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Abstract. We study the synthesis problem in an asynchronous dis-
tributed setting: a finite set of processes interact locally with an un-
controllable environment and communicate with each other by sending
signals – actions controlled by a sender process and that are immedi-
ately received by the target process. The fair synthesis problem is to
come up with a local strategy for each process such that the resulting
fair behaviors of the system meet a given specification. We consider ex-
ternal specifications satisfying some natural closure properties related
to the architecture. We present this new setting for studying the fair
synthesis problem for distributed systems, and give decidability results
for the subclass of networks where communications happen through a
strongly connected graph. We claim that this framework for distributed
synthesis is natural, convenient and avoids most of the usual sources of
undecidability for the synthesis problem. Hence, it may open the way to
a decidable theory of distributed synthesis.

1 Introduction

Synthesis (also known as Church’s problem) is an essential problem in computer
science, especially in the context of formal methods for the design of systems. It
consists in automatically deriving a system from its specification, hence allowing
to produce a program that is certified to be correct, without any debugging pro-
cess. Moreover, when the synthesis algorithm answers that there is no program
for this specification, it is known at an early stage of the development process
that the specification is unrealizable, and thus likely to be erroneous.

The initial problem considered by Church [Chu63] concerned reactive cen-
tralized systems interacting with an uncontrollable environment whose behaviors
were described by a specification in monadic second order logic (MSO). Its decid-
ability was established by Büchi and Landweber in [BL69] with a game theoretic
approach. A simpler solution has been brought in [Rab72], where it is advocated
that, even if the specification is linear-time, the need to consider all possible
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behaviors of an uncontrollable environment yields a branching-time behavior,
which is best described by a tree and thus amenable to tree automata. This
problem is now quite well understood, and current work aims at defining efficient
algorithms towards implementations (see the tools Lily [JB06], Acacia [FJR09]
and Unbeast [Ehl11] for synthesis from LTL specifications, which build on the
efficient technique presented in [KV05]).

Different extensions of the problem have been studied. Among them, an im-
portant line of research is the synthesis for distributed systems, i.e., systems
consisting of several communicating processes cooperating against an uncontrol-
lable environment in order to satisfy the specification. This case is much more
involved, and undecidable in general [PR90]. An important difficulty inherent to
the distributed setting is the fact that each process has only a partial view of
the global system and decisions about its behavior must be taken based solely
on this local knowledge.

When dealing with distributed systems, an important parameter to take into
account is whether the semantics is synchronous (a global clock governs the
whole system, and at each tick of this clock, all the processes make an action
simultaneously), or asynchronous (each component evolves at its own speed, with
synchronization mechanisms for communication). In the synchronous semantics,
undecidability is quickly reached, even if a few decidable subclasses have been
identified. A bit surprisingly, more hope is permitted in the asynchronous case,
in which the problem stays decidable for wider classes of architectures (see the
paragraph on the related work for more details).

Contributions

We consider the synthesis problem for asynchronous distributed systems, and
define a model yielding decidability of this problem when the communication
graph of the system is strongly connected. It opens the way to a general decidable
theory of synthesis for asynchronous distributed systems.

More precisely, we study systems which communicate via signals. In fact, it
is often considered in distributed asynchronous systems that the different pro-
cesses synchronize on common actions (rendezvous mechanism). However, this
means that two processes must agree to execute a shared action; for synthesis,
it implies that the processes must take the same decision, whereas they may
have a completely different view of the global state of the system. Signals are a
more convenient and realistic synchronization mechanism: it can be seen as an
asymmetric rendezvous, where only one of the processes is able to trigger the
signal, the other process receives it without executing any action.

Second, we restrict the specifications to external ones: we say that a specifi-
cation is external if it only relates inputs from and outputs to the environment,
without any constraint on the internal communication actions. Indeed, as we
have already advocated in [GSZ09], we believe that external specifications are
more natural when dealing with distributed systems: the communication be-
tween the processes can be restricted by the architecture (the communication
graph), but not by the specification. When describing expected behaviors of such
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a system, one should only be concerned with the visible external behaviors, and
let the processes communicate freely in order to achieve the specification. More-
over, total specifications can be used to break communication links that exist
in the architecture, and thus quickly yields undecidability results. For these two
reasons, we address the synthesis problem with external specifications.

While writing a specification for a distributed system, one must be cautious
and comply with the nature of the architecture. In asynchronous distributed
systems, executions can be seen as partial orders of actions, where two actions
occurring on different processes are ordered if there is some causality relation
between them. Hence, the specification can only impose an order between two
events on different processes if there is a causality relating them. To rule out
unrealistic constraints, we forbid some unrealizable causalities between processes.
This leads us to express specifications as semi-traces.

Finally, we introduce fairness conditions in our model and require that the
specifications be met only by the fair executions of the system.

Hence, the inputs of the problem addressed in this article are: an architecture
represented by a communication graph, and a specification given by a semi-
trace-closed language relating input and output actions. The synthesis problem
then asks for a local program for each process such that any fair run of the
global system following these programs belongs to the specification language,
or the answer that no such programs exist. We obtain decidability of the fair
synthesis problem for the whole class of systems whose communication graph
is strongly connected. This is a major improvement, in particular with respect
to the synchronous case where the problem is in general undecidable for such
architectures. We believe that this model will yield decidability for many more
classes of architectures.

As an additional yet orthogonal contribution, we explore some useful proper-
ties on languages closed by semi-commutations: we prove that it can be decided
in polynomial space whether a given ω-regular language is closed under semi-
commutation, and we define a natural logic (a fragment of the logic MSO) in
which closure under semi-commutation is guaranteed. Similar closure problems
have been studied for partial commutation relations such as Mazurkiewicz traces,
see [Mus96,DGP95,PWW98].

The article is organized as follows: Section 2 defines some notions that will
be used throughout the article. Section 3 presents in details the model we con-
sider and Section 4 describes the specifications that will be used. Finally, the
decidability results are presented in Section 5.

A preliminary version of this work appeared in [CGS09].

Related work

We relate our contribution to existing work by presenting the different results
obtained in two categories: results obtained for synchronous systems, and then
results obtained for asynchronous systems.
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Synthesis of distributed synchronous systems has been initiated by Pnueli
and Rosner [PR90] who proved that the problem was undecidable for LTL speci-
fications. At the same time, they have identified the subclass of pipeline architec-
tures – architectures in which processes communicate in a chain – for which the
problem is decidable for LTL external specifications. The following contributions
on the topic considered several variants for the specification. In addition to the
specification language itself (given by a formula in linear or branching time logic,
with different expressive power), another concern is the set of channels (input,
output or dedicated to internal communication ones) the specification is allowed
to talk about. Three types of specifications have thus been given attention to:
total, external and local.

– Total specifications may refer to any channel. They are the most general.
– External specifications are only allowed to relate input and output values

and let the internal communication channels unconstrained.
– Local specifications are Boolean combinations of specifications relating only

input and output values of one process.

In [KV01], an automata-theoretic approach to solving synthesis for pipe-line ar-
chitectures (and some variations) is given, and they show that this case stays
decidable for total specifications given as CTL∗ formulas. To fill the gap between
the undecidable architecture of [PR90] and the specific decidable case where
the input architecture is a variant of the pipe-line, a uniform (un)decidability
criterion is given in [FS05]: they introduce the notion of information fork in
the architecture as a necessary and sufficient condition for undecidability of the
problem. In [GSZ09] it is shown that this criterion is only valid when the spec-
ification given is total: if we restrict to external specifications, then the cases
where the problem is decidable can be expanded: for instance, the synthesis
problem becomes decidable for so-called uniformly well-connected architectures.
Madhusudan and Thiagarajan [MT01] have considered an extension of the syn-
thesis problem (the controller synthesis problem) with local specifications. The
problem remains undecidable in most cases: it is decidable if and only if it is a
sub-architecture of a pipe-line with inputs at both endpoints.

Early work on synthesis of asynchronous systems concerned centralized sys-
tems [PR89], and fairness conditions were included in [AM94,Var95]. In [MT02],
the (controller) synthesis problem has been studied for distributed asynchronous
systems, with synchronization on common actions. Communications with the
environment are local to each process, while communication between processes
are shared actions (rendezvous) between two processes. As in our setting, runs
can naturally be represented by partial orders of actions, more specifically by
Mazurkiewicz traces [Maz77]. When the specification is trace-closed, (i.e., does
not discriminate between two linearizations of the same trace) the problem is
decidable, but only if the processes have a very restricted type of local mem-
ory [MT02]: strategies of processes depend only on the number of inputs received
and the value of the last input. Considering external specifications, as we do in
this work, break the undecidability arguments used there.
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The synthesis of distributed systems in the general case of µ-calculus speci-
fications was studied in [FS06], where the processes are allowed to communicate
through shared variables. Decidability is obtained only when there is a single
process to control. Indeed, contrary to our setting, they did not impose any
closure property on the specification language which may accept some lineariza-
tions of a (partially ordered) behavior and reject other linearizations of the same
behavior.

In [GLZ04,MTY05,MWZ09], it is assumed that, each time they synchronize
on a common action, two processes exchange all the information they have ac-
cumulated on the current behavior. This is different from our setting (and the
other ones discussed above) where processes are assumed to have only a local
view of the behaviors.

Synthesis of asynchronous distributed systems have also been studied in
[ SEM03, Bau09] in the restricted case of closed systems, following the line
of [EC82,MW84].

Since dealing with distributed systems implies dealing with imperfect in-
formation, all these works are related to the synthesis of centralized sys-
tems with imperfect information as studied in the branching time setting in
[KV99,KV00,AVW03].

Moreover, for all the variants of the synthesis problem for open systems,
the game setting is as useful as in the centralized case. A specialized version of
multiplayer games named distributed games has been defined in [MW03] and
allows to reason in a uniform way about synthesis of distributed systems in all
these different frameworks.

2 Preliminaries

An alphabet Σ is a finite set of symbols. A sequence of elements of Σ is a
word. If w = w0w1 . . . wn−1 is a word, n is the length of w, noted |w| = n. If
w = w0w1w2 · · · is infinite, |w| = ω. The word of length 0 is the empty word
noted ε. We denote the set of finite words over Σ by Σ∗, the set of non empty
finite words by Σ+ and the set of infinite words by Σω. We use Σ∞ = Σ∗]Σω to
denote the set of finite and infinite words over Σ. For w = w0w1 · · ·wn−1 ∈ Σ∗,
w′ = w′0w

′
1 · · · ∈ Σ∞, the concatenation of w and w′ noted w · w′ (or simply

ww′) is the word w0w1 · · ·wn−1w
′
0w
′
1 · · · ∈ Σ∞. The set of finite prefixes of w is

defined by Pref(w) = {u ∈ Σ∗ | ∃v, uv = w}. The prefix relation over Σ∞ is a
partial order relation that is denoted ≤: w′ ≤ w if w′ ∈ Pref(w).

The prefix of length i ≤ |w| of a word w ∈ Σ∞ is noted w[i], with the
convention that w[i] = ε if i ≤ 0 and w[i] = w if i ≥ |w|. If u is a prefix of v,
the word u−1v is such that uu−1v = v (i.e., it is the word obtained from v by
deleting the prefix u).

For w ∈ Σ∞, we denote by alphinf(w) the set of letters from Σ occurring
infinitely often in w and by alph(w) the set of letters from Σ occurring at least
once in w.
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3 Model

An architecture defines how a set of processes may communicate with each other
and with an (uncontrollable) external environment. An important parameter of
the problem is the type of communications allowed between processes. We are
interested in asynchronous distributed systems, hence it would be natural to use
unbounded fifo channels. However, this leads to infinite state systems, making
decidability results more uncertain to obtain.

A finite model can be obtained by using shared variables: processes can write
on variables that can be read by other processes. But in an asynchronous system,
communication is difficult to achieve with shared variables. Assume that process
p wants to transmit to process q a sequence m1,m2, . . . of messages. First, p
writes m1 to some shared variable x. But since processes evolve asynchronously,
p does not know when m1 will be read by q. Hence, some acknowledgement is
required from q to p before p may write m2 to x. Depending on the architecture,
this may not be possible. In any cases, it makes synthesis of distributed programs
satisfying a given specification harder.

