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Abstract—We introduce the domain of continuous random
variables (CRV) over a domain, as an alternative to Jones
and Plotkin’s probabilistic powerdomain. While no known
Cartesian-closed category is stable under the latter, we show
that the so-called thin (uniform) CRVs define a strong monad
on the Cartesian-closed category of bc-domains. We also
characterize their inequational theory, as (fair-)coin algebras.
We apply this to solve a recent problem posed by M. Escardó:
testing is semi-decidable for EPCF terms. CRVs arose from
the study of the second author’s (layered) Hoare indexed
valuations, and we also make the connection apparent.
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I. I

It is natural to model probabilistic choice in typed higher-
order languages by using the probabilistic powerdomain
monad V, based on continuous valuations [1]. An outstand-
ing problem in this area is the existence of a Cartesian-closed
category of continuous dcpos and Scott-continuous maps on
which V restricts as an endofunctor [2].

We will show that, for purpose of semantics, this issue can
be sidestepped completely. We propose another monad of
so-called continuous random variables (CRV), modeled after
the notion of random variable commonly used in probability
theory: instead of modeling random choice on a space X by
a measure (or a continuous valuation) ν, we model it by a
pair (ν, f ) where ν is a measure on some measurable set Ω,
and f is a measurable map from Ω to X. This is used to
draw ω ∈ Ω at random according to ν, and then outputting
f (ω). Every random variable gives rise to a measure on X,
the image measure f [ν], but there is more information in
the random variable than in f [ν]: if ν picks 1 or 0 with
probability a, resp., 1 − a, and f is a constant map λ_ · x,
then f [ν] will always pick x, independently of a.

Related Work: Random variables are a classic in prob-
ability theory. The second author suggested that his own,
fairly abstract notion of indexed valuations could perhaps be
characterized concretely by some form of random variable
construction [3, Section 4.6]. The present work originated
from this idea, but what we have come up with is a
different notion. The first to recognize the importance of
random variables in domain theory is M. Mislove [4]. His
discrete random variables match the Plotkin kind of indexed
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valuations exactly, and he established the remarkable result
that the Cartesian-closed category of FS-domains is stable
under the Plotkin indexed valuation functor. This is to be
compared with our results that the smaller category of bc-
domains (which are also a simpler concept) is stable under
various functors of CRVs; and we believe that CRVs are
also a more concrete concept, easier to fathom, than indexed
valuations. Our thin CRVs are related to the so-called layered
Hoare kind of indexed valuations [3, Section 4.7].

M. Escardó also used a similar idea [5]: he compiles a rich
language with non-deterministic and probabilistic choice
into maps taking sequences of bits drawn at random (or non-
deterministically) to values. We make the connection clear
in Section VIII, and use this to solve a problem he left open.

Outline: After some preliminaries (Section II), we
introduce our kind of random variables, the continuous
random variables (CRV), in Section III. The thin, resp.
uniform CRVs are the interesting ones (Section IV), but it is
simpler to study the general kind first. Our main result here
is that there is a Cartesian-closed category of continuous
dcpos that is stable under the θR1 (resp., υR1) functor
of thin (resp., uniform) CRVs, viz. the very well-behaved
category BCDBCDBCD of bc-domains. As we show in Section V,
θR1 and υR1 give rise to strong monads, and we characterize
their inequational theories as those of coin (resp., fair-coin)
algebras; these notions are new, too. Section VI serves to
relate thin CRVs and continuous valuations. We apply all
this in Section VII and show that thin CRVs are as good as
continuous valuations in giving semantics to a rich higher-
order language with choice. This is used to solve an open
problem due to M. Escardó [5] in Section VIII. This work
originated in our desire to give a concrete description to
the second author’s indexed valuations [3]. Although they
are not identical objects, we relate CRVs and layered Hoare
indexed valuations in Section IX. We conclude in Section X.

