
Mu-calculus path checking

Nicolas Markey and Philippe Schnoebelen

Lab. Spécification & Vérification, CNRS & ENS de Cachan, France

Abstract

We investigate the path model checking problem for the µ-calculus. Surprisingly,
restricting to deterministic structures does not allow for more efficient model check-
ing algorithm, as we prove that it can encode any instance of the standard model
checking problem for the µ-calculus.

1 Introduction

Model checking is a fundamental problem, originally motivated by concerns with the
automatic verification of systems, but now more broadly associated with several dif-
ferent fields ranging from Bio-Informatics to Databases to Automated Deduction.
In verification settings, model checking problems usually ask whether S, a given
model of a system, satisfies φ, a given formal property, denoted “S |= φ”. In [8]
we introduced the path model checking problem (see also Open Problem 4.1 in [4]).
This problem is unusual since it is a restriction of the classical model checking
problem, not an extension as is usually considered. The restriction is that one only
considers models having the form of a finite path (or a finite loop, or more generally
an ultimately periodic infinite path). These are models without choice, or without
nondeterminism. Checking finite paths or loops occurs naturally in many applica-
tions: run-time verification [5], analysis of machine-generated scenarios or debugger
traces [1], analysis of log files [11], Monte Carlo methods for verification [6], etc.

In [8] we consider path model checking for several temporal logics. Our findings can
be summarized as follows:

• checking a deterministic path is usually much easier than checking a nondeter-
ministic structure,

• checking a finite path and checking a loop are usually equivalent (inter-reducible).

Email addresses: markey@lsv.ens-cachan.fr (Nicolas Markey),
phs@lsv.ens-cachan.fr (Philippe Schnoebelen).

Preprint submitted to Elsevier Science

In this note, we consider path model checking for the modal µ-calculus. It is known
that checking whether a Kripke structure S satisfies a µ-calculus formula (called the
branching-time, or Bµ, model-checking problem) is PTIME-hard, and is in UP ∩
coUP [7]. Additionally, checking whether all paths of S satisfy a µ-calculus formula
(called the linear-time, or Lµ, model-checking problem) is PSPACE-complete [12].

For path model checking, our findings are surprising:

(1) General Bµ model checking reduces to path model checking. Hence Bµ model
checking does not become easier when it is restricted to structures without
choice. This does not fit the pattern observed in [8] for other logics like CTL
or CTL∗.

(2) The above reduction uses loops. We were not able to reduce checking of finite
loops to checking of finite paths. Again this does not fit the pattern observed
in [8] for other logics.

The paper contains some additional results, e.g., that model checking of finite paths
is PTIME-complete (hence the above discrepancies would disappear if it turns
out that µ-calculus model checking is in PTIME, a conjecture believed true by
several researchers), or relating loops and finite paths in a µ-calculus extended with
backwards (sometimes called “past-time”) modalities.

2 Preliminaries

We refer to [3]. µ-calculus formulae are given by the following grammar:

Bµ ∋ ϕ,ψ ::= p | ¬p | Z | ϕ ∧ ψ | ϕ ∨ ψ | 3ϕ | 2ϕ | µZ.ϕ | νZ.ϕ

where p ranges over a set AP of atomic propositions, and Z over a set V of vari-
able names. Our definition only allows negations on propositions, but negation of
arbitrary formulae can be defined in the standard way, and similarly for classi-
cal shorthands such as ⇒, etc. We define the CTL-modalities EF and AG with:
EFϕ

def

= µZ.(ϕ ∨ 3Z) and AGϕ
def

= νZ.(ϕ ∧ 2Z) where Z is any variable not free
in ϕ.

Formulae in Bµ are interpreted over finite Kripke structures (KS), i.e., labeled
finite-state systems of the general form K = (Q,R, l) where R ⊆ Q × Q is the
set of transitions and l : Q → 2AP is the state labeling. As usual, and when R is
understood, we write x → y rather than (x, y) ∈ R, and we say y is a successor
of x. Given S ⊆ Q, we write Pre(S) for the set {x ∈ Q | ∃y ∈ S. x → y}, and S

for Qr S. Then x ∈ Pre(S) iff all the successors of x (if any) are in S.