Hence, we will use point to point communication by signals in the vein
of [LT89]. Sending a signal is an action but receiving a signal is not. Instead,
all signals sent to some process q are automatically added to its local history,
without requiring actions from q. The system is still asynchronous, meaning that
processes evolve at different speeds. We are interested in synthesizing local pro-
grams, also called strategies. By local we mean that to decide which action it
should execute next, a process q only knows its current local history, which
automatically includes all signals sent to q in addition to the signals sent by q.

Architectures and runs Formally, an architecture is defined by a tuple
A = (Proc, E, (Inp)p∈Proc, (Outp)p∈Proc) where (Proc, E) is the directed com-
munication graph whose nodes are processes and there is an edge (p, q) ∈ E
if process p may send signals to process q. See for example the architecture
represented in Figure 1, where Proc = {1, 2, 3} and where process 1 can send
signals to process 2 and process 2 to process 3. For each process p ∈ Proc, the
sets Inp and Outp define input and output signals that p may receive from or
send to the environment. We assume that all these sets are pairwise disjoint. We
let In =

⋃
p∈Proc Inp and Out =

⋃
p∈Proc Outp be the sets of input and output

1 2 3
Σ1,2 Σ2,3

In1 In2 In3

Out1 Out2 Out3

Fig. 1. An architecture
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signals of the whole system. Let also Γ = In ∪ Out. In order to implement a
specification, the processes may choose for each communication link (p, q) ∈ E
a (finite or infinite) set Σp,q of signals that p could send to q. Again, we assume
that these sets are pairwise disjoint and disjoint from Γ . The complete alphabet
(of signals) is then Σ = Γ ∪

⋃
(p,q)∈E Σp,q. The actions in Γ are called exter-

nal signals whereas the actions in Σ \ Γ are called internal signals. For each
a ∈ Σ we let process(a) be the set of processes taking part in the execution of
a: process(a) = {p} if a ∈ Inp ∪ Outp and process(a) = {p, q} if a ∈ Σp,q. For
p ∈ Proc, we denote by Σp = {a ∈ Σ | p ∈ process(a)} the set of actions visible
to process p and by Σp,C = Outp ∪

⋃
q|(p,q)∈E Σp,q the set of actions controlled

by process p.
A (concrete) run w ∈ Σ∞ of A is then a (finite or infinite) word over Σ.

Strategies We aim at synthesizing distributed strategies, with local memory.
A strategy is a program that controls the behavior of the system, in interaction
with uncontrollable inputs from an environment. It either proposes the next
value to output, or decides to wait until a new event occurs. A local strategy for
process p only depends on its visible actions, i.e, actions in Σp. Formally, let
πp : Σ∗ → Σ∗p be the projection on Σp. We define

Definition 1. A local strategy for process p is a partial function fp : (Σp)
∗ →

Σp,C . We extend it to words over Σ in the natural way: for w ∈ Σ∗, f̂p(w) =
fp(πp(w)).

By a slight abuse of notation, in this article we will simply write fp for f̂p.
A distributed strategy for the system, is a tuple F = (fp)p∈Proc such that

fp : Σ∗ → Σp,C is a local strategy for process p. By abuse of notations, we
also use F to denote the induced mapping, defined by F : Σ∗ → 2ΣC such that
F (w) = {fp(w) | p ∈ Proc, fp(w) is defined}, for w ∈ Σ∗.

Runs compatible with a strategy Let us fix a distributed strategy F = (fp).
We say that a run w = w0w1 · · · ∈ Σ∞ is an F -run (or is compatible with
strategy F , or is F -compatible) if all controllable events occur according to F ,
i.e., for all p ∈ Proc, for all index 0 ≤ i < |w|, if wi ∈ Σp,C , we have wi = fp(w[i]).

A finite run w ∈ Σ∗ is F -maximal if F (w) = ∅.
Example 2. Consider the architecture of Figure 1, restricted to the two leftmost
processes, where the set of external signals is In1 = {req1}, In2 = {req2}, Out1 =
{grant1} and Out2 = {grant2}. We define the strategies f1(w) = grant1 and
f2(w) = grant2 for any w ∈ Σ∗. Then, the runs w ∈ {req1, req2}ω are indeed
F -runs, but in which the system has no opportunity to grant the requests sent
continuously by the environment. Moreover, runs w ∈ {req1, req2, grant1}ω are
also F -runs, in which only Process 1 could emit signals, while Process 2 was
never scheduled. Without fairness assumptions, it is impossible to find a strategy
for the system such that all compatible runs satisfy a simple request-response
specification for each process. However, if we assume “fair” schedulers for our
systems, we can circumvent these pathological behaviors.
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Fairness Thus, we will restrict our attention to fair runs of the system, which is
defined below with respect to some partition of the set of all controllable actions.

Definition 3 (Fair run). Given a partition P of ΣC and a distributed strategy
F , a run w ∈ Σ∞ is (P, F )-fair if, for all C ∈ P, for all prefix v of w, if
F (v′)∩C 6= ∅ for all v ≤ v′ ≤ w, then some output from C will be emitted, i.e.,
alph(v−1w) ∩ C 6= ∅.

This definition is equivalent to saying that, in a fair run, if F (v′) ∩ Σ′ 6= ∅ for
all v ≤ v′ ≤ w, then an infinite number of outputs from C will be emitted, i.e.,
alphinf(w′) ∩ C 6= ∅.

Remark 4. The coarsest partition of ΣC will then ensure that, if at some point
the system as a whole is continuously willing to output signals, it will eventually
do so. However, Example 2 has shown that this may not be sufficient : with this
definition, it may happen that a run is fair, where one of the processes is con-
tinuously enabled, but never scheduled, if other processes are allowed to output
infinitely many signals. Then, the coarsest partition of ΣC we will consider is
{Σp,C | p ∈ Proc}, i.e., a “per process” fairness notion.

Remark 5. A finite run is (P, F )-fair if and only if it is F -maximal: let w ∈ Σ∗
be a finite F -compatible run. If F (w) 6= ∅ (hence w is not F -maximal), then one
can find C element of the partition such that F (w)∩C 6= ∅. However, since w is
finite, w cannot be the prefix of a word w′a with a ∈ C, and w is not (P, F )-fair.
Conversely, if w is F -maximal, then F (w) = ∅ and for all C ∈ P, F (w)∩C = ∅.
The run is then (P, F )-fair.

Specifications The specifications we consider only constrain external actions
from Γ , i.e., actions that reflect communications with the environment. We want
the processes to collaborate freely in order to achieve the specification, hence we
do not constrain internal signals. Specifications will describe observable runs,
defined as follows.

Concrete and observable runs For a (concrete) run w ∈ Σ∞, we define its
observable part by πΓ (w) where all events from Σ \ Γ have been removed.

We now state precisely the synthesis problem we address in this article.

Fair synthesis of asynchronous distributed systems: Given an architec-
ture A = (Proc, E, (Inp)p∈Proc, (Outp)p∈Proc) and a specification L ⊆ Γ∞, con-
sider the partition P = {Σp,C | p ∈ Proc}, and decide whether there exist
internal signal sets (Σp,q)(p,q)∈E and a distributed strategy F such that, for
every (P, F )-fair concrete F -run w, we have πΓ (w) ∈ L. We then say that
((Σp,q)(p,q)∈E , F ) is winning for (A, L).
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4 Specifications for distributed synthesis

We explain now that not all specifications are acceptable in our framework, and
describe the properties of the specifications we will restrict to.

4.1 Motivations

We consider here asynchronous systems, hence each process of the system evolves
at its own speed. Then, when a specification requests an order between two
events, it may have different meanings according to their relative positions. When
describing the events occurring on a same process, the order requested by the
specification may really mean sequentiality of events, as in classical temporal
specifications on centralized systems. However, if an order between events on
different processes is required, then it can only come from a causality relation,
as no global clock can order these events. Hence, specifications can be seen as
partial orders of events labeled by Γ , where events occurring on a same process
are totally ordered, and events occurring on two different processes are only
ordered when a causality relation exists between them.

Remark 6. Concrete runs of our systems can be seen as Mazurkiewicz traces
[Maz77], i.e., they can be partitioned in equivalence classes according to a par-
tial commutation relation. In that case, the synthesis problem is undecidable if
we allow specification languages that are not trace-closed [MT02]. Here, speci-
fications are external and refer only to observable runs (projections of concrete
runs), which are not Mazurkiewicz traces, hence the above result does not apply.
However, as we will see below, it is still relevant, and in fact crucial, to consider
specification languages that are closed under some semi-commutation relation
induced by the architecture.

Example 7. Consider an architecture with two processes, one receiving service
requests from a client and the other sending a response: Inc = {request} and
Outs = {response}. Figure 2 shows the different partial orders (and their as-
sociated linearizations) corresponding to a specification requesting the server to
answer to up to three requests and then ignore following requests. Then, when
several requests occur, we require that the same number of responses (up to
three) is issued, and the order imposed means that a request triggers a response,
but no response can occur spontaneously. Then, the specification accepts the
word req · resp · req · resp, and the word req · req · resp · resp, in which a
second request has been sent before the first response could be emitted.

Moreover, it would be meaningless for a specification to request a causality
relation between any event on some process p and an input event on a different
process q. Indeed, input events are uncontrollable, it is then unrealistic to expect
them to occur as a consequence of any other event. Therefore, our specifications
will not require a causal relationship between an event and an input on any
another process.
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req

resp

req · resp

req

(a)

req

resp

req

resp

req · resp · req · resp

req · req · resp · resp

(b)

req

resp

req

resp

req

resp

req · resp · req · resp · req · resp

req · req · resp · resp · req · resp

req · req · resp · req · resp · resp

req · req · req · resp · resp · resp

req · resp · req · req · resp · resp

(c)

req

resp

req

resp

req

resp

req req

req · resp · req · resp · req · resp · req
∞

req · req · resp · resp · req · resp · req
∞

req · req · resp · req · resp · resp · req
∞

req · req · req · resp · resp · resp · req
∞

. . .req

(d)

Fig. 2. Example of specification

Since runs of the systems are words, the specifications we consider will de-
scribe linearizations of the desired partial orders, with the restriction that the
original partial orders contain no causality between an event and an input on
another process. Formally, our specifications will be languages L ⊆ Γ∞ closed
under semi-commutations [CL87]: if uabv ∈ L with b ∈ Inq and a /∈ Σq, then
there is no causality from a to b, and ubav ∈ L.

4.2 Semi-commutations and SC-closed specifications

In the following, we will often identify a word w = w0w1 · · · ∈ Σ∞ with the
labeled total order (Pos(w),≤, w) where Pos(w) = {i ∈ N | 0 ≤ i < |w|}, ≤ is
the natural order over N, and w : Pos(w)→ Σ is such that w(i) = wi.

Given an alphabet Σ, a semi-commutation relation is an irreflexive binary
relation SC ⊆ Σ ×Σ \ {(a, a) | a ∈ Σ}. We denote by SD the semi-dependence
relation given by the semi-commutation relation SC, i.e., SD = Σ ×Σ \ SC. We
associate with SC a rewriting relation →SC that is defined by uabv →SC ubav
if u ∈ Σ∗, (a, b) ∈ SC, and v ∈ Σ∞. When w is finite, its semi-commutation
closure (i.e., the set of words that can be derived from w by applying rewrit-
ing permutations) is given by the reflexive and transitive closure →∗SC of →SC.
The set [w] = {w′ ∈ Σ∗ | w →∗SC w′} is called a semi-trace [HK89, Och89].
However, when w is infinite, this is not enough. For instance, suppose that
(a, b) ∈ SC, and consider (ab)ω. Intuitively, we would like (ba)ω to be in the
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semi-commutation closure of (ab)ω, but this cannot be obtained within a finite
number of commutations with→∗SC. On the other hand, allowing infinitely many
commutations should be “controlled” in order to avoid obtaining bω as a limit
of (ab)ω →∗SC bnan(ab)ω. To define the semi-commutation closure of an infinite
word, we rely upon the semi-dependence graph associated with a word w ∈ Σ∗
as presented in [Die94], and extended to words in Σ∞:

Definition 8. Let w = (Pos(w),≤, w) be a (finite or infinite) word over Σ and
SD ⊆ Σ2 a semi-dependence relation. The semi-dependence graph associated
with w is the labeled acyclic graph

G(w) = (Pos(w), Ew, w)

where Ew = {(i, j) ∈ Pos(w)2 | i < j and (w(i), w(j)) ∈ SD}.