II. P

We refer the reader to [6], [7] on domain theory. We
write f 〈A〉 for { f (x) | x ∈ A}, f|A is the restriction of f
to A. Functions taking their values in a poset will always
be ordered pointwise, i.e., f ≤ g iff f (x) ≤ g(x) for every
x. Let X be a poset, with ordering ≤; when x ≤ y, we say
that x is below y, or that y is above x. We write ↑ x for
{y ∈ X | x ≤ y}, ↓ x = {y ∈ X | y ≤ x}; also, for a subset
A, ↑ A will denote

⋃
x∈A ↑ x. A directed family (xi)i∈I in X is



non-empty and such that for all i, j ∈ I, there is a k ∈ K such
that xi, x j ≤ xk. A dcpo is a poset where every such directed
family has a supremum (or sup) supi∈I xi. A Scott-continuous
map between dcpos is a monotonic map that preserves sups
of directed families. Equivalently, a Scott-continuous map f
is a continuous map in the ordinary sense ( f −1(V) is open
for every open V), once we equip all dcpos with their Scott
topology, whose (Scott-)opens are the upward-closed subsets
U (i.e., if x ∈ U and x ≤ y then y ∈ U) such that the directed
families whose sup is in U have a member in U already. A
closed set is the complement of an open set. The closure
cl(A) of a set A is the smallest closed set containing A. For
every open U, U ∩ cl(A) , ∅ iff U ∩ A , ∅.

Any closed subset F of a dcpo is again a dcpo. Note that,
by Zorn’s Lemma, every element x of F is below some
element in Max F, the set of all maximal elements of F.

We say that x is way-below y, and write x � y, iff every
directed family whose sup is above y contains an element
above x. Clearly, x ≤ y � z ≤ t implies x � t. A dcpo X
is continuous iff ↓↓ x = {y ∈ X | y � x} is directed and has x
as sup. It is equivalent to require that X has a basis B, i.e.,
a subset such that ↓↓ x ∩ B is directed and has x as sup, for
every x ∈ X. In a continuous dcpo X (resp., with basis B), the
opens are the unions of basic opens ↑↑ x = {y ∈ X | x � y}
(resp., with x ∈ B). An element x is finite iff x � x. A
dcpo is algebraic iff every element is the sup of the directed
family of finite elements below it: the basic opens are then
↑ x = {y ∈ X | x ≤ y}, x finite.

A (bounded) valuation ν on a dcpo is a map from opens
to elements of R+ such that ν(∅) = 0, ν(U ∪V) + ν(U ∩V) =

ν(U) + ν(V), ν(U) ≤ ν(V) whenever U ⊆ V . It is continuous
iff for every directed family (Ui)i∈I of opens, ν(

⋃
i∈I Ui) =

supi∈I ν(Ui). The Dirac valuation δx, where δx(U) = 1 if
x ∈ U, δx(U) = 0 otherwise, is an example. The simple
valuations are finite linear combinations

∑n
i=1 aiδxi with ai ∈

R+. V(X) is the poset of all continuous valuations, ordered
by ν ≤ ν′ iff ν(U) ≤ ν′(U) for every open U [1]. For each
a ∈ R+, Va(X) is the dcpo of those ν ∈ V(X) with total
mass ν(X) = a. Directed sups of continuous valuations are
pointwise, i.e., (supi∈I νi)(U) = supi∈I(νi(U)). V1(X) is the
dcpo of continuous probability valuations.

Given any continuous map p : X → Y , and ν ∈ V(X), the
image valuation p[ν] is defined by p[ν](V) = ν(p−1(V)). We
note that id[ν] = ν, and p[q[ν]] = (p◦q)[ν]. If ν =

∑n
i=1 aiδxi ,

then p[ν] =
∑n

i=1 aiδp(xi).
We let Ω be the Cantor tree Σ∗∪Σ∞, the set of all finite and

infinite words over the binary alphabet Σ = {1, 0}, ordered by
prefix. The subspace Max Ω is homeomorphic to the Cantor
set 2N, one of the standard Polish spaces used in probability
theory [7, Example V-6.4]. Let tn be the nth truncation map:
tn(ω) is the largest prefix of ω of length at most n. This is a
continuous map with finite image. Ω is also a tree (it has a
least element ε, and whenever ω1, ω2 ≤ ω, then ω1 ≤ ω2 or
ω2 ≤ ω1), and an algebraic dcpo, whose finite elements are
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Figure 1. A CRV

the finite words: its open subsets are the pairwise disjoint
(hence countable) unions

⊎
i∈I ↑ωi of sets ↑ωi, ωi finite.