Formally, for a KS K = (Q,R, l) and a context v : V → 2Q, the set JϕKKv of states

2

where ϕ holds is defined inductively:

JpKKv
def

= {x ∈ Q | p ∈ l(x)} J¬pKKv
def

= {x ∈ Q | p /∈ l(x)}

Jϕ ∨ ψKKv
def

= JϕKKv ∪ JψKKv Jϕ ∧ ψKKv
def

= JϕKKv ∩ JψKKv

JZKKv
def

= v(Z)

J3ϕKKv
def

= Pre
(
JϕKKv

)
J2ϕKKv

def

= Pre
(
JϕKKv

)

JµZ.ϕKKv
def

=
⋂

{U ⊆ Q | JϕKKv[Z 7→U] ⊆ U}

JνZ.ϕKKv
def

=
⋃

{U ⊆ Q | U ⊆ JϕKKv[Z 7→U]}

We sometimes omit the “K” and “v” subscripts when no ambiguity arises (or for
closed formulae where “v” is irrelevant) and write x |=K

v ϕ when x ∈ JϕKKv . The
above definition entails the following standard fixed-point equalities:

JµZ.ϕKv = JϕK
v
[
Z 7→JµZ.ϕK

v

] JνZ.ϕKv = JϕK
v
[
Z 7→JνZ.ϕK

v

].

For α ∈ N, the approximant JµZα.ϕKKv is defined inductively by

JµZ0.ϕKv
def

= ∅ and JµZα+1.ϕKv
def

= JϕK
v
[
Z 7→JµZαϕK

v

].

Set JνZα.ϕKv is defined dually. It is well known that, since K is finite, the sequences
(JµZα.ϕKv)α∈N and (JνZα.ϕKv)α∈N eventually reach JµZ.ϕKv and JνZ.ϕKv resp.

A KS is deterministic if every state has at most one successor. For such KS’s, 3ϕ
and 2ϕ have very close meanings: 3ϕ means that ϕ holds in the successor state,
while 2ϕ means that, if there is a successor state, then ϕ holds in that state. We
consider below deterministic KS’s having the form of a finite path (isomorphic to an
initial segment of N, with a last state having no successors), or a finite loop (where
there is a single strongly connected component). On loops, the meanings of 3ϕ and
2ϕ coincide exactly.

3 Main result

Theorem 3.1 Bµ model checking logspace-reduces to model checking of loops.

Hence µ-calculus model checking of loops and general Bµ model checking are equiva-
lent (inter-reducible). Considering deterministic KS’s does not simplify the problem:

Corollary 3.2 Bµ model checking of loops is PTIME-hard, and in UP ∩ coUP.

The rest of this section describes our reduction. We transform an instance “x |=K

ϕ ?” into an equivalent “x′ |=L ϕ̃ ?” where L is a loop. We observe that |L| = O(|K|),

3

a

b c

r1

r 2

r3

r
4

a

s

a

d

a

s

b

d

b

s

c

d

a

s

c

d

c

s
︸ ︷︷ ︸

r1

︸ ︷︷ ︸
r2

︸ ︷︷ ︸
r3

︸ ︷︷ ︸
r4

h

Fig. 1. From non-deterministic to deterministic Kripke structure

and |ϕ̃| = O(|K|·|ϕ|). Furthermore, the transformation from ϕ to ϕ̃ does not increase
the alternation depth (Prop. 3.8).

Let K = (Q,R, l) be a KS. For this reduction we assume that AP and Q coincide,

and that l is the identity. 1 L has labels from AP′ def

= AP∪{s,d} where s (for source)
and d (for destination) are two new atomic propositions. Assume R = {r1, . . . , rn}

contains n transitions: then L = (Q′, R′, l′) has Q′ def

= {s1, d1, s2, d2, . . . , sn, dn}. R
′

has transitions si → di and di → s(imodn)+1 for 1 ≤ i ≤ n, arranging Q′ into a loop.
Finally, the labeling l′ is defined as follows: if ri = (x, y) then l′(si) = {x, s} and
l′(di) = {y,d}.
In summary, L lists the transitions of K. The states of L maps to original states
via the mapping h : Q′ → Q given by h(x′) = x ⇔ x ∈ l′(x′). Fig. 1 illustrates this
construction on a schematic example.