The semi-dependence graph associated with w only keeps the order between
two events if this order won’t change in the rewriting process. We can now define
the semi-trace of w, as the set of linearizations of G(w). Formally, we give the
following definition.

Definition 9. Let w = (Pos(w),≤, w) and w′ = (Pos(w′),≤, w′) be two words.
Then w ⇒SC w′ if there exists a bijection σ : Pos(w) → Pos(w′) such that for
all i, j ∈ Pos(w),

– w′(σ(i)) = w(i),
– and (i, j) ∈ Ew implies σ(i) < σ(j).

We say that w ⇒SC w′ by σ. We let [w]SC = {w′ ∈ Σ∞ | w ⇒SC w′}.

Note that, the relation ⇒SC is reflexive (w ⇒SC w by the identity) and is
transitive: if w ⇒SC w′ by σ and w′ ⇒SC w′′ by σ′ then w ⇒SC w′′ by σ′ ◦ σ.

Remark 10. If w ⇒SC w′, then |w| = |w′|. Moreover, the bijection σ is unique.
Indeed, let i ∈ Pos(w) such that w(i) = a. We claim that if i is the position of
the k-th occurrence of a in w, then σ(i) is the position of the k-th occurrence of
a in w′. Indeed, if i < j and w(i) = w(j), then (i, j) ∈ Ew, which implies that
σ(i) < σ(j). The claim follows.

Remark 11. Definition 9 is in fact equivalent to the limit extension of a relation
given in [PWW98, Definition 1]: w ⇒SC w′ if and only if for all u ≤ w, there
exist v, v′ ∈ Σ∗ such that v′ ≤ w′ and uv →∗SC v′ and, for all u′ ≤ w′, there exist
v, v′ ∈ Σ∗ such that v ≤ w and v →∗SC u′v′. Since this characterization is not
used in this article, its proof is omitted.

We denote by [L]SC =
⋃
w∈L[w]SC the semi-commutation closure of a lan-

guage L with respect to SC. We say that L ⊆ Σ∞ is SC-closed if L = [L]SC.
When SC is clear from the context, we drop the subscript and simply write [L].

11



We are now ready to define formally the specifications we restrict to for
the distributed synthesis problem. We associate with the architecture A =
(Proc, E, (Inp)p∈Proc, (Outp)p∈Proc) the semi-commutation relation:

SCA = {(a, b) | b ∈ Inp and a /∈ Σp} =
⋃

p∈Proc

(Σ \Σp)× Inp.

The semi-dependence relation is defined by SDA = (Σ×Σ)\SCA. Observe that
Σp ×Σp ⊆ SDA for all p ∈ Proc, i.e., the set of actions relative to a process are
pairwise dependent.

Definition 12. Let A = (Proc, E, (Inp)p∈Proc, (Outp)p∈Proc) be an architecture.
SC-closed specifications for A are languages L ⊆ Γ∞ closed under SCA.

In the next two subsections, we elaborate on semi-commutations and SC-
closed specifications. Since these results are independent from the rest of the
article, the reader can safely go directly to Section 5 where the decidability
results are given.

4.3 More on semi-commutations

An important question is to decide whether a given language is closed under SC.
This closure problem for ω-regular languages has been studied for partial com-
mutation relations such as Mazurkiewicz traces, see [Mus96, DGP95, PWW98].
Other types of closure problems are studied in [BMT01,CHM08,CGP11]. These
works investigate classes C of regular languages (of finite words) such that for
each language L ∈ C the closure [L] is still in C. In [CGP11], the authors also
give conditions on the semi-commutation (resp. partial commutation) relation
and on the class C of regular languages ensuring that the closure of any language
L ∈ C stays regular.

Here we show that one can decide whether an ω-regular language is closed
under a given semi-commutation relation.

Theorem 13. Given an ω-regular language L ⊆ Σ∞ and a semi-commutation
relation SC, we can decide whether L is SC-closed, i.e., whether L = [L]SC.

The proof of this theorem follows the ideas presented in [PWW98] about the
closure-problem for partial commutations and other equivalence relations such
as stuttering. We show that some of their results can be obtained even if the
relation considered is not symmetric. Our proof relies on a characterization of
⇒SC using piecewise extension of→∗SC: for u, v ∈ Σ∞, we write u→ω

SC v if there
are infinite factorizations u = u0u1u2 · · · , v = v0v1v2 · · · with ui, vi ∈ Σ∗ and
ui →∗SC vi for all i ≥ 0. Note that, if u, v ∈ Σ∗ then u →ω

SC v if and only if
u →∗SC v. Hence, this definition is really useful for infinite words in which case
we may assume proper factorizations, i.e., ui, vi ∈ Σ+ for all i ≥ 0.

It is easy to see that u →ω
SC v implies u ⇒SC v. The converse is not true in

general since the relation→ω
SC is not necessarily transitive. Observe for instance

that abaabaaab . . . ⇒SC babababa . . . while abaabaaab · · · 6→ω
SC babababa . . . .

Still, it yields the following characterization.

12
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Fig. 3. Double Factorization

Lemma 14 (Double factorization). For all u, v ∈ Σ∞, we have u ⇒SC v if
and only if there exists w ∈ Σ∞ such that u→ω

SC w →ω
SC v.

Proof. Since ⇒SC is transitive and →ω
SC is contained in ⇒SC, one direction is

trivial. Conversely, assume that u⇒SC v by σ. If u, v ∈ Σ∗ are finite then u→∗SC

v and the result is trivial. Hence we assume in the following that u, v ∈ Σω.
Write u = a0a1a2 · · · and v = b0b1b2 · · · with ai, bi ∈ Σ for all i ≥ 0. We

construct now inductively infinite factorizations of u and v, see Figure 3.

– Let m0 = 0, v0 = b0 and n0 = σ−1(0), u0 = a0 · · · an0
.

– For i ≥ 0, let mi+1 = 1 + max(σ({0, . . . , ni})), vi+1 = b1+mi
· · · bmi+1

and
ni+1 = max(σ−1({0, . . . ,mi+1})), ui+1 = a1+ni

· · · ani+1
.

Clearly, mi+1 > mi and ni+1 > ni for all i ≥ 0. Hence we have defined infinite
factorizations u = u0u1u2 · · · and v = v0v1v2 · · · with ui, vi ∈ Σ+ for all i ≥ 0.

Now, we define the word w and its double factorization, see Figure 3.

– Let U0 = {0, . . . , n0}, X0 = {n0} and Y0 = {0, . . . , n0 − 1}.
– For i ≥ 0, let Ui+1 = {1+ni, . . . , ni+1}, Xi+1 = Ui+1∩σ−1({0, . . . ,mi+1}) =
Ui+1 ∩ σ−1({1 +mi, . . . ,mi+1}) and Yi+1 = Ui+1 \Xi+1.

Now, for all i ≥ 0, we define xi and yi as the subwords of u corresponding to
positions in Xi and Yi respectively. Finally, we let w = x0y0x1y1x2y2 · · · .

Claim. For all i ≥ 0 we have ui →∗SC xiyi and yixi+1 →∗SC vi+1.

Indeed, ui is the subword (factor) of u corresponding to positions in Ui =
Xi ] Yi. By definition, we have max(σ(Xi)) ≤ mi < min(σ(Yi)). Since u⇒SC v
by σ, we deduce that for all j ∈ Xi and k ∈ Yi, either j < k or (ak, aj) ∈ SC.
Therefore ui →∗SC xiyi.

Next, for all i ≥ 0, the subword of u corresponding to positions in Yi]Xi+1 is
yixi+1. We can check that Vi+1 = {1+mi, . . . ,mi+1} = σ(Yi]Xi+1). Hence vi+1

is the subword of v corresponding to positions in σ(Yi ]Xi+1). Since u ⇒SC v
by σ, we deduce that yixi+1 ⇒SC vi+1 (essentially by σ). Therefore, yixi+1 →∗SC

vi+1 since these two words are finite. This concludes the proof of the claim.

The claim implies u→ω
SC w and since x0 = v0, we also get w →ω

SC v. ut
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Corollary 15. A language L ⊆ Σ∞ is SC-closed if and only if it is closed under
→ω

SC: if u ∈ L and u→ω
SC v then v ∈ L.

To prove Theorem 13, we provide an even simpler characterization of SC-
closure for regular languages. We let =−→SC be the reflexive closure of →SC, and
write u =−→ω

SC v if there are infinite factorizations u = u0u1 . . . and v = v0v1 . . .
such that ui

=−→SC vi for all i ≥ 0. The following proposition is reminiscent
of [PWW98, Theorem 15].

Proposition 16. An ω-regular language L ⊆ Σ∞ is SC-closed if and only if it
is closed under =−→ω

SC.

To prove Proposition 16, we use the algebraic definition of regular languages.
We recall first some useful definitions and properties. We refer to [PP04,CPP08]
for more details. Let h : Σ∗ → M be a morphism to some finite monoid M .
Below, we only consider morphisms satisfying h−1(1M ) = {ε}. Two words u, v ∈
Σ∞ are h-similar, denoted u ∼h v, if we can find infinite factorizations u =
u0u1u2 · · · , v = v0v1v2 · · · with ui, vi ∈ Σ∗ and h(ui) = h(vi) for all i ≥ 0. From
the hypothesis h−1(1M ) = {ε}, we deduce that if u ∼h v then either u, v ∈ Σ∗
are both finite or u, v ∈ Σω are both infinite. Moreover, if u, v ∈ Σ∗ are finite
then u ∼h v if and only if h(u) = h(v). Note that ∼h is not necessarily transitive
on infinite words.

A language L ⊆ Σ∞ is recognized (saturated) by h if u ∈ L and u ∼h v
implies v ∈ L for all u, v ∈ Σ∞. A linked pair of the monoid M is a pair
(s, e) ∈ M2 such that se = s and e2 = e. We recall now the following classical
lemma, as presented in [CPP08].

Lemma 17 (Ramseyan factorization). Let M be a finite monoid and h :
Σ∗ → M be a morphism. Let u0u1u2 · · · ∈ Σ∞ be an infinite factorization with
ui ∈ Σ∗ for all i ≥ 0. There exists a linked pair (s, e) ∈ M2, and there exists
0 < i1 < i2 < · · · such that h(u0 · · ·ui1) = s and h(u1+ij · · ·uij+1

) = e for all
j > 0.

Proof of Proposition 16. We fix a finite monoid M and a morphism h :
Σ∗ →M recognizing L.

Since =−→SC⊆→∗SC, if L is SC-closed then L is closed under →ω
SC by Corol-

lary 15, hence it is also closed under =−→ω
SC.

Conversely, assume that L is not SC-closed, hence not closed under →ω
SC

by Corollary 15. Consider two words u, v ∈ Σ∞ such that u ∈ L, v /∈ L and
u →ω

SC v. Then we have factorizations u = u0u1 · · · and v = v0v1 · · · with
ui, vi ∈ Σ∗ and ui →∗SC vi for all i ≥ 0. Consider now a Ramseyan h-factorization
of u0u1u2 · · · given by the sequence 0 < i1 < i2 · · · . Let u′0 = u0 · · ·ui1 and
u′j = u1+ij · · ·uij+1 for j > 0 so that h(u′0) = s, h(u′j) = e for all j > 0, se = s,

e2 = e. Let also v′0 = v0 · · · vi1 and v′j = v1+ij · · · vij+1 for j > 0. Clearly we have
u′j →∗SC v′j for all j ≥ 0.

Similarly, considering now a Ramseyan h-factorization for v′0v
′
1v
′
2 · · · we ob-

tain new factorizations u = u′′0u
′′
1u
′′
2 · · · and v = v′′0 v

′′
1 v
′′
2 · · · such that u′′i →∗SC v′′i
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for all i ≥ 0, h(u′′0) = s, h(v′′0 ) = t, h(u′′i ) = e and h(v′′i ) = f for all i > 0, (s, e)
and (t, f) linked pairs.