The uniform valuation Λ on Ω is then defined uniquely by
Λ(

⊎
i∈I ↑ωi) =

∑
i∈I

1
2|ωi |

, where |ωi| is the length of ωi.

III. CRV

The support supp ν of a continuous valuation ν on Ω is the
complement of the largest open subset U such that ν(U) = 0.

Definition III.1 A continuous random variable (CRV) on a
dcpo X is a pair (ν, f ), where ν is a continuous valuation
on Ω, and f is a continuous map from supp ν to X.

The ν part describes the law obeyed by the random coin
flips done so far. E.g., ν = 1

4δ11 + 1
6δ0 + 1

3δ01 + 1
4δ00 draws

the word 11 with probability 1
4 , 0 with probability 1

6 , and
so on (see Figure 1); supp ν is pictured in gray: in general,
supp

∑n
i=1 aiδωi is ↓{ω1, . . . , ωn}.

The f part states how each sequence ω of coin flips maps
to an actual element f (ω) of X. Note that distinct sequences
ω, ω′ of coin flips can map to the same element of X. We
only require f to be defined only for elements of supp ν:
supp ν is the domain of sequence of coin flips that one has
made in the past, and f is only required to be defined on
these, not on any future coin flip.

We say that ν is a simple CRV iff ν is a simple valuation∑n
i=1 aiδωi . Then f [ν] =

∑n
i=1 aiδ f (ωi): the resulting coeffi-

cients are shown as parenthesized fractions on the right part
of Figure 1. The CRV (ν, f ) keeps the information that the
element of X chosen with probability 7

12 was obtained either
as f (00) (with probability 1

4 ) or as f (01) (with probability
1
3 ); f [ν] only keeps the total number 7

12 = 1
4 + 1

3 .
For each closed subset F of Ω, there is a unique projection

pF onto F, i.e., a unique continuous map pF : Ω→ F such
that pF(ω) ≤ ω for every ω ∈ Ω, with equality if ω ∈ F;
and pF(ω) is sup(F∩↓ω). Uniqueness follows from the fact
that Ω is a tree, and continuity from this and the fact that F
is closed.

Definition III.2 Let X be a dcpo. The layered ordering 5 on
the set R(X) of all CRVs on X is defined by (ν, f ) 5 (ν′, f ′)
iff ν = pF[ν′] and f ◦ pF |F′ ≤ f ′, where F = supp ν and
F′ = supp ν′.

If ν′ =
∑n

j=1 b jδω′j , (ν, f ) 5 (ν′, f ′) iff ν is the projected
valuation

∑n
j=1 b jδpF (ω′). That is, starting from a simple CRV



Ω
f ′

X

00 111001
1
4

0

ε

1

1
4

111

1
6

000 001 010 011 101100 110
1
9

1
6

1
18

Figure 2. A larger CRV

(ν, f ) of Figure 1, we obtain a larger one in the layered
ordering 5 by redistributing the mass from some maximal
words in supp ν (here 01, with mass 1

3 ) to larger words (here
010 with mass 1

9 , 011 with mass 1
6 , keeping some mass, 1

18 ,
on 01). The total mass ν(Ω) is unchanged.

While we redistribute masses from ν to ν′, we are also
allowed to increase the values f (ω) to larger points f ′(ω),
ω ∈ supp ν, mapping the new words ω ∈ supp ν′ r supp ν to
even larger points: see Figure 2, right.

The poset R(X),5 is the disjoint union of the so-called
layers Ra(X), one for each a ∈ R+, where Ra(X) is the
set of CRVs (ν, f ) with ν(Ω) = a. We shall be particularly
interested in R1(X), the poset of probability CRVs.