In the sequel we use h(x′) either as a state or as an element of AP′, depending on
the context. For any S ⊆ Q, h(x′) ∈ S iff x′ ∈ h−1(S).

Lemma 3.3 Let S ⊆ Q. Then PreK (S) = h
(
JsKL ∩ PreL

(
h−1 (S)

))
.

PROOF. Assume x ∈ PreK(S) because of a transition ri of the form x → y with
y ∈ S. In L, si → di has di ∈ h−1(y) ⊆ h−1(S) and si ∈ JsKL. Hence x = h(si) ∈
h(JsKL ∩ PreL(h−1(S))). Conversely, if x ∈ h(JsKL ∩ PreL(h−1(S))), then x = h(si)
for some i such that h(di) ∈ S. Therefore ri shows that x ∈ PreK(S). �

Now, define Θ(Z)
def

=
∨
x∈Q

[
x ∧ EF(x ∧ Z)

]
and Ξ(Z)

def

=
∧
x∈Q

[
x⇒ AG(x⇒ Z)

]
.

Lemma 3.4 For all v, JΘ(Z)KLv = h−1(h(JZKLv)) and JΞ(Z)KLv = h−1(h(JZKLv)).

1 This assumption is no loss of generality. Any general KS can be relabeled in
such a way. This requires replacing any proposition used in the original labeling
with a disjuction of (the propositions denoting) the states where it holds. This
transformation is logspace.

4

PROOF. JΘ(Z)Kv is
⋃
x∈QJx∧EF(x∧Z)Kv. Since L is strongly connected, this is

{x′ | ∃y′ ∈ JZKv, h(x
′) = h(y′)} by definition of l′. We end up with h−1(h(JZKv)).

The second result follows by duality. �

Lemma 3.5 Assume Y and Z are distinct variables. Then for all v, we have

JµZ.(Y ∨ Θ(Z))KLv = Θ(Y) = h−1
(
h

(
JY KLv

))

JνZ.(Y ∧ Ξ(Z))KLv = Ξ(Y) = h−1
(
h

(
JY KLv

))
.

PROOF. We only prove the first result, the second one being dual.

(⊆): Write U for h−1(h(JY Kv)). Then JY ∨Θ(Z)Kv[Z 7→U] = JY Kv ∪ JΘ(Z)Kv[Z 7→U] =

JY Kv ∪ h−1(h(U)) (by Lemma 3.4) = U . Hence U is a fixed point and JµZ.(Y ∨
Θ(Z))Kv ⊆ U .

(⊇): Write S for JµZ.(Y ∨ Θ(Z))Kv. From the fixed-point property, we have S =
JY ∨ Θ(Z)Kv[Z 7→S] = JY Kv ∪ JΘ(S)Kv = JY Kv ∪ h

−1(h(S)) (by Lemma 3.4). Hence

S ⊇ h−1(h(JY Kv)). �

Thus Θ(ψ) and µZ.(ψ ∨ Θ(Z)) are equivalent on L (when Z does not occur free
in ψ). The important difference between them is size: |Θ(ψ)| is in O(|Q| · |ψ|) while
|µZ.(ψ ∨ Θ(Z))| is in O(|Q| + |ψ|).

