, so (ii) follows
from (i).

Consider (i). Let Q be a CQ and suppose {Pk}↠Q. We show that there is a CQ rewriting of
Q using Pk. To this end, we construct two finite instances I and J such that Pk(I) = Pk(J), J
consists of several disjoint copies of D′

0, and x̄ ∈ Q(I). This implies that x̄ ∈ Q(D′
0) and (i) follows

from Proposition 5.1. The construction of I and J is done using a careful modification of the chase
procedure.

Consider the beginning of the chase sequence as defined in Section 5.1. Let D0 = [Q], S0 =
V (D0), D

′
0 = V −1(S0), V

′
1 = V (D′

0), and S′
1 = V ′

1 − S0.

Lemma 5.21 Under the conditions of Theorem 5.20, S0 and S′
1 have disjoint domains.
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Proof: Suppose that ⟨a, b⟩ ∈ Pk(D
′
0) for some a ∈ adom(S0) (the case when b ∈ adom(S0) is

similar). We show that b cannot be in adom(D′
0) − adom(S0). Since ⟨a, b⟩ ∈ Pk(D

′
0), there is a

path of length k from a to b in D′
0. Note that D′

0 has no cycles of length less than k. It follows
that either a = b or d(a, b) = k. In the first case we are done. If d(a, b) = k and a ∈ adom(S0), by
construction of D′

0, b can only be in adom(S0). □

Next, let us construct a special binary relation M as follows. The domain of M consists of
adom(S′

1) and, for each � ∈ adom(S′
1), new distinct elements x�1 , . . . , x

�
k−1. M has the following

edges:
for each � ∈ adom(S′

1), the edges �→ x�1 → . . .→ x�k−1;

and for each ⟨�, �⟩ ∈ S′
1, an edge x�k−1 → �.

The following is easily shown by construction of M .

Lemma 5.22 Let M be constructed as above. Then Pk(M) consists of k disjoint copies of S′
1.

Specifically, ⟨�, �⟩ ∈ S′
1 iff ⟨�, �⟩ ∈ Pk(M) and ⟨x�i , x

�
i ⟩ ∈ Pk(M) for 1 ≤ i ≤ k − 1.

We now use M to construct our desired instances I and J . Let I consist of k disjoint copies of
[Q] together with M , and J consist of k disjoint copies of D′

0. Then by Lemma 5.21, respectively
Lemma 5.22, Pk(J) and Pk(I) both consist of k disjoint copies of S0 and k disjoint copies of
S′
1. By appropriately renaming elements as needed, we obtain Pk(I) = Pk(J). Since {Pk}↠Q,
Q(I) = Q(J). But x̄ ∈ Q(I) since I contains [Q]. It follows that x̄ ∈ Q(J). Since J retracts to
D′

0 it follows that x̄ ∈ Q(D′
0) so by Proposition 5.1, Q has a CQ rewriting in terms of Pk. This

completes the proof of Theorem 5.20. □

As discussed in Remark 5.3, Foto Afrati recently considered in [3] the case of multiple path views
and a single path query, and showed that determinacy remains decidable in this case. Furthermore,
if the views determine the query, an FO rewriting of the query in terms of the views exists and can
be effectively computed.

Remark 5.23 As mentioned in Remark 3.11, Maarten Marx provides in [30] another well-behaved
class of CQs with respect to determinacy and rewriting. The class is obtained by applying the packed
condition used for FO to CQs, yielding Packed CQ (PCQ) (see Remark 3.11). The resulting fragment
is a slight extension of the well-known acyclic CQs [20]. It is shown in [30] that unrestricted and
finite determinacy coincide for PCQs, both are decidable, and PCQ is complete for PCQ-to-PCQ
rewriting. These results also extend to unions of PCQs.

5.5 One View versus Multiple Views

So far we have discussed the case of multiple views and a single query. But is it essential to have
multiple views? That is, can the problem of whether a set of CQ views determines a CQ query be
reduced to the problem of whether a single CQ view determines a CQ query? It turns out that, in
the unrestricted case (finite and infinite instances), the answer is yes. In the finite case the problem
is still open.

33



Definition 5.24 Given a set V = {V1, . . . , Vk} of CQ views with disjoint sets of variables, of arities
a1, . . . , ak respectively, we define the product query ⊗V = V1 × . . . × Vk to be the conjunctive view
of arity

∑
i ai whose set of free variables is the union of those of V1, . . . , Vk and whose body is the

conjunction of the bodies of V1, . . . , Vk. If the disjointness condition does not hold, we define ⊗V
by first renaming the variables so as to obtain disjointness.

The following is obvious from the definition.

Lemma 5.25 Let V = {V1, . . . , Vk} be a set of CQs with disjoint sets of variables. Let A and B
be database instances. If ⊗V(A) = ⊗V(B) ∕= ∅ then V(A) = V(B).

It is also useful to note the following.

Lemma 5.26 Let V = {V1, . . . , Vk} be a set of CQs with disjoint sets of variables and Q a CQ
such that V

∞

↠ Q. If i ∈ [1, k] is such that Vi([Q]) = ∅ then (V − {Vi})
∞

↠ Q.

Proof: Recall the construction of D′
∞ from V and Q. By Proposition 5.12, V

∞

↠ Q iff x̄ ∈ Q(D′
∞)

where x̄ is the set of free variables of Q. Since Vi([Q]) = ∅, there is no homomorphism mapping
Vi into [Q]. However, by Proposition 5.11, there is a homomorphism from D′

∞ into [Q]. It follows
that there is no homomorphism from Vi to D′

∞. Consequently, Vi is never used in the construction
of D′

∞. Thus, D′
∞ is constructed using only Q and V − {Vi}. Since x̄ ∈ Q(D′

∞), it follows that
(V − {Vi})

∞

↠ Q. □

We now have the following.