One alternate, non-layered ordering would declare (ν, f )
below (ν′, f ′) iff f ◦ pF |F′ ≤ f ′, as before, but with ν ≤
pF[ν′] instead of ν = pF[ν′]. Our layering is deliberate, and
was suggested as more natural by A. Jung in the setting
of indexed valuations. Intuitively, 5 enforces that each ω ∈
Max F is some sequence of coin flips that can be extended
in the future, while ω ∈ F rMax F represents a sequence of
coin flips followed by deadlock. In Figure 1, we have not
deadlocked at ω = ε (we made a first flip, with probability
1), but we have deadlocked at ω = 0 with probability 1

6 ; once
we arrived at ω = 01 (with probability 1

3 ), we can proceed
as in Figure 2, deadlocking with conditional probability 1

6
(hence with total probability 1

3 ×
1
6 = 1

18 ).
To show that R(X) is a dcpo, we first study the sup-

port map supp : V(Ω) → H∅(Ω), and show that it is
monotonic and Scott-continuous. H∅(Ω) is the lifted Hoare
powerdomain, i.e., the set of closed subsets (including ∅
here), ordered by inclusion. This is a dcpo, with supi∈I Fi =

cl(
⋃

i∈I Fi). We also observe that H∅(Ω) is meet-continuous,
i.e., cl(

⋃
i∈I Fi)∩F′ = cl(

⋃
i∈I(Fi∩F′)) for every F′ ∈ H∅(Ω).

This is becauseH∅(Ω) is a completely distributive lattice [7].
Projections have a number of useful properties: (A) For

all closed subsets F, F′ of Ω, pF ◦ pF′ = pF∩F′ ; (B) For
any closed subset F, for every open subset U of Ω,
p−1

F (U) ⊆ U; (C) If (Fi)i∈I is a directed family in H∅(Ω),
and F is its sup cl(

⋃
i∈I Fi), then for every open U,

p−1
F (U) =

⋃
i∈I p−1

Fi
(U); (D) For all closed subsets F, F′

of Ω, for every ω ∈ Ω, pF∪F′ (ω) = max(pF(ω), pF′ (ω))
and pF∩F′ (ω) = min(pF(ω), pF′ (ω)); (note that pF(ω) and
pF′ (ω) are comparable, since they are both below ω and Ω

is a tree;) (E) Given any ν ∈ V(Ω), and any closed subset

F ⊇ supp ν, ν = pF[ν]; (F) Given any ν ∈ V(Ω), and any
closed subset F, supp pF[ν] = F∩supp ν. The following, for
example, rests on (B), (C), and (A), and the continuity of
supp.

Proposition III.3 Let X be a dcpo. Then R(X), Ra(X)
are dcpos. The sup of a directed family (νi, fi)i∈I is (ν, f ),
where ν is the pointwise directed sup supi∈I νi, and f (ω) =

supi∈I fi(pFi (ω)) (defining Fi = supp νi) for every ω ∈ supp ν.
Moreover, supp ν is the sup of (Fi)i∈I in H∅(Ω).

Jones and Plotkin proved that V(X) was a continuous dcpo
as soon as X was [1]. We have a similar result for CRVs.

Theorem III.4 If X is a continuous dcpo, then so are R(X)
and Ra(X). Given the way-below relation � on X, the way-
below relation </ on R(X), resp. Ra(X), is given by (ν, f ) </
(ν′, f ′) iff ν has finite support F, ν = pF[ν′], and for every
ω ∈ F, f (ω) � f ′(ω). The finite CRVs form a basis.

Proof: (Sketch.) (1) Assume (ν, f ) </ (ν′, f ′), and let
F = supp ν, F′ = supp ν′. Let Fn = tn〈F′〉, the image of
F′ by tn. Then (pFn [ν′], f ′

|Fn∩F′ )n∈N
is directed, and its sup is

(ν′, f ′). (This uses (C) and (E).) So (ν, f ) 5 (pFn [ν′], f ′
|Fn∩F′ )

for some n ∈ N. Using (F), F ⊆ Fn, so ν has finite support.
Also, F ⊆ Fn, so ν = pF∩Fn [ν′] (by (A)) = pF[ν′].