We now translate each formula ϕ into a ϕ̃ in such a way that if ϕ holds in x ∈ Q,
then ϕ̃ holds in all x′ ∈ h−1(x). Formally, ϕ̃ is defined inductively by:

p̃
def

= p ¬̃p
def

= ¬p Z̃
def

= Z

ϕ̃ ∨ ψ
def

= ϕ̃ ∨ ψ̃ 3̃ϕ
def

= µZ [(s ∧ 3ϕ̃) ∨ Θ(Z)] µ̃Z.ϕ
def

= µZ.ϕ̃

ϕ̃ ∧ ψ
def

= ϕ̃ ∧ ψ̃ 2̃ϕ
def

= νZ. [(s ⇒ 2ϕ̃) ∧ Ξ(Z)] ν̃Z.ϕ
def

= νZ.ϕ̃

Lemma 3.6 For any formula ϕ involving atomic propositions in AP, and any con-
text v : V → 2Q, and writing v′ for h−1 ◦ v:

h−1
(
JϕKKv

)
= Jϕ̃KLv′ (1)

In other words, x′ ∈ Jϕ̃KLv′ iff h(x′) ∈ JϕKKv .

PROOF. By induction on the structure of ϕ.

Case ϕ = p ∈ AP: Since AP = Q, and by definition of l′, h−1(JpKK) = JpKL.

5

Case ϕ = Z ∈ V: h−1(JZKv) = h−1 ◦ v(Z) = JZKv′ by definition of v′.

Case ϕ = µZ.ψ: It is sufficient to show that, for all integers α, h−1(JµZα.ψKv) =
JµZα.ψ̃Kv′ . We proceed by induction on α. The base case where α = 0 holds triv-
ially, and the inductive step relies on h−1(JµZα+1.ψKv) = h−1(JψKv[Z 7→JµZα.ψK

v
]) =

Jψ̃K
h−1◦v[Z 7→JµZα.ψK

v
] by ind. hyp. (Lemma 3.6 on ψ). This is Jψ̃K

v′[Z 7→h−1(JµZα.ψK
v
)] =

Jψ̃K
v′[Z 7→JµZα.ψ̃K

v
′
]
(by ind. hyp. on α), hence equals JµZα+1.ψ̃Kv′ .

Case ϕ = 3ψ: h−1(J3ψKv) = h−1(Pre(JψKv)) = h−1(h(JsK ∩ Pre(h−1(JψKv))))
(Lemma 3.3) = h−1(h(JsK∩Pre(Jψ̃Kv′))) by ind. hyp. This is h−1(h(Js∧3ψ̃Kv′)), or

J3̃ψKv′ (Lemma 3.5).

Remaining cases: The case where ϕ is some ϕ1 ∧ϕ2 is obvious and the remaining
cases are obtained by duality. �

Corollary 3.7 For x′ ∈ h−1(x) and ϕ a closed formula, x |=K ϕ iff x′ |=L ϕ̃.

PROOF. Lemma 3.6 provides the “⇒” direction, and the “⇐” direction too once
we observe that h ◦ h−1 = IdQ. �

Regarding alternation depth, we refer to [10,2]. A µ-calculus formula is in Σ0 (= Π0)
iff it contains not fixpoint operation. Then, for n ∈ N, Σn+1 is defined as the
smallest class of formulae that contains Σn ∪ Πn and is closed under conjunctions
and disjunctions, 3- and 2-modalities, least fixed points µZ.ϕ with ϕ ∈ Σn+1, and
substitution of ϕ′ ∈ Σn+1 for a free variable of a formula ϕ ∈ Σn+1, provided that
no free variable of ϕ′ is captured by ϕ. Πn+1 is defined dually.

Proposition 3.8 If ϕ ∈ Σn (or dually, Πn), then ϕ̃ is in Σmax(n,2) (resp. Πmax(n,2)).

PROOF. By induction on the structure of ϕ. The only difficult cases are 3-
and 2-formulae. If ϕ = 3ψ, with ψ ∈ Σn, the induction hypothesis yields that
ψ̃ ∈ Σmax(n,1). Then ϕ̃ is obtained from µZ. [(s ∧ 3W) ∨ Θ(Z)], a Σ1-formula, by

substituting ψ̃ for W . If ϕ = 2ψ, we substitute in a Π1 (hence Σ2) formula. �

4 Finite paths and acyclic structures

It is well-known that, for acyclic KS’s,Bµ model checking can be done in polynomial-
time (hence is PTIME-complete), see, e.g., [9]. Thus model checking finite paths is
in polynomial-time and it is not surprising that we could not reduce model checking
of loops to model checking of paths: with Theorem 3.1, this would have solved the
general Bµ model-checking problem.