Now, since u ∈ L and u ∼h u′′0(u′′1)ω we get u′′0(u′′1)ω ∈ L. Also, v /∈ L and
v ∼h v′′0 (v′′1 )ω implies v′′0 (v′′1 )ω /∈ L. However, u′′0 →∗SC v′′0 and u′′1 →∗SC v′′1 , hence
there exists n ≥ 0 such that both rewritings use at most n steps: u′′0

=−→n
SC v′′0 and

u′′1
=−→n

SC v′′1 , where =−→n
SC is the n-th iteration of the relation =−→SC. We deduce

that u′′0(u′′1)ω ( =−→ω
SC)n v′′0 (v′′1 )ω. Therefore, L is not closed under =−→ω

SC. ut

Theorem 18. Given an ω-regular language L ⊆ Σ∞ described by a Büchi au-
tomaton, and a semi-commutation relation SC, we can decide whether L is SC-
closed in PSPACE with respect to the size of the automaton.

Proof. We assume that L is given by a Büchi automaton A. We can compute a
Büchi automaton B for the complement L. As in [PWW98], it is easy to build a
Büchi automaton C over the alphabet Σ×Σ that recognizes {(u, v) ∈ Σ∞×Σ∞ |
u =−→ω

SC v}. Synchronizing A with the first track of C and B with the second
track of C, we obtain a Büchi automaton, denoted A× C ×B, recognizing

(L×Σ∞) ∩ L(C) ∩ (Σ∞ × L) = {(u, v) ∈ L× L | u =−→ω
SC v}.

Then, L is closed under =−→ω
SC if and only if L(A × C × B) is empty. Classi-

cal constructions for the complement yield an automaton B of exponential size.
However, in order to check A×C ×B for emptiness, it is not necessary to con-
struct B first. Since emptiness reduces to repeated reachability, we can solve the
problem in polynomial space with a non-deterministic procedure. We conclude
since PSPACE = NPSPACE. ut

4.4 MSO for semi-traces.

We introduce a syntactic restriction of the Monadic Second Order Logic (MSO)
over words so that the semantics of any sentence defines a language closed under
semi-commutations. Given an alphabet Γ , two finite sets of variables Var and
SetVar, a semi-commutation relation SC ⊆ Γ × Γ and the corresponding semi-
dependence relation SD, we let MSOacc(SD) be the set of formulas defined by:

ϕ ::= Pa(x) | ¬Pa(x) | x ∈ X | x /∈ X | x = y | x 6= y | x ESD y

| ϕ ∧ ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∀x.ϕ | ∃X.ϕ | ∀X.ϕ

for x ∈ Var, X ∈ SetVar, and a ∈ Γ .
The semantics defines when w, ν |= ϕ, where w = (Pos(w),≤, w) is a (finite

or infinite) word, and ν : Var ∪ SetVar → Pos(w) ∪ 2Pos(w) is a valuation such
that ν(x) ∈ Pos(w) for all x ∈ Var and ν(X) ∈ 2Pos(w) for all X ∈ SetVar.

– w, ν |= Pa(x) if w(ν(x)) = a
– w, ν |= ¬Pa(x) if w(ν(x)) 6= a
– w, ν |= x ∈ X if ν(x) ∈ ν(X)
– w, ν |= x /∈ X if ν(x) /∈ ν(X)

15



– w, ν |= x = y iff ν(x) = ν(y)
– w, ν |= x 6= y iff ν(x) 6= ν(y)
– w, ν |= x ESD y if ν(x) < ν(y) and (w(ν(x)), w(ν(y)) ∈ SD
– w, ν |= ϕ1 ∧ ϕ2 iff w, ν |= ϕ1 and w, ν |= ϕ2

– w, ν |= ϕ1 ∨ ϕ2 iff w, ν |= ϕ1 or w, ν |= ϕ2

– w, ν |= ∃x.ϕ if there is i ∈ Pos(w) such that w, ν[x 7→ i] |= ϕ
– w, ν |= ∀x.ϕ if for all i ∈ Pos(w), w, ν[x 7→ i] |= ϕ
– w, ν |= ∃X.ϕ if there is S ⊆ Pos(w) such that w, ν[X 7→ S] |= ϕ
– w, ν |= ∀X.ϕ if for all S ⊆ V , w, ν[X 7→ S] |= ϕ

Remark 19. It is crucial to forbid the negation of a general formula to keep the
fragment closed under semi-commutation. Indeed, let (a, b) ∈ SD and (b, a) /∈
SD, then L = {ab} is closed under semi-commutation, but L is not, because
ba→SC ab and ba ∈ L.

Also, some atomic propositions are redundant since we can express ¬Pa(x)
by
∨
b6=a Pb(x) and x 6= y by x ESD y ∨ y ESD x ∨

∨
a∈Γ (Pa(x) ∧ ¬Pa(y)).

Remark 20. The reflexive and transitive closure of ESD is given by x ≤SD y =
(x = y) ∨

∨
0<k<|Γ | ∃z1 . . . ∃zk−1.x ESD z1 ESD . . . ESD zk−1 ESD y. Indeed,

suppose that w, ν |= z0 ESD z1 ESD . . . ESD z|Γ | . Necessarily, by the pigeonhole
principle, there are two different variables labeled with the same letter of Γ :
0 ≤ i < j ≤ |Γ | such that w(ν(zi)) = w(ν(zj)). Then we obtain that w, ν |=
z0 ESD . . . ESD zi−1 ESD zj ESD zj+1 ESD . . . ESD z|Γ |. The remark follows.

If Γ ′ ⊆ Γ is a semi-dependence clique (i.e., for all a, b ∈ Γ ′, we have
(a, b), (b, a) ∈ SD), then, when restricted to positions labeled by Γ ′, we have
¬(x ESD y) = (x = y) ∨ (y ESD x). Thus, when restricted to Γ ′, MSOacc(SD)
has the same expressive power as MSO(<).

To show that the models of a sentence of MSOacc(SD) form a language closed
under SC, we build on the following lemma.

Lemma 21. For all w,w′ ∈ Σ∞ such that w ⇒SC w′ by σ, all ϕ ∈ MSOacc(SD)
and all valuation ν : Var ∪ SetVar → Pos(w) ∪ 2Pos(w), if w, ν |= ϕ, then
w′, σ ◦ ν |= ϕ.

Proof. We show it by induction on the structure of the formula ϕ. Let w =
(Pos(w),≤, w), w′ = (Pos(w′),≤, w′) and σ : Pos(w) → Pos(w′) bijection such
that w ⇒SC w′ by σ.

– Let a ∈ Γ . Then, w, ν |= Pa(x) iff w(ν(x)) = a iff w′(σ ◦ ν(x)) = a (by
Definition 9) iff w′, σ ◦ ν |= Pa(x).

– w, ν |= x ∈ X iff ν(x) ∈ ν(X) iff σ(ν(x)) ∈ σ(ν(X)) iff w′, σ ◦ ν |= x ∈ X.
– w, ν |= x = y iff ν(x) = ν(y) iff σ(ν(x)) = σ(ν(y)) iff w′, σ ◦ ν |= x = y.
– The cases ¬Pa(x), x /∈ X and x 6= y follow since the above cases are equiv-

alences.
– w, ν |= x ESD y iff ν(x) < ν(y) and

(
w(ν(x)), w(ν(y)

)
∈ SD. Then, by

Definition 9, σ(ν(x)) < σ(ν(y)) and (w′(σ ◦ν(x)), w′(σ ◦ν(y))) ∈ SD. Hence,
w′, σ ◦ ν |= x ESD y.
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– Conjunctions and disjunctions are trivial.
– w, ν |= ∃x.ϕ iff there exists i ∈ Pos(w) such that w, ν[x 7→ i] |= ϕ. Then, by

induction hypothesis, w′, σ ◦ (ν[x 7→ i]) |= ϕ, and w′, (σ ◦ ν)[x 7→ σ(i)] |= ϕ,
and then w′, σ ◦ ν |= ∃x.ϕ

– w, ν |= ∀x.ϕ iff for all i ∈ Pos(w), w, ν[x 7→ i] |= ϕ. Then, by induction
hypothesis, w′, σ ◦ (ν[x 7→ i]) |= ϕ for all i ∈ Pos(w), and w′, (σ ◦ ν)[x 7→
σ(i)] |= ϕ. Since σ is bijective, we get w′, (σ◦ν)[x 7→ i] |= ϕ for all i ∈ Pos(w)
and then w′, ν |= ∀x.ϕ.

– w, ν |= ∃X.ϕ iff there exists S ⊆ Pos(w) such that w, ν[X 7→ S] |= ϕ.
Then, by induction hypothesis, w′, σ ◦ (ν[X 7→ S]) |= ϕ, and w′, (σ ◦ ν)[X 7→
σ(S)] |= ϕ and then w′, ν |= ∃X.ϕ.

– w, ν |= ∀X.ϕ iff for all S ⊆ Pos(w), w, ν[X 7→ S] |= ϕ. Then, by induction
hypothesis, w′, σ ◦ (ν[X 7→ S]) |= ϕ for all S ⊆ Pos(w), and w′, (σ ◦ ν)[X 7→
σ(S)] |= ϕ. Again, since σ is bijective, we get w′, (σ ◦ ν)[X 7→ S] |= ϕ for all
S ⊆ Pos(w) and then w′, σ ◦ ν |= ∀X.ϕ. ut

We say that a given logic is closed under a semi-commutation relation, if, for
all ϕ sentence of this logic, the set [[ϕ]] = {w ∈ Γ∞ | w |= ϕ} is closed under this
semi-commutation relation. From the preceding lemma, we immediately get the
following proposition.

Proposition 22. The logic MSOacc(SD) is closed under SC.

Proof. Let ϕ ∈ MSOacc(SD) be a sentence and L = [[ϕ]] = {w ∈ Γ∞ | w |= ϕ}.
Let w′ ∈ [L]. Then, by Lemma 21, w′ |= ϕ and w′ ∈ L. Hence, L = [L]. ut

From Proposition 22, we deduce the following corollary.

Corollary 23. Given an architecture A = (Proc, E, (Inp)p∈Proc, (Outp)p∈Proc),
the logic MSOacc(SDA) is SC-closed for A.

Remark 24. For any process p ∈ Proc, the set Σp is a semi-dependence clique,
then MSOacc(SDA) restricted to p has the same expressive power as MSO(<).

Moreover, when SD = SDA, the reflexive and transitive closure ≤SD of ESD

is simply given by x ≤SD y = (x = y) ∨ (x ESD y) ∨ ∃z.(x ESD z ESD y).
Indeed, assume that w, ν |= x ESD y ESD z ESD t. Let p be such that w(ν(t)) ∈
Σp. If w(ν(x)) ∈ Σp or w(ν(t)) ∈ Outp, then w, ν |= x ESD t. Otherwise,
w(ν(t)) ∈ Inp and w(ν(x)) /∈ Σp. Since w, ν |= z ESD t, we have w(ν(z)) ∈ Σp.
If w(ν((z)) ∈ Outp then w, ν |= x ESD z and w, ν |= x ESD z ESD t. If now
w(ν(z)) ∈ Inp then w(ν(y)) ∈ Σp too. Then, y being on the same process as t,
we have w, ν |= y ESD t. Hence, w, ν |= x ESD y ESD t.

5 Decidability Results

In this section we give a necessary condition for the existence of a distributed
strategy. This condition is the existence of a (centralized) strategy implementing
the specification on a corresponding architecture consisting of a unique process
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(such architectures are called singleton architectures). Then we show that it
becomes also a sufficient condition for the subclass of architectures having a
strongly connected communication graph: every process can transmit messages
to everyone (though maybe not directly). In the following, we will simply call
them strongly connected architectures. This result allows to conclude that fair
synthesis problem is decidable for the subclass of strongly connected architec-
tures.

5.1 Singleton Architectures

A first step in solving the general problem is to handle the sequential case. This
problem is slightly different from the asynchronous synthesis of [PR89] (where
the communication was through shared variables) and [MT02] (where a single
process does not evolve asynchronously with respect to its environment).

For singleton architectures, there is no internal action and then Σ = Γ =
In ∪ Out. We show that the fair synthesis problem for such architectures is
decidable. In fact, in the remainder of the article, we will need a stronger result on
singleton architectures. Hence, Theorem 25 states that the synthesis problem is
decidable for the singleton architecture whatever partition of controllable actions
is chosen to define the fairness condition. In that case, the partition is part of
the input (A,P, L) of the synthesis problem: given a singleton architecture A,
a specification language L and a partition P of Out, does there exist a winning
strategy for (A,P, L).