Say that a vector ~x = (xω)ω∈F in X is monotone iff ω ≤
ω′ implies xω ≤ xω′ , and consider the collection DF of all
monotone vectors ~x with xω � f ′(ω) for every ω ∈ F. Order
DF componentwise. Using the fact that F is finite, DF is
directed, and the pointwise sup of DF is ( f ′(ω))ω∈F . For
each ~x ∈ DF , define f ′

~x : F′ → X as mapping each ω ∈ F
to xω, and each ω ∈ F′ r F to f ′(ω). This is monotone.
Scott-continuity is easy since F is finite. Then (ν′, f ′

~x)
~x∈DF

is directed, and its sup is (ν′, f ′). Since (ν, f ) </ (ν′, f ′),
there is an ~x ∈ DF such that (ν, f ) 5 (ν′, f ′

~x). In particular,
f (ω) ≤ xω � f ′(ω) for every ω ∈ F.

(2) Conversely, assume that F = supp ν is finite, that ν =

pF[ν′], and that f (ω) � f ′(ω) for every ω ∈ F. The fact
that F is finite makes it easy to check that (ν, f ) </ (ν′, f ′).

(3) By (1), every element (ν, f ) of R(X), with F = supp ν,
is the sup of the directed family (pFn [ν], ( f|Fn∩F)~x), n ∈ N,
~x ∈ DFn . Directedness comes from the standard fact that
if (a j) j∈J is a directed family, and each a j is the sup of a
directed family (a jk)k∈K j

such that a jk is way-below a j for
every k, then (a jk) j∈J,k∈K j

is also directed.
R(X) cannot be a lattice, since for example (δ0, f ) and

( 1
2δε + 1

2δ0, g) have no common upper bound, whatever f
and g. But we can make it a bc-domain, i.e., a continuous,
bounded-complete dcpo, where bounded-complete means
that any finite set of elements that has an upper bound has
a least one. (In particular, a bc-domain has a least element.)

Theorem III.5 If X is a bc-domain, then so is Ra(X) for
each a ∈ R+.



Proof: It suffices to show that it has a least element—
(aδε , {ε 7→ ⊥}), where ⊥ is the least element of X—and has
sups of all upper bounded pairs. Write ∨ the (partial) binary
sup operation in X. Let (ν, f ), (ν′, f ′) be two elements of
R(X) with an upper bound (ν′′, f ′′). Let F = supp ν, F′ =

supp ν′, F′′ = supp ν′′. Since supp is monotonic, F, F′ ⊆ F′′.
We claim that (pF∪F′ [ν′′], g) is the least upper bound of (ν, f )
and (ν′, f ′), where g(ω) = f (pF(ω)) ∨ f ′(pF′ (ω)) for every
ω ∈ F ∪ F′. Note that F ∪ F′ is the support of pF∪F′ [ν′′],
by (F). So (pF∪F′ [ν′′], g) is a CRV.

We claim that (ν, f ) 5 (pF∪F′ [ν′′], g). Indeed,
pF[pF∪F′ [ν′′]] = pF∩(F∪F′′)[ν′′] (by (A)) = pF[ν′′] = ν. Also,
f (pF |F∪F′ (ω)) = f (pF(ω)) ≤ g(ω) for every ω ∈ F ∪ F′. So
(ν, f ) 5 (pF∪F′ [ν′′], g), and similarly for (ν′, f ′).

It remains to show that (pF∪F′ [ν′′], g) 5 (ν′′′, f ′′′) for any
upper bound (ν′′′, f ′′′) of (ν, f ) and (ν′, f ′).

We must first show that pF∪F′ [ν′′] = pF∪F′ [ν′′′]. From
(D), p−1

F∪F′ (U) = p−1
F (U)∪ p−1

F′ (U) and p−1
F∩F′ (U) = p−1

F (U)∩
p−1

F′ (U). So pF∪F′ [ν′′](U) = ν′′(p−1
F∪F′ (U)) = ν′′(p−1

F (U)) +

ν′′(p−1
F′ (U)) − ν′′(p−1

F∩F′ (U)) by modularity. Since (ν, f ) 5
(ν′′, f ′′), ν′′(p−1

F (U)) = ν(U), and similarly ν′′(p−1
F′ (U)) =

ν′(U). Also, pF∩F′ = pF ◦ pF′ by (A), so ν′′(p−1
F∩F′ (U)) =

ν′(p−1
F (U)) (also, = ν(p−1

F′ (U))). So pF∪F′ [ν′′] = ν+ν′−pF[ν′]
(also, = ν+ν′−pF′ [ν]). This is independent of the chosen up-
per bound (ν′′, f ′′). So ν+ν′− pF[ν′] also equals pF∪F′ [ν′′′].