6

However, even if finite paths seem easier than finite loops, they are not easier than
arbitrary acyclic KS’s as we now show.

Theorem 4.1 Bµ model checking of finite paths is PTIME-complete.

For this result, it turns out that the reduction from the previous section adapts very
easily. If we omit the step dn → s1 that closed the loop, we obtain a finite path
where, assuming that the transitions R = {r1, . . . , rn} of the acyclic K are given in
some topological order, for every vertex of K, the destination copies (if any) occur
before the source copies. That way, we get:

Lemma 4.2 Given x′, y′ ∈ Q′ s.t. h(x′) = h(y′) and x′ occurs before y′, for any
formula ϕ ∈ Bµ and any context v : V → 2Q, writing v′ = h−1 ◦ v, we have: if y′ ∈
Jϕ̃KK

′

v′ , then x′ ∈ Jϕ̃KK
′

v′ .

That result can easily be shown by induction. We then obtain weaker versions of
Lemmas 3.4, 3.5 and 3.6:

Lemma 4.3 Assuming Y and Z are distinct variables, for any context v′, we have

h
(
JΘ(Y)KK

′

v′

)
= h

(
JY KK

′

v′

)
= h

(
JµZ.(Y ∨ Θ(Z)KK

′

v′

)

Lemma 4.4 For any formula ϕ of Bµ involving atomic propositions in AP, context
v : V → 2Q, and writing v′ for h−1 ◦ v:

JϕKKv = h
(
Jϕ̃KK

′

v′ ∩ JsK
)

h−1
(
JϕKKv

)
∩ JdK = Jϕ̃KK

′

v′ ∩ JdK

Now, clearly, a state in K satisfies formula ϕ iff its first source copy in L satisfies ϕ̃.

5 Paths, loops, and backwards modalities

Model checking of loops reduces to finite paths when one considers 2Bµ, or “2-
way Bµ”, the extension of Bµ with backwards modalities 3

−1 and 2
−1. One lets

x ∈ J3−1ϕK iff there is some y ∈ JϕK with y → x, and dually for 2
−1 [13].

Theorem 5.1 The following three problems are logspace inter-reducible:
(a) Bµ model checking of loops,
(b) 2Bµ model checking of loops,
(c) 2Bµ model checking of finite paths.

Corollary 5.2 These three problems are equivalent to Bµ model checking on arbi-
trary KS’s. They are thus PTIME-hard, and in UP ∩ coUP.

PROOF. (of Theorem 5.1) Since (a) is a special case of (b), we only need two
reductions.

7

(b reduces to c) Let L be a loop x1 → x2 → · · ·xn(→ x1). With L, the reduction
associates a finite path F of the form x0 → x1 → x2 → · · ·xn → xn+1. The labeling
of F is inherited from L (and irrelevant for x0 and xn+1). The reduction translates
a formula ϕ to a ϕ′ such that Jϕ′KF \{x0, xn+1} = JϕKL. The translation is obtained
with

(3ψ)′
def

= µZ.

(3ψ′ ∧ 33⊤) ∨ (3−1)nZ

(3−1ψ)′
def

= µZ.

(3−1ψ′ ∧ 3

−1
3

−1⊤) ∨ (3)nZ

One adds dual clauses for (2ψ)′ and (2−1ψ)′, and obvious clauses, like (µZ.ψ)′
def

=
µZ.(ψ′), for the other constructs. Then |ϕ′| is in O(|ϕ| · |L|).