Theorem 25. The fair synthesis problem is decidable for singleton architec-
tures, ω-regular specifications, and any partition of controllable actions.

The rest of this subsection is devoted to the proof of this theorem. As in
[Var95], the general idea is to reduce the synthesis problem to the emptiness
problem for a suitably constructed tree automaton.

We suppose that the specification is effectively given by a deterministic word
automaton (e.g., with Muller acceptance condition) accepting a regular language
L ⊆ Γ∞. Let P be the partition of controllable actions.

We deal first with the case In = ∅, for which we claim that there is a winning
strategy if and only if L 6= ∅. Indeed, assume that ∅ 6= L ⊆ Out∞ and let w ∈ L.
We define the strategy f on strict prefixes of w by f(v) = a if va ∈ Pref(w).
Note that the f -runs are exactly w itself and its strict prefixes. Now, a strict
prefix of w is not f -maximal, hence not (P, f)-fair. Moreover, we see easily that
w is (P, f)-fair. Hence w is the unique (P, f)-fair f -run and since w ∈ L, the
strategy f is winning. Conversely, let f be a winning strategy. There is a unique
f -maximal (P, f)-run w = w0w1w2 · · · defined inductively by wi = f(w[i]) as
long as this is defined. If w is finite then w /∈ dom(f), hence w is (P, f)-fair. If w
is infinite, then also w is (P, f)-fair. Since f is winning, we get w ∈ L 6= ∅. Now,
L being effectively given by an automaton, it is decidable to check its emptiness.

So in the following, we assume In 6= ∅.
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We recall now some notions and notations about trees and tree automata.
Given a finite set X and a set Y , a Y -labeled X-tree, also called (X,Y )-tree, is a
(partial) function t : X∗ → Y whose domain is prefix-closed, in which elements
of X are called directions and elements of Y labels. When the function is total,
the tree is said to be complete. A word w ∈ dom(t) defines a node of t and t(w)
is its label. The empty word ε is the root of the tree. A finite branch of t is a
node w ∈ dom(t) that is maximal: wX ∩ dom(t) = ∅. An infinite word w ∈ Xω

is a branch of t if all its finite prefixes are nodes of t: Pref(w) ⊆ dom(t). We
denote by Br(t) the set of finite or infinite branches of t. We define the cumulative
label of a node w ∈ dom(t) by t(w) = t(w[0])t(w[1]) · · · t(w). This is extended to
(infinite) branches w ∈ Br(t) by t(w) = t(w[0])t(w[1])t(w[2]) · · · .

A tree automaton over (X,Y )-trees is a tuple A = (Q,X, Y,Q0, δ, α), where
Q is a finite set of states, Q0 ⊆ Q is the set of possible initial states, X and Y
are two finite alphabets, δ ⊆ Q× Y ×

⋃
S⊆X Q

S is the transition function, and
α is the acceptance condition, which defines a subset of Q∞.

A run tree of A over a tree t : X∗ → Y is another tree ρ : X∗ → Q
such that dom(ρ) = dom(t), ρ(ε) ∈ Q0, and for all w ∈ dom(t) we have
(ρ(w), t(w), (ρ(ws))s∈S) ∈ δ where S is the set of sons of w: dom(t)∩wX = wS.
A branch w of ρ is accepting if ρ(w) ∈ Q∞ satisfies the acceptance condition.
The run tree is accepting if all its branches are accepting.

A tree t is accepted by a tree automaton A if there is an accepting run tree
of A over t. We define L(A) = {t : X∗ → Y | t is accepted by A}. We say that
A is empty (respectively nonempty) if L(A) = ∅ (respectively L(A) 6= ∅).

For a given strategy f , we can gather in a tree the set of f -runs: we call such
trees computation trees. Those are basically (Out∪{#})-labeled Γ -trees, where
the direction of a node represents the last action executed, and its label contains
the value the strategy is willing to play after the finite run represented by the
node, or # /∈ Γ if the strategy does not advise any action (i.e., if f is undefined).
Then, each node has as many sons as there are possible actions for the next step
: one son for each input action, and one for the output action defined by the
strategy, if any. The different possible runs are represented in the branches of
the tree.

We will build a tree automaton over computation trees that will accept ex-
actly those corresponding to winning strategies. For the tree automaton to be
able to determine if runs corresponding to branches are correct, we make explicit
the direction of each node in its label. So we define the labeling alphabet as

X = (Γ ∪ {ι})× (Out ∪ {#}).

Here ι /∈ Γ will be used only at the root since it has no direction. For any letter
(a, b) ∈ X, we define the projections π1(a, b) = a and π2(a, b) = b, and we extend
this definition to words over X∞ in the natural way.
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(ι,#)

(a,A) (b, B) (c,#)

(a,A) (b, B) (c,#) (A,#) (a,A) (b, B) (c,#) (B,#) (a,A) (b, B) (c,#)

a b c

a b c A a b c B a b c

Fig. 4. A tree Compf

Formally, for a strategy f : Γ ∗ → Out, we define its computation tree
Compf : Γ ∗ → X in the following way:

Compf (ε) =

{
(ι, f(ε)) if f(ε) is defined

(ι,#) otherwise

and, for all w such that Compf (w) is already defined, for all a ∈ In ∪ {f(w)} =
In ∪ {π2(Compf (w))} \ {#},

Compf (wa) =

{
(a, f(wa)) if f(wa) is defined

(a,#) otherwise.

Example 26. Consider a singleton architecture with alphabets In = {a, b, c} and
Out = {A,B}. The strategy f : Γ ∗ → Out defined for w ∈ Γ ∗ by

f(wa) = A f(wb) = B

is associated with the tree Compf that is partly represented on Figure 4.

Remark 27. We can easily show by induction that, for all w ∈ Γ ∗, w is an f -run
if and only if w ∈ dom(Compf ). Moreover, an f -run w ∈ Γ ∗ is f -maximal if and
only if π2(Compf (w)) = #. We deduce also that, for all w ∈ Γω, w is an f -run
if and only if w is a branch of Compf . Moreover, since In 6= ∅, all branches of
Compf are infinite.

We will show that the set of computation trees of winning strategies is regular.
To this end, we define the set WF of well-formed trees t : Γ ∗ → X such that

– ε ∈ dom(t) and π1(t(ε)) = ι, moreover if wa ∈ dom(t) and a ∈ Γ then
π1(t(wa)) = a,
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– for all w ∈ dom(t), we have

dom(t) ∩ wΓ =

{
wIn if π2(t(w)) = #

w(In ∪ {π2(t(w))}) otherwise.

Remark 28. The following properties are easy to check:

1. The set WF is a regular tree language.
2. If t ∈WF then, for each w ∈ Br(t), we have π1(t(w)) = ιw.
3. If f : Γ ∗ → Out is a strategy, then Compf ∈WF is well-formed.

We have seen in Remark 27 that f -runs correspond to nodes or branches of
Compf . If the strategy is winning, these f -runs should be either unfair or in the
specification language L ⊆ Γ∞. This will be checked on the label of branches
using the following languages:

UF =
⋃
C∈P

X∗((Γ \ C)× C)ω

SPECinf = {w ∈ Xω | π1(w) ∈ ι(L ∩ Γω)}
SPECfin = {w ∈ Xω | π1(u) ∈ ι(L ∩ Γ ∗) for all u ∈ Pref(w)

such that π2(u) ∈ (Out ∪ {#})∗#}

Clearly the language UF for the unfair runs is ω-regular and since L is ω-regular
it is also easy to see that the languages SPECinf and SPECfin for the runs
satisfying the specification are ω-regular. We deduce that the tree language

T = {t ∈WF | ∀w ∈ Br(t), t(w) ∈ SPECfin ∩ (UF ∪ SPECinf)}

is regular. Moreover, given a deterministic word automaton (e.g., with Muller
acceptance condition) for L, we can effectively construct a tree automaton for T .
The following proposition describes the link between T and the winning strate-
gies for (A,P, L).

Proposition 29. We have

T = {Compf | f : Γ ∗ → Out is a winning strategy for (A,P, L)}.

Proof. First, let f : Γ ∗ → Out be a winning strategy for (A,P, L). We show
that Compf ∈ T . From Remark 28, we already know that Compf ∈WF is well-

formed. Let v ∈ Br(Compf ) and let w = Compf (v). By Remark 27, we know
that v ∈ Γω is an infinite f -run.

If v is (P, f)-fair then v ∈ L since f is winning. From Remark 28, we know
that π1(w) = ιv and we deduce that w ∈ SPECinf .

If v is not (P, f)-fair then we find C ∈ P and a prefix v′ of v such that
f(v′′) ∈ C for all v′ ≤ v′′ < v and such that v′ contains all the finitely many

C-events of v (alph(v′
−1
v)∩C = ∅). We deduce that w ∈ X∗((Γ \C)×C)ω ⊆ UF.
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It remains to show that w ∈ SPECfin. So let u be a finite prefix of w such
that its second component ends with a #: π2(u) ∈ (Out ∪ {#})∗#. Let v′ be
the prefix of v corresponding to u: Compf (v′) = u. We have π1(u) = ιv′ and
π2(Compf (v′)) = #. By Remark 27 we deduce that v′ is an f -maximal f -
run. Hence it is (P, f)-fair and we get v′ ∈ L since f is winning. Therefore,
π1(u) = ιv′ ∈ ι(L ∩ Γ ∗) as desired. We deduce that w ∈ SPECfin.

Conversely, let t ∈ T . We define the strategy f : Γ ∗ → Out as follows: for all
v ∈ Γ ∗, we let

f(v) =

{
π2(t(v)) if v ∈ dom(t) and π2(t(v)) 6= #

undefined otherwise.

Claim. t = Compf .

We first show that if v ∈ dom(t) ∩ dom(Compf ) then t(v) = Compf (v).
For the first component, we have π1(t(ε)) = ι = π1(Compf (ε)) and if v = v′a
then π1(t(v)) = a = π1(Compf (v)) since t is well-formed and by definition
of Compf . For the second component, if π2(t(v)) = # then f(v) is undefined
by definition of f and we obtain π2(Compf (v)) = # by definition of Compf .
Next, if π2(t(v)) = b ∈ Out then f(v) = b by definition of f and we obtain
π2(Compf (v)) = b by definition of Compf .

Second, we show by induction that dom(t) = dom(Compf ). Clearly, ε ∈
dom(t) ∩ dom(Compf ). Let now v ∈ dom(t) ∩ dom(Compf ). Since both Compf
and t are well-formed, we have

dom(Compf ) ∩ vΓ =

{
vIn if π2(Compf (v)) = #

v(In ∪ {π2(Compf (v))}) otherwise,

dom(t) ∩ vΓ =

{
vIn if π2(t(v)) = #

v(In ∪ {π2(t(v))}) otherwise.

Since t(v) = Compf (v) we deduce that dom(Compf )∩vΓ = dom(t)∩vΓ , which
concludes the proof of the claim.

It remains to show that f is winning. Let first v ∈ Γω be an infinite (P, f)-
fair f -run. From the claim and Remark 27 we deduce that v ∈ Br(t). Then,
w = t(v) ∈ UF ∪ SPECinf . Assume towards a contradiction that w ∈ UF. Then,
we find C ∈ P such that w ∈ X∗((Γ \ C) × C)ω. We deduce that there is a
finite prefix v′ of v such that v ∈ v′(Γ \ C)ω (hence contains finitely many C-
events) and π2(t(v′′)) ∈ C for all v′ ≤ v′′ < v. We deduce that f(v′′) ∈ C for all
v′ ≤ v′′ < v, a contradiction with v being (P, f)-fair. Therefore, w ∈ SPECinf

and we obtain ιv = π1(w) ∈ ι(L ∩ Γω). Hence, v ∈ L satisfies the specification.
Let now v ∈ Γ ∗ be an f -maximal f -run. From the claim and Remark 27, we

know that v ∈ dom(Compf ) = dom(t). Since t is well-formed, we have vInω ⊆
Br(t). Let v′ ∈ vInω be such a branch. We have w = t(v′) ∈ SPECfin. Now, the
word u = t(v) is a finite prefix of w that ends with t(v). Since v is f -maximal,
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f(v) is undefined, hence π2(t(v)) = #. Therefore, π2(u) ∈ (Out ∪ {#})∗# and
we deduce that ιv = π1(u) ∈ ι(L ∩ Γ ∗). Hence, v ∈ L satisfies the specification.