Finally, g ◦ pF∪F′ | supp ν′′′ ≤ f ′′′ is clear: for ev-
ery ω ∈ supp ν′′′, g(pF∪F′ (ω)) = f (pF(pF∪F′ (ω))) ∨
f ′(pF′ (pF∪F′ (ω)) = f (pF(ω)) ∨ f ′(pF′ (ω)) by (A).
The importance of this result is that the category of bc-
domains is Cartesian-closed [7, Exercise II-2.31].

IV. T  U CRV
R does not form a monad: the formula for h† in Section V,

or any natural variant, would not be monotonic on R(X).
Alternatively we observe that CRVs form a coin algebra
(See Theorem V.2), but not the free coin algebra.

To obtain a free algebra, and thus a monad, we restrict
to thin CRVs. We also investigate the further refinement of
uniform CRVs.

Call a simple valuation
∑m

i=1 aiδωi on Ω, where ai , 0,
thin iff {a1, . . . , am} is an antichain, i.e., no two distinct ωis
are comparable. I.e., given a simple valuation ν, and letting
F = supp ν, ν is thin iff ν can be written

∑
ω∈Max F aωδω—

and aω , 0 for each ω ∈ Max F. Using an expression we
used in Section III, we can say that the coin flipping process
does not deadlock.

For every thin simple valuation ν on Ω, tn[ν] is also thin.
Let us generalize, and for every continuous valuation ν on
Ω, define ν to be thin iff tn[ν] (which is simple) is thin for
every n ∈ N. E.g., the uniform valuation Λ is thin, since
tn[Λ] =

∑
ω of length n

1
2n δω.

Lemma IV.1 The sup of any directed family (νi)i∈I of thin
continuous valuations on Ω, with the same total mass a =

νi(Ω) ∈ R+, is also thin.

All the information on a thin continuous valuations can
be obtained from the maximal elements of the support. We
exploit this in the following definition.

Definition IV.2 Let X be a dcpo. A thin CRV on X is a pair
(ν, f ) where ν is a thin continuous valuation on Ω and f is
a continuous map from Max F to X, where F = supp ν. The
set θR(X) of all thin CRVs on X (resp., θRa(X) of those with
ν(Ω) = a) is ordered by: (ν, f ) 5 (ν′, f ′) iff ν = pF[ν′] and
f ◦ pF |Max F′ ≤ f ′, where F = supp ν and F′ = supp ν′.

The continuity of f : Max F → X must be understood in
usual topological way, where X is equipped with its Scott
topology, and Max F with the subspace topology from Ω.
Note that thin CRVs are not exactly special cases of CRVs
as f is not everywhere defined on F.

The definition of the ordering is similar to Definition III.2.
However there is a additional subtlety: the condition f ◦
pF |Max F′ ≤ f ′ is only well-defined if pF indeed maps
elements of Max F′ to elements in the domain of f , namely
Max F. This is ensured by the following lemma.

Lemma IV.3 Let ν, ν′ be thin valuations on Ω, F = supp ν,
F′ = supp ν′, and assume ν = pF[ν′]. Then pF(ω′) ∈ Max F
for every ω′ ∈ Max F′.

This would fail if we didn’t assume ν thin: take e.g., ν′ =
1
2δ0 + 1

2δ1, ν = p↓ 1[ν′] = 1
2δε + 1

2δ1, and consider p↓ 1(0).
Recall that a set K is compact iff for every open cover

(Ui)i∈I (i.e., each Ui is open and K ⊆
⋃

i∈I Ui) that is directed,
K ⊆ Ui for some i ∈ I.

Corollary IV.4 For every thin continuous valuation ν on Ω,
letting F = supp ν, Max F is compact in Ω.