(c reduces to a) Let F be a finite path x1 → x2 → · · ·xn. A loop L is obtained
from F by adding a transition xn → x1 and labeling x1 with a new additional
proposition i. The reduction then translates a formula ϕ to a ϕ′ without backwards
modalities, and such that Jϕ′KL = JϕKF . We use

(3ψ)′
def

= 3(ψ′ ∧ ¬i) and (3−1ψ)′
def

= ¬i ∧ 3
n−1ψ′

and obvious remaining clauses. Again, |ϕ′| is in O(|ϕ| · |L|). �

6 Conclusion

We proved that µ-calculus model checking is not easier when restricting to deter-
ministic Kripke structures having the form of a single loop. On the other hand, we
could not reduce model checking of finite loops to model checking of finite paths, a
PTIME-complete problem. These results help understand what makes µ-calculus
model checking difficult.

It comes as a surprise that none of these two results fits the pattern we exhibited for
several other logics [8], where checking nondeterministic KS’s is harder than checking
deterministic loops, and where finite loops are no harder than finite paths. A possible
explanation for the first discrepancy is the expressive power of the µ-calculus, that
allows the reduction we developed in Section 3. The second discrepancy is harder
to justify, but would disappear if µ-calculus model checking were proved to be in
PTIME.

Acknowledgments. We thank Misa Keinänen for drawing our attention to the
µ-calculus path model-checking problem.

References

[1] C. Artho, H. Barringer, A. Goldberg, K. Havelund, S. Khurshid, M. Lowry,
C. Pasareanu, G. Roşu, K. Sen, W. Visser, and R. Washington. Combining

8

test case generation and runtime verification. Theoretical Computer Science,
336(2-3):209–234, 2005.

[2] J. C. Bradfield. The modal mu-calculus alternation hierarchy is strict.
Theoretical Computer Science, 195(2):133–153, 1998.

[3] J. C. Bradfield and C. Stirling. Modal logics and mu-calculi: an introduction.
In Handbook of Process Algebra, chapter 4, pages 293–330. Elsevier, 2001.

[4] S. Demri and Ph. Schnoebelen. The complexity of propositional linear temporal
logics in simple cases. Information and Computation, 174(1):84–103, 2002.

[5] K. Havelund and G. Roşu. An overview of the runtime verification tool Java
PathExplorer. Formal Methods in System Design, 24(2):189–215, 2004.

[6] T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate
probabilistic model checking. In Proc. 5th Int. Conf. Verification, Model
Checking, and Abstract Interpretation (VMCAI’04), Venice, Italy, Jan. 2004,
volume 2937 of LNCS, pages 73–84. Springer, 2004.

[7] M. Jurdziński. Deciding the winner in parity games is in UP ∩ coUP.
Information Processing Letters, 68(3):119–124, 1998.

[8] N. Markey and Ph. Schnoebelen. Model checking a path (preliminary report). In
Proc. 14th Int. Conf. Concurrency Theory (CONCUR’03), Marseille, France,
August 2003, volume 2761 of LNCS, pages 251–265. Springer, 2003.

[9] R. Mateescu. Local model-checking of modal mu-calculus on acyclic labeled
transition systems. In Proceedings of the 8th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’02),
Grenoble, France, April 2002, volume 2280 of LNCS, pages 281–295. Springer,
2002.

[10] D. Niwiński. On fixed point clones. In Proc. 13th Int. Coll. Automata,
Languages and Programming (ICALP’86), Rennes, France, July 1986, volume
226 of LNCS, pages 464–473. Springer, 1986.

[11] M. Roger and J. Goubault-Larrecq. Log auditing through model checking. In
Proc, 14th IEEE Computer Security Foundations Workshop (CSFW’01), pages
220–236, Cape Breton, Nova Scotia, Canada, June 2001. IEEE Comp. Soc.
Press.

[12] M. Y. Vardi. A temporal fixpoint calculus. In Proc. 15th ACM Symp. Principles
of Programming Languages (POPL’88), San Diego, CA, USA, Jan. 1988, pages
250–259, 1988.

[13] M. Y. Vardi. Reasoning about the past with two-way automata. In Proc.
25th Int. Coll. Automata, Languages, and Programming (ICALP’98), Aalborg,
Denmark, July 1998, volume 1443 of LNCS, pages 628–641. Springer, 1998.

9