We have seen that all (P, f)-fair f -run satisfy the specification. Hence, the
strategy f is winning. ut

We deduce from the above proposition that there exists a winning strategy
for (A,P, L) if and only if the regular tree language T is non-empty. Since
we can effectively construct a tree automaton for T from a deterministic word
automaton for L, and emptiness for tree automata is decidable, we have proved
Theorem 25. Moreover, if the tree automaton accepts a nonempty language, then
we can construct an accepted regular tree (i.e., with finitely many subtrees). This
regular tree has a finite representation, yielding the existence of a strategy with
finite memory.

5.2 Distributed Architectures

We now consider the general case of distributed architectures. We first give a
necessary condition for the existence of a distributed strategy for an architecture
A = (Proc, E, (Inp)p∈Proc, (Outp)p∈Proc). For that, we define the singleton archi-
tecture A with a single process and external signals In =

⋃
p∈Proc Inp and Out =⋃

p∈Proc Outp. We consider the partition P defined by P = {Outp | p ∈ Proc}.
The existence of a winning strategy for (A,P, L) is a necessary condition for the
existence of a winning strategy and communication alphabets for (A,P, L).

Proposition 30. Let L be an ω-regular specification. If there are internal signal
sets and a distributed winning strategy for (A, L) then there is a winning strategy
for (A,P, L).

Proof. Prima facie, it seems easy to simulate a distributed strategy with a cen-
tralized one. However, we will have to deal with fairness conditions, which re-
quires some care. Let (Σp,q)(p,q)∈E be internal communication sets used by pro-
cesses of the architecture A and let F = (fp)p∈Proc be the distributed winning
strategy. Since the distributed strategy is winning, any F -run that is (P, F )-fair
will belong to L. Recall that P = {Σp,C | p ∈ Proc}.

To simulate the distributed strategy F , the singleton architecture should
implement a fair scheduling of the processes and then play the actions of the
different processes according to this scheduling. For this, we first define for any
p ∈ Proc a map rank(fp) : Σ∗ → N representing the priority associated with
process p after a given history on Σ∗. For p ∈ Proc, v ∈ Σ∗ and a ∈ Σ, we define

rank(fp)(ε) =

{
1 if fp(ε) is defined

0 otherwise.

rank(fp)(va) =


rank(fp)(v) + 1 if a 6= fp(v) and fp(va) is defined

1 if a = fp(v) and fp(va) is defined

0 otherwise.
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The priority of a process in Proc strictly increases as long as its strategy is defined
and the process is not scheduled. Also, the rank of a process whose strategy is
defined is always strictly greater than the rank of a process whose strategy is
not.

In the following, we assume that processes in Proc are totally ordered by a
given relation ≤. For v ∈ Σ∗, we define rank(F )(v) = max{rank(fp)(v) | p ∈
Proc} and procF (v) = max{p ∈ Proc | rank(fp)(v) = rank(F )(v)}, the maximal
process among those with maximal priority. It defines the process that will be
simulated by the singleton architecture after the prefix v. Observe that, with
the definition of rank(fp), the singleton architecture will not try to simulate a
process whose strategy is undefined if there are other processes enabled.

Recall that the set of signals of A is Γ = In ∪ Out. To simulate F with
a strategy f of the singleton architecture, we need to turn a sequence in Γ ∗

(the history available to the singleton architecture) into one of A that includes
internal signals from (Σp,q)(p,q)∈E .

To this end, for each v ∈ Σ∗, we define the sequence Com(v) of internal
communications triggered by v. Formally Com(v) = u0u1u2 · · · ∈ (ΣC \ Γ )∞

is the maximal word such that for all i ≥ 0 we have ui = fpi(v · u[i]) where
pi = procF (v · u[i]). Notice that for any prefix u of Com(v) we have Com(v) =
u ·Com(v ·u). The sequence Com(v) is finite if at the end, all the processes have
their rank equal to 0, hence their strategies are all undefined, or if the strategy
of the first process in the priority list is to output a signal from Out.

We define now the map Φ : Γ ∗ → Σ∗, which enriches a sequence v ∈ Γ ∗ with
the internal communications obtained using Com in order to get a prefix Φ(v)
of an F -run of A. If the sequence of internal communications advised by Com
is finite, it is entirely inserted. Otherwise, only the first internal communication
is inserted. When Com(u) 6= ε, we denote by FirstCom(u) = Com(u)[1] the first
communication action of Com(u). Formally, the map Φ is defined inductively as
follows:

Φ(ε) =

{
Com(ε) if Com(ε) is finite

FirstCom(ε) otherwise

and for v ∈ Γ ∗ and a ∈ Γ

Φ(va) =

{
Φ(v)aCom(Φ(v)a) if Com(Φ(v)a) is finite

Φ(v)aFirstCom(Φ(v)a) otherwise.

Since Φ is (strictly) increasing, it can be extended to infinite words w ∈ Γω using
the least upper bound on finite prefixes: Φ(w) =

⊔
v≤w Φ(v) ∈ Σω.

After a sequence of actions v ∈ Γ ∗, the singleton architecture decides which
output signal to emit by consulting the distributed strategy F applied to the
enriched history Φ(v) for the top process in the priority list. Formally, the strat-
egy f : Γ ∗ → Out of the singleton architecture is defined for v ∈ Γ ∗ and
p = procF (Φ(v)) by

f(v) =

{
fp(Φ(v)) if fp(Φ(v)) ∈ Outp

undefined otherwise.
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Hence, the strategy of the singleton architecture is undefined if fp(Φ(v)) is un-
defined or if fp(Φ(v)) ∈ Σp,C \Outp.

Below, we fix some (P, f)-fair f -run w ∈ Γ∞ of A. When the environment
emits infinitely many signals, w ∈ Γω and thus Φ(w) ∈ Σω. But if after some
point the environment does not emit signals anymore, then it may happen that
the singleton architecture does not emit any signal either. However, the sequence
Com(Φ(w)) may be infinite, i.e., processes in A may decide to exchange internal
communication signals indefinitely. In that case, Φ(w) is not a (P, F )-fair F -run.
This is why the enriched sequence associated with w is defined by

w′ =

{
Φ(w)Com(Φ(w)) if w is finite

Φ(w) otherwise.

Notice that πΓ (w′) = w. Moreover, by definition of Φ and Com, we see that w′

is finite if and only if w is finite and Com(Φ(w)) = ε.
We show that w′ is a (P, F )-fair F -run over A.
We show first that w′ is an F -run. Let v′a < w′ with a ∈ Σp,C for some

p ∈ Proc. Either a is an internal communication and by definition of Φ and
Com, we deduce that a = fp(v

′). Or a ∈ Outp and by definition of Φ, we have
that v′ = Φ(v) for some prefix v of w. Moreover, since w is an f -run, we deduce
that a = f(v) = fp(Φ(v)) by definition, and again, a = fp(v

′). Hence, w′ is
indeed an F -run.

We show now that w′ is (P, F )-fair. We distinguish two separate cases, de-
pending on whether w′ is finite or not.

Suppose first that w′ is finite. Then, w is finite, w′ = Φ(w) and Com(Φ(w)) =
ε. By definition of Com, this implies that fp(Φ(w)) ∈ Outp for p = procF (Φ(w)),
or fp(Φ(w)) is undefined, for all p ∈ Proc. The first case would imply that f(w) ∈
Outp, a contradiction with w being a (P, f)-fair f -run. Therefore, w′ = Φ(w) is
F -maximal, hence (P, F )-fair by Remark 5.

Assume now that w′ is infinite and that w′ is not (P, f)-fair. Let P ⊆ Proc be
the set of processes that are eventually always enabled, but never scheduled: there
exists v′0 < w′ such that for all p ∈ P and all v′0 ≤ v′ < w′, we have fp(v

′) defined

and alph(v′0
−1
w′) ∩ Σp,C = ∅. We get rank(fp)(v

′a) = 1 + rank(fp)(v
′) for all

v′0 < v′a < w′ and all p ∈ P . Let p ∈ P be the maximal process (wrt. the assumed
total ordering on processes) such that rank(fp)(v

′
0) = max(rank(fq)(v

′
0))q∈P . We

first show that p has eventually always the highest priority.

Claim. There is v′0 < u′ < w′ such that p = procF (v′) for all u′ ≤ v′ < w′.

Proof. Indeed, let q /∈ P . By definition of P , we find vqaq such that v′0 < vqaq <
w′ and

– either aq ∈ Σq,C in which case, as shown above, we have aq = fq(vq) and we
obtain rank(fq)(vqaq) ≤ 1,

– or fq(vqaq) is undefined, in which case rank(fq)(vqaq) = 0.
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In both cases, rank(fq)(vqaq) ≤ 1 < rank(fp)(vqaq). Therefore, rank(fq)(v
′) <

rank(fp)(v
′) for all vqaq ≤ v′ < w′. We get procF (v′) 6= q for all vqaq ≤ v′ < w′.

Let u′ =
⊔
q/∈P vqaq. We obtain procF (v′) ∈ P for all u′ ≤ v′ < w′. By definition

of p, we deduce that procF (v′) = p for all u′ ≤ v′ < w′. ut

Now, we show that if process p stays continuously on top of the priority list
and none of its actions are added in w′ then it advises only output signals.

Claim. For all u′ < v′a < w′ we have a ∈ In and fp(v
′a) ∈ Outp.

Proof. Let u′ < v′a < w′. Since p = procF (v′), a ∈ In ∪ Σp,C (by definition of
Com and f). By hypothesis, a /∈ Σp,C , hence a ∈ In.

Let b ∈ Σ such that v′ab < w′. As above, we get b ∈ In. By definition of Φ,
since a ∈ In ⊆ Γ , FirstCom(v′a) = ε or FirstCom(v′a) = b ∈ Σ \ Γ . The second
case contradicts b ∈ In. Hence, FirstCom(v′a) = ε and since fp(v

′a) is defined
and p = procF (v′a), we deduce fp(v

′a) ∈ Outp. ut

We are now in a position to derive a contradiction from our assumption that
w′ is not (P, F )-fair. Let u = πΓ (u′). From the claim above, we deduce that

w = πΓ (w′) = u · (u′−1
w′). Then, Φ(v) = u′ · u−1v for all u < v ≤ w. Then,

again by the claim above, fp(Φ(v)) ∈ Outp. By the first claim, p = procF (Φ(v)),
then, by definition of f , we have f(v) ∈ Outp. Since the run w is (P, f)-fair,

alph(u−1w) ∩Outp 6= ∅. Hence, alph(u′
−1
w′) ∩Outp 6= ∅, a contradiction.

Therefore, for each f -run w ∈ Γ∞ that is (P, f)-fair, we can construct an
F -run w′ ∈ Σ∞ that is (P, F )-fair and such that w = πΓ (w′). Since F is a
winning strategy, w = πΓ (w′) ∈ L. This proves that f is a winning strategy for
(A,P, L). ut

Strongly Connected Architectures We consider now the class of architec-
tures having a strongly connected communication graph: each process can trans-
mit messages to any other (though maybe not directly). In the following, we will
simply call them strongly connected architectures. We show that for a strongly
connected architecture A, when the specification L is SC-closed, the existence
of a winning strategy for (A,P, L) is a sufficient condition for the existence of a
distributed strategy over (A, L). By Proposition 30, it is then a necessary and
sufficient condition. By Theorem 25, we can then state the following result.

Theorem 31. The fair synthesis problem over strongly connected architectures
is decidable for ω-regular SC-closed specifications.

The proof of the theorem relies on the following proposition.

Proposition 32. Let A be a strongly connected architecture, and L an ω-regular
SC-closed specigication. If there is a winning strategy for (A,P, L), then one can
define internal signal sets, and a winning distributed strategy for (A, L). More-
over, if there is a finite-memory strategy for (A,P, L), then one can construct
finite internal communication sets and a finite-memory distributed strategy for
the strongly connected architecture A.
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We want to simulate a run of A in the distributed system A. But the pro-
cesses only observe the projections (on Σp) of the actual run, and the (totally
ordered) actual run cannot be rebuilt from its projections on Σp. Since the pro-
cesses have to simulate the strategy of the singleton architecture A, they have to
guess and agree on an imaginary totally ordered run that is “compatible” with
the actual one: the actual run will be in the semi-commutation closure of the
imaginary run. To do so, we use a token passing algorithm: we select a cycle in
the communication graph and force the processes to communicate in a sequential
way through this virtual ring – note that there may be no simple cycle, and a
process may appear several times in the (virtual) ring. The process that has the
token will simulate the singleton architecture according to the current imaginary
run. While passing the token, it will also transmit enough information to allow
the receiver to extend the imaginary run.