Theorem 5.27 Let V be a set of CQ views and Q a CQ query. There exists a single CQ view W
such that V

∞

↠ Q iff {W}
∞

↠ Q.

Proof: Let V
′ be obtained by removing from V all views V for which V ([Q]) = ∅. Note first that

V
′ ∕= ∅. Indeed, otherwise V([Q]) = ∅. But we also have V(∅) = ∅, while Q([Q]) ∕= ∅ and Q(∅) = ∅.

This is a contradiction with V
∞

↠ Q. Thus, V′ ∕= ∅.
Next, since V

′ ⊆ V, if V
′ ∞

↠ Q then V
∞

↠ Q. Conversely, by Lemma 5.26, if V
∞

↠ Q then
V

′ ∞

↠ Q. Thus, V
∞

↠ Q iff V
′ ∞

↠ Q. Now let W = ⊗V′. It is left to show that V
′ ∞

↠ Q
iff ⊗V′ ∞

↠ Q. Suppose first that ⊗V′ ∞

↠ Q. We show that V
′ ∞

↠ Q. Let A,B be database
instances such that V

′(A) = V
′(B). Clearly, ⊗V′(A) = ⊗V′(B). Since ⊗V′ ∞

↠ Q, it follows that
Q(A) = Q(B). Thus, V′ ∞

↠ Q. Conversely, suppose V
′ ∞

↠ Q and let A,B be database instances
such that ⊗V′(A) = ⊗V′(B). If ⊗V′(A) = ⊗V′(B) ∕= ∅ then by Lemma 5.25, V′(A) = V

′(B).
Since V

′ ∞

↠ Q, it follows that Q(A) = Q(B). Finally, suppose ⊗V′(A) = ⊗V′(B) = ∅. Then
there exist T1, T2 ∈ V

′ such that T1(A) = ∅ and T2(B) = ∅. Since, by construction of V′, there
is a homomorphism from T1 and T2 to [Q], this implies that Q ⊆ T1 and Q ⊆ T2 and therefore
Q(A) = Q(B) = ∅. Thus, ⊗V′ ∞

↠ Q. □

Remark 5.28 It remains open whether multiple CQ views can be replaced by single views in the
case of finite determinacy. The difficulty is that Lemma 5.26 may no longer hold, since in the finite
case it is not known whether views without a homomorphism into [Q] can be eliminated. However,
it is easy to show, similarly to the above, that if V is a set of CQ views such that every view in V

has a homomorphism into [Q], then V↠Q iff ⊗V↠Q.
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6 Conclusion

The contribution of this paper is a systematic study of determinacy and its connection to rewriting
for a variety of view and query languages ranging from FO to CQ. While the questions were settled
for many languages, several interesting problems remain open.

From a practical point of view, the case of CQs is the most interesting, because this is the most
widely used class of queries, and because, as shown by our negative results, even slight extensions
lead to undecidability. For CQs, decidability of determinacy remains open in both the finite and
unrestricted cases. In fact, it remains open whether unrestricted and finite determinacy coincide.
Note that if the latter holds, this implies decidability of determinacy. Indeed, then determinacy
would be r.e. (using the chase procedure) and co-r.e. (because failure of finite determinacy is
witnessed by finite instances).

If it turns out that finite and infinite determinacy are distinct for CQs, then it may be the
case that unrestricted determinacy is decidable, while finite determinacy is not. Also, we can
obtain effective FO rewritings whenever V determines Q in the unrestricted case, while the best
complete language in the finite case remains ∃SO ∩ ∀SO. Since unrestricted determinacy implies
finite determinacy, an algorithm for testing unrestricted determinacy could be used in practice as
a sound but incomplete algorithm for testing finite determinacy: all positive answers would imply
finite determinacy, but the algorithm could return false negatives. When the algorithm accepts,
we would also have a guaranteed FO rewriting. Thus, the unrestricted case may turn out to be of
practical interest if finite determinacy is undecidable, or to obtain FO rewritings.

While we exhibited some classes of CQ views for which CQ remains complete as a rewriting
language, we do not yet have a complete characterization of such well-behaved classes. Recall that
even a slight increase in the power of the rewrite language, such as using UCQ or CQ ∕= instead of
CQ, does not help. Indeed, a consequence of Theorem 5.6 is the following: if CQ is not sufficient
to rewrite Q in terms of V, then a non-monotonic language is needed for the rewriting.

For ℒ ∈ {CQ, CQ ∕=, UCQ}, we know that ∃SO ∩ ∀SO is complete for ℒ-toℒ rewritings. It is of
interest to know if there are less powerful languages that remain complete for such rewritings, such
as FO or FO+LFP. This however remains open.

Determinacy and rewriting naturally lead to the following general problem (solved so far only
for simple languages). Suppose ℛ is complete for V-to-Q rewritings. Is there an algorithm that,
given V ∈ V and Q ∈ Q such that V↠Q, produces R ∈ ℛ such that Q ⇒V R ? For example,
we know that FO is complete for FO-to-FO rewritings in the unrestricted case, but the rewritings
cannot be effectively computed. In contrast, effective FO rewritings can be obtained for CQ-to-CQ
rewritings in the unrestricted case (Theorem 5.13).

Finally, an interesting direction to be explored is instance-based determinacy and rewriting,
where determinacy and rewriting are considered relative to a given view instance. Such results have
been obtained for regular path queries in [11].
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