Let f : Γ ∗ → Γ be a winning strategy for (A,P, L). We suppose that f
is described by a deterministic automaton with ouput – an automaton without
accepting conditions, and to which we add an output function defined on states.
We say that the strategy has finite memory if the automaton that computes it
is finite (i.e., has a finite number of states). Let A = (Q,Γ, δ, s0, f) with

– Q the set of states (finite if the strategy has finite memory) and s0 ∈ Q the
initial state,

– δ : Q× Γ → Q the deterministic and complete transition function,

– f : Q → Out the partial map describing the strategy: for v ∈ Γ ∗ we have
f(v) = f(δ(s0, v)).

We define for each process p ∈ Proc an automaton with output Ap =
(Qp, Σp, δp, s

p
0, fp) computing the local strategy of process p. To do so, we select

a cycle of size n in the architecture. We use the auxiliary function ring defined
by

ring : {1, . . . , n} → Proc

It is a surjective map associating each element of the ring to a process of the
architecture. It satisfies the property that (ring(i), ring(i + 1)) ∈ E, for all 1 ≤
i < n and (ring(n), ring(1)) ∈ E. As already pointed out, ring is not necessarily
injective and a given process may appear several times on the ring.

From their local observations, the different processes will guess an imaginary
run of the singleton architecture, respecting the strategy given by A, such that
the actual run being executed can be obtained by semi-commutation rewritings
from this imaginary run. When a process receives the token, it obtains the current
imaginary run and updates it by appending the sequence of local signals it
has received since the last time it had had the token (in our algorithm, the
only communication signals are for token passing). When the strategy of the
singleton architecture is finite-state, the processes do not need to keep track of all
actions that occurred between two token passings (this would ask for unbounded
memory), but need only to compute the corresponding transition function of A.
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Formally, we define the set of states of Ap, for a process p ∈ Proc by

Qp =
(
QQ × {NTok}

)
∪
(
Q×

⋃
i∈ring−1(p)

{Toki,Tok′i}
)

where Toki, and Tok′i are flags indicating that the process has the token while
simulating the i-th element of the ring, in which case its internal state is the
current state of A in the imaginary run. If the flag NTok is on, it indicates that
the process does not have the token, in which case it memorizes in its state a
transition function of A abstracting the sequence of actions it has observed.

When a process p does not have the token, it only memorizes the transition
function of the sequences of actions it has received, without emitting any signal.
Then, the only local actions occurring during that time are inputs from the
environment. Hence, for any p ∈ Proc, for any γ ∈ QQ abstracting some input
sequence from In∗p, for any a ∈ Inp, we let

δp((γ,NTok), a) = (γa ◦ γ,NTok) (δ1)

where γa : Q→ Q is defined by γa(s) = δ(s, a) for s ∈ Q.
When a process p ∈ Proc has the token, it uses the singleton architecture

strategy to choose the signal to emit. As long as the singleton architecture strat-
egy advises an action in Outp and process p has not been scheduled, the strategy
of process p will be also to emit this signal. If at some point, the singleton ar-
chitecture strategy is to output an action controlled by another process, or is
undefined, then process p will try to pass on the token. Similarly, as soon as
process p has been able to emit a signal in Outp, it will try to transmit the token
to the next process. To model the difference between the process willing to emit
an output signal and the process willing to transmit the token (and thus, emit
an internal signal), we will use respectively flags Toki and Tok′i. Formally, for
all p ∈ Proc, i ∈ ring−1(p), s ∈ Q and a ∈ Inp ∪Outp,

δp((s,Toki), a) =

{
(δ(s, a),Toki) if a ∈ Inp and f(δ(s, a)) ∈ Outp

(δ(s, a),Tok′i) otherwise.
(δ2)

If process p was not scheduled and the strategy of the singleton architecture
is still to emit a signal in Outp then it keeps the token. If process p has been
scheduled, or when the singleton architecture strategy is not in Outp, then p
changes its flag to Tok′i in order to transmit the token.

As soon as a process p wants to pass on the token, it won’t be able to emit any
other signal until it has indeed transmitted the token. Formally, for all p ∈ Proc,
i ∈ ring−1(p), for all s ∈ Q and a ∈ Inp

δp((s,Tok′i), a) = (δ(s, a),Tok′i). (δ3)

When passing the token on, a process actually sends the current state of the
automaton A. To make explicit the process that will receive the signal, and obtain
pairwise disjoint communication alphabets, we add to the state the number in
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the ring of the emitting process. So the output function of the automaton Ap is
defined as follows: for all s ∈ Q, i ∈ ring−1(p),

fp(s,Toki) = f(s)

fp(s,Tok′i) = (s, i)

Then, for all (p, q) ∈ E, we define the internal communication alphabets by

Σp,q =
⊎

i|p=ring(i)∧q=ring((i mod n)+1)

Q× {i}.

When the process has emitted the signal transmitting the token, it resets its
local state memorizing its local history, and goes back in a state NTok: for all
p ∈ Proc, i ∈ ring−1(p) and s ∈ Q, we define:

δp((s,Tok′i), (s, i)) = (id,NTok). (δ4)

where id ∈ QQ is the identity mapping.
The process receiving the token will compute the new current state of A: for

γ ∈ QQ, i ∈ {1, · · · , n}, j = (i mod n) + 1 and p = ring(j),

δp((γ,NTok), (s, i)) =

{
(γ(s),Tokj) if f(γ(s)) ∈ Outp

(γ(s),Tok′j) otherwise.
(δ5)

Finally, the initial state of Ap is given by:

sp0 =


(s0,Tok1) if ring(1) = p and f(s0) ∈ Outp

(s0,Tok′1) if ring(1) = p and f(s0) /∈ Outp

(id,NTok) otherwise.

Remark 33. We have the following invariant: if Ap is in state (s,Toki) then
p = ring(i), f(s) is defined and fp(s) = f(s) ∈ Outp.

For each p ∈ Proc, we have defined a deterministic (partial) transition func-
tion δp : Qp × Σp → Qp. Then, we define the local strategy fp : Σ∗p → Σp,C
by

fp(v) = fp(δp(s
p
0, v))

for all v ∈ Σ∗p . Recall that a local strategy is extended to words over Σ∗ by
fp(v) = fp(πp(v)) for v ∈ Σ∗. Since we will use it quite often, we denote the
state reached by Ap after v ∈ Σ∗ by

sp(v) = δp(s
p
0, πp(v))

that may be undefined if Ap does not have a run over πp(v). With this notation,
we have fp(v) = fp(sp(v)).

In the following, we let Tokp =
⋃
i∈ring−1(p){Toki,Tok′i} for p ∈ Proc. If v ∈

Σ∗ is a finite prefix of a run, we say that p has the token in v if sp(v) ∈ Q×Tokp.
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Using these notations, a run w ∈ Σ∞ is an F -run if, for all p ∈ Proc and
0 ≤ i < |w|, if wi ∈ Σp,C , then wi = fp(w[i]) = fp(sp(w[i])). As expected,
such F -runs present good properties. Observe for instance that at each point
of a given F -run, exactly one process has the token. Moreover, in a (P, F )-fair
F -run, at any point, any process is ensured to get the token eventually. This is
formalized in the following lemma.

Lemma 34. Let w ∈ Σ∞ be a (P, F )-fair F -run. Then, for all prefix v of w,
for all process r ∈ Proc, there is v < v′a ≤ w such that r has just received the
token in a, i.e., a ∈ Σq,r for some q ∈ Proc.

The proof of Lemma 34 uses the following claim:

Claim. For all v ≤ w, let p be the process having the token in v. Let i ∈ ring−1(p)
such that sp(v) ∈ Q × {Toki,Tok′i}. Let j = (i mod n) + 1 and q = ring(j).
Then, there exists v < v′a ≤ w such that a ∈ Σp,q.

Proof. Towards a contradiction, assume that alph(v−1w) ∩Σp,C = ∅. Then, for
all v < v′ ≤ w, p still has the token in v′, and fp(v

′) = fp(sp(v
′)) ∈ Σp,C is

defined. Thus w is not (P, F )-fair, which is a contradiction.
So let a ∈ ΣC such that v < v′a ≤ w and alph(v−1v′) ∩ Σp,C = ∅. By (δ2-

δ3) we deduce that sp(v
′) ∈ Q × {Toki,Tok′i}. Since w is an F -run we deduce

that a = fp(v
′). By definitions of fp and fp, we obtain either a ∈ Q × {i}

or a ∈ Outp. In the first case, we are done since Q × {i} ⊆ Σp,q. Otherwise,
a ∈ Outp and sp(v

′) ∈ Q×{Toki}. Then, by (δ2), we obtain sp(v
′a) ∈ Q×{Tok′i}

and process p still has the token in v′a. Hence, as above, we can show that
there is b ∈ Σp,C such that v′a < v′av′′b ≤ w and alph(v′′) ∩ Σp,C = ∅. Here,
(δ3) implies that sp(v

′av′′) ∈ Q × {Tok′i}. Since w is an F -run we deduce that
b = fp(v

′av′′) ∈ Q× {i} ⊆ Σp,q, which concludes the proof of the claim. ut

Proof of Lemma 34. Since ring is surjective, we can apply the claim suc-
cessively on all the processes having the token until we reach q = ring(i) when
r = ring((i mod n) + 1). Then, applying the claim a last time allows to con-
clude. ut

We show now that F is a winning strategy for (A, L). Let w ∈ Σ∞ be a
(P, F )-fair F -run. We define precisely the imaginary run of the singleton archi-
tecture upon which the processes build their own strategy. For that, we use the
following mappings defined by induction on the finite prefixes of w.

Fix : Σ∗ → Σ∗

Locp : Σ∗ → In∗p for all p ∈ Proc

We let Fix(ε) = Locp(ε) = ε for all p ∈ Proc, and, for v ∈ Σ∗ and a ∈ Σ,

(F1) if a ∈ Inp ∪Outp, and if p has the token at v, then Fix(v · a) = Fix(v) · a,
Locq(v · a) = Locq(v) for all q ∈ Proc.
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(F2) If a ∈ Inp and if p does not have the token at v, then Fix(v · a) = Fix(v),
Locp(v · a) = Locp(v) · a, and Locq(v · a) = Locq(v) for all q 6= p.

(F3) If a ∈ Σp,q then Fix(v · a) = Fix(v) · Locq(v) · a, Locq(v · a) = ε, and
Locr(v · a) = Locr(v) for all r 6= q.

The mapping Fix(v) is increasing, hence we can define w′ =
⊔
v≤w Fix(v). The

word w′ is then a reordering of the word w and πΓ (w′) is the imaginary run of
the singleton architecture.

When the history of actions in the distributed run is v ∈ Σ∗, Fix(v) is
the current prefix of the imaginary run that is used to build the strategy of
the process having the token, while Locp(v) is the sequence of input events
process p has received since the last time it had the token. Hence, Locp(v)
memorizes the sequence of events that process p will append to the imaginary
run when it receives the token again. In particular, if p has the token in v,
Locp(v) = ε. Moreover, v is in the semi-commutation closure of the word formed
by Fix(v) concatenated with Πp∈ProcLocp(v). These properties are formalized in
Lemma 35.

For v ∈ Σ∗, we define γv ∈ QQ by γε = id, and γv·a = γa ◦ γv. We establish
the following invariants about the mappings Fix and Locp.

Lemma 35. Let v ∈ Σ∗ and let p be the process having the token in v. Then,

1. Fix(v) ·
∏
r∈Proc Locr(v)⇒SC v.

2. Locp(v) = ε and sp(v) ∈ {δ(s0, πΓ (Fix(v)))} × Tokp,
3. sr(v) = (δLocr(v),NTok) for all r 6= p.

The proof of this lemma is postponed to the end of the section. We show now
that πΓ (w′) is indeed an f -run of the singleton architecture, which in addition
is (P, f)-fair.

Proposition 36. πΓ (w′) is an f -run.

Proof. Let ua be a finite prefix of πΓ (w′) with a ∈ Outp for some p ∈ Proc. Let
u′a be the finite prefix of w′ with πΓ (u′) = u. Remind that w′ =

⊔
v≤w Fix(v).

Since a ∈ Outp, it has been added to Fix by (F1). Hence, we find a prefix va
of w such that Fix(v) = u′ and Fix(va) = u′a. Since w is an F -run, we have
a = fp(v) = fp(sp(v)). Since a ∈ Outp, we deduce from the definition of fp
that a = f(s) and sp(v) = (s,Toki) for some i ∈ ring−1(p). By Lemma 35 (2),
s = δ(s0, πΓ (Fix(v))) = δ(s0, πΓ (u′)) = δ(s0, u). Hence, a = f(s) = f(u). ut

Proposition 37. πΓ (w′) is (P, f)-fair.

Proof. Let p ∈ Proc and u ≤ πΓ (w′) such that for all u ≤ u′ ≤ πΓ (w′) we have
f(u′)∩Outp 6= ∅ (hence f(u′) ∈ Outp). By construction, w′ =

⊔
v≤w Fix(v) then

there exists v ≤ w such that u ≤ πΓ (Fix(v)) = u′. By Lemma 34, we may assume
that p has just received the token in v. By Lemma 35, sp(v) ∈ {δ(s0, u

′)}×Tokp.
However, since u ≤ u′ ≤ πΓ (w′), we have f(δ(s0, u

′)) = f(u′) ∈ Outp. By (δ5),
we deduce that sp(v) = (δ(s0, u

′),Toki) for some i ∈ ring−1(p).
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By Lemma 34, we know that p will eventually pass the token to process
q = ring((i mod n) + 1). To do so, it has first to visit a state in Q×{Tok′i}. So
let v′′a be minimal such that v < v′′a ≤ w and

sp(v
′′) ∈ Q× {Toki} and sp(v

′′a) = (s,Tok′i) .

By Lemma 35 we have s = δ(s0, πΓ (Fix(v′′a))). Since u ≤ u′ = πΓ (Fix(v)) ≤
u′′a = πΓ (Fix(v′′a)) ≤ πΓ (w′) we have f(s) = f(u′′a) ∈ Outp. By (δ2) we
deduce that a /∈ Inp, i.e., a ∈ Outp. Therefore, alph(u−1πΓ (w′))∩Outp 6= ∅. ut

We show now that the observable actual run πΓ (w) is in the semi-trace (or
semi-commutation closure) of πΓ (w′):

Lemma 38. We have w′ ⇒SC w and πΓ (w′)⇒SC πΓ (w).

Proof. From Lemma 35, for all v ≤ w, we have Fix(v) ·Πp∈ProcLocp(v) ⇒SC v
with some bijection σv : Pos(Fix(v) ·Πp∈ProcLocp(v))→ Pos(v). For v ≤ v′ ≤ w,
we have Fix(v) ≤ Fix(v′) and

σv(i) = σv′(i) for all i ∈ Pos(Fix(v)) (1)

by construction of the unique bijection associated with the rewriting ⇒SC (see
Remark 10). We let σ : Pos(w′)→ Pos(w) be such that

σ(i) = σv(i) for all v ≤ w such that i ∈ Pos(Fix(v)).

By (1), σ is well defined. We first show that σ is a bijection.
Let i, j ∈ Pos(w′) with i < j. Let v ≤ w such that j ∈ Pos(Fix(v)), then

i ∈ Pos(Fix(v)) and σ(i) = σv(i) 6= σv(j) = σ(j) since σv is injective.
Let now i ∈ Pos(w) and p ∈ Proc such that w(i) ∈ Σp. By Lemma 34, let

v be a prefix of w such that w[i + 1] ≤ v ≤ w and p has the token in v. By
Lemma 35, we have Locp(v) = ε and v′ = Fix(v) ·Πp∈ProcLocp(v) ⇒SC v with
σv. By Definition 9, we have v′(σ−1

v (i)) = v(i) = w(i) ∈ Σp. Since Locr(v) ∈ In∗r
and Inr ∩Σp = ∅ for all r 6= p, we deduce that σ−1

v (i) ∈ Pos(Fix(v)) ⊆ Pos(w′).
Hence, σ(σ−1

v (i)) = σv(σ
−1
v (i)) = i and σ is surjective.

Then, let i ∈ Pos(w′) and let v be a prefix of w such that i ∈ Pos(Fix(v))
(such a prefix exists by construction of w′). We have σ(i) = σv(i) ∈ Pos(v).
Hence, w(σ(i)) = v(σ(i)) = Fix(v)(i) = w′(i).

Finally, let i, j ∈ Pos(w′) with (i, j) ∈ Ew′ . Let v be a prefix of w such that
i, j ∈ Pos(Fix(v)). Then, σv(i), σv(j) ∈ Pos(v) and (i, j) ∈ EFix(v). Therefore,
σ(i) = σv(i) < σv(j) = σ(j).

We have shown that σ satisfies all requirements of Definition 9, hence we
obtain w′ ⇒SC w. Projecting on Γ , we deduce easily πΓ (w′)⇒SC πΓ (w). ut

We can now conclude the proof of Proposition 32. By Propositions 36 and
37, πΓ (w′) is a (P, f)-fair f -run. Since f is a winning strategy for (A,P, L),
πΓ (w′) ∈ L. Since L is an SC-closed specification, by Lemma 38, πΓ (w) ∈ L.

To summarize, we have shown that any (P, F )-fair F -run w implements the
specification given by the language L. Therefore, the strategy F is winning for
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(A, L). Moreover, if f has finite memory, i.e., if Q is finite, then the automata
(Ap)p∈Proc are finite and the internal communication sets (Σp,q)(p,q)∈E are also
finite. ut

Proof of Lemma 35. We show it by induction on the length of v.
If v = ε then Fix(v) = ε and Locr(v) = ε for all r ∈ Proc, so item 1 holds

trivially. We have p = ring(1) and sp(v) = sp0 ∈ {s0}×Tokp, hence 2 holds. Now,
for r 6= p we have sr(v) = sr0 = (id,NTok) and 3 also holds.

Assume now that the lemma holds for some v ∈ Σ∗ and process p having the
token in v. Let a ∈ Σ. We distinguish three cases.

(F1) If a ∈ Inp ∪Outp. Then p still has the token in va. By definition, we have
Fix(va) = Fix(v)a and Locr(va) = Locr(v) for all r ∈ Proc.
1. Since Locp(v) = ε and Locr(v) ∈ In∗r for all r ∈ Proc we deduce using the
definition of the semi-commutation relation and the induction hypothesis
that

Fix(va) ·
∏
r∈Proc Locr(va) = Fix(v) · a · (

∏
r∈Proc Locr(v))

⇒SC Fix(v) · (
∏
r∈Proc Locr(v)) · a

⇒SC v · a

2. We have Locp(va) = Locp(v) = ε. Since a ∈ Σp, we have sp(va) =
δp(sp(v), a). By (δ2-δ3) and using the induction hypothesis, we deduce that
sp(va) ∈ {δ(δ(s0, πΓ (Fix(v))), a)} × Tokp = {δ(s0, πΓ (Fix(va)))} × Tokp.
3. Let r ∈ Proc with r 6= p. We have Locr(va) = Locr(v) and a /∈ Σr. Hence,
sr(va) = sr(v) = (γLocr(v),NTok) = (γLocr(va),NTok).

(F2) If a ∈ Inq for some q 6= p. Then p still has the token in va. By definition,
we have Fix(va) = Fix(v), Locq(va) = Locq(v)a and Locr(va) = Locr(v) for
all r 6= q.
1. By definition of the semi-commutation relation, we have aLocr(v) ⇒SC

Locr(v)a for all r 6= q. We deduce that

Fix(va) ·
∏
r∈Proc Locr(va) = Fix(v) · (

∏
r∈Proc Locr(va))

⇒SC Fix(v) · (
∏
r∈Proc Locr(v)) · a

⇒SC v · a

2. We have Locp(va) = Locp(v) = ε. Since a /∈ Σp, we have sp(va) =
sp(v) ∈ {δ(s0, πΓ (Fix(v)))} × Tokp by induction hypothesis. We conclude
using Fix(va) = Fix(v).
3. Let r ∈ Proc with r 6= p, q. We have Locr(va) = Locr(v) and a /∈ Σr.
Hence, sr(va) = sr(v) = (γLocr(v),NTok) = (γLocr(va),NTok).
Now, Locq(va) = Locq(v)a and a ∈ Σq. Hence, sq(va) = δq(sq(v), a). By (δ1)
and the induction hypothesis we get δq(sq(v), a) = (γa ◦ γLocq(v),NTok) =
(γLocq(va),NTok).

(F3) Finally, assume that a ∈ Σp,q for some q 6= p. Then q has the token in
va. By definition, we have Fix(va) = Fix(v)Locq(v)a, Locq(va) = ε and
Locr(va) = Locr(v) for all r 6= q.
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1. By definition of the semi-commutation relation, we have
Locr(v)Locq(v) ⇒SC Locq(v)Locr(v) for all r 6= q. Moreover,
aLocr(va) ⇒SC Locr(va)a for all r ∈ Proc since Locp(va) = ε = Locq(va).
Therefore,

Fix(va) ·
∏
r∈Proc Locr(va) = Fix(v)Locq(v) · a · (

∏
r∈Proc Locr(va))

⇒SC Fix(v)Locq(v) · (
∏
r∈Proc Locr(va)) · a

⇒SC Fix(v) · (
∏
r∈Proc Locr(v)) · a

⇒SC v · a

By induction hypothesis, we have sp(v) ∈ {s} × Tokp with s =
δ(s0, πΓ (Fix(v))). Since a ∈ Σp,q and w is an F -run, we deduce from the
definition of fp that sp(v) = (s,Tok′i) and a = (s, i) for some i ∈ ring−1(p)
with q = ring((i mod n) + 1).
2. We have Locq(va) = ε as desired. By induction hypothesis, we have
sq(v) = (γLocq(v),NTok). Hence, sq(va) = δq(sq(v), a) = δq(sq(v), (s, i)).
By (δ5), we get sq(va) ∈ {γLocq(v)(s)} × Tokq. We can conclude since
γLocq(v)(s) = γLocq(v)(δ(s0, πΓ (Fix(v)))) = δ(s0, πΓ (Fix(v))Locq(v)) and
πΓ (Fix(va)) = πΓ (Fix(v))Locq(v).
3. We have Locp(va) = Locp(v) = ε. Using (δ4) we obtain sp(va) =
δp(sp(v), a) = δp(sp(v), (s, i)) = (id,NTok) = (γLocp(va),NTok).
Now, let r ∈ Proc with r 6= p, q. We have Locr(va) = Locr(v) and a /∈ Σr.
Hence, sr(va) = sr(v) = (γLocr(v),NTok) = (γLocr(va),NTok).

ut

Propositions 30 and 32 allow to state that there is a winning distributed
strategy for (A, L) if and only if there is a winning strategy for (A,P, L), whereA
is strongly connected and L an SC-closed ω-regular language. This last problem
is decidable by Theorem 25. This concludes the proof of Theorem 31.

Moreover, as already remarked, if there is a winning strategy for the singleton
architecture and a regular specification, there is a winning strategy with finite
memory. So, by Propositions 30 and 32, if there is a distributed winning strategy
for the strongly connected architecture, then there is a winning strategy with
finite memory.

6 Conclusion and Future Work

In this article, we have defined a new setting for the synthesis problem for dis-
tributed asynchronous systems, and proved that it is decidable for an interesting
subclass of architectures. We believe that using signals in asynchronous systems,
and restricting to SC-closed specifications will help to overcome a lot of the
common difficulties that usually lead to undecidability results.

Future work should generalize our decidability result to larger classes of ar-
chitectures. The final aim is to obtain decidability in general, with a modular
algorithm working on subarchitectures. With this objective, the next step is to
solve the problem for acyclic architectures, including pipelines and trees.
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Other challenging questions arise regarding the specification. We have shown
that it is decidable to check whether a given ω-regular language is SC-closed,
but it would also be interesting to know whether the largest SC-closed subset
of an ω-regular language is still regular. Expressivity of MSOacc(SC) can also
be investigated. More precisely, is any SC-closed ω-regular language definable in
MSOacc(SC)?
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