Proof: (Sketch)Let Fn be the closed set of all words of
length at most n, and recall that tn = pFn . Using Lemma IV.3
on tn[ν] and ν, Max F ⊆ ↑Max(Fn ∩ F) for each n ∈ N.
Conversely, if ω ∈

⋂
n∈N ↑Max(Fn ∩ F), we show that

pF(ω) ∈ Max F. It follows that ↑Max F is the intersection
of the chain of finitely generated upper sets ↑Max(Fn ∩ F),
n ∈ N. In a dcpo (such as Ω), such intersections are compact
[7, Lemma III-5.6], as an application of Rudin’s Lemma.
Since ↑Max F is compact, so is Max F.

An interesting special case of thin CRV is when words
ω ∈ Max F are picked by drawing their letters at random,
independently, with probability 1

2 for 1 and 1
2 for 0.

Definition IV.5 A continuous valuation ν on Ω is said to
be partially uniform iff ν = pF[Λ] where F = supp ν. A thin
CRV (ν, f ) is said to be uniform iff ν is partially uniform.
The set of uniform CRV is denoted as υR(X) (resp., υRa(X)).

Proposition IV.6 Let X be a dcpo. Then θR(X), θRa(X),
υR(X), υRa(X) are dcpos. The sup of a directed fam-
ily (νi, fi)i∈I is (ν, f ), where ν = supi∈I νi, and f (ω) =

supi∈I fi(pFi (ω)) (defining Fi = supp νi) for every ω ∈ Max F
(with F = supp ν).



For the ν part this is proved as Proposition III.3. For the f
part, f = supi∈I fi◦pFi Max F is continuous, because the inverse
image of any (Scott-)open V is

⋃
i∈I(Max F ∩ p−1

Fi
( f −1

i (V))),
a union of opens in Max F. Thinness is by Lemma IV.1, and
partial uniformity of ν is easy.

The main result of the section is the following:

Theorem IV.7 If X is a bc-domain, then so are θRa(X) and
υRa(X) for every a ∈ R+. A basis is given by the simple thin
(resp., uniform) CRVs.

Proof: (Sketch) Call a CRV (ν, f ) on X semi-thin iff ν is
a thin continuous valuation (but with f defined everywhere
on the support). The set σR(X) of semi-thin CRVs on X is
also a bc-domain. First of all it is continuous with the same
way-below relation as for general CRVs. Then we proceed
as in Theorem III.5, but we must also show that, if ν, ν′,
ν′′ are thin, ν = pF[ν′′] and ν′ = pF′ [ν′′] with F = supp ν,
F′ = supp ν′, then pF∪F′ [ν′′] is also thin.

We first examine the case where ν′′ has finite sup-
port, i.e., is simple. Let F′′ = supp ν′′. Since ν′′ is thin,
ν′′ =

∑
ω∈Max F′′ aωδω, where each aω is non-zero. So

ν = pF[ν′′] =
∑
ω∈Max F′′ aωδpF (ω). Since ν is also thin, for

every ω ∈ Max F′′ (using aω , 0), pF(ω) must be in Max F.
It follows that {pF∪F′ (ω) | ω ∈ Max F′′} is an antichain.

Otherwise, one could find ω1, ω2 ∈ Max F′′ such that
pF∪F′ (ω1) < pF∪F′ (ω2) (writing a < b for a ≤ b and a ,
b). By (D), max(pF(ω1), pF′ (ω1)) < max(pF(ω2), pF′ (ω2)),
which implies pF(ω1) < pF(ω2) or pF′ (ω1) < pF′ (ω2); both
are impossible since the first two are in Max F, the last two
are in Max F′, as the previous paragraph shows, and Max F
and Max F′ are antichains. So pF∪F′ [ν′′] is thin.

In the general case, let Fn be the set of words of length
at most n, and observe that tn = pFn . Then tn[pF∪F′ [ν′′]] =

pFn∩(F∪F′)[ν′′] (by (A)) = p((Fn∩F)∪(Fn∩F′))∩Fn [ν′′] =

p(Fn∩F)∪(Fn∩F′)[tn[ν′′]]. Now tn[ν′′] is thin, is an upper bound
of tn[ν] and of tn[ν′], Fn ∩ F = supp tn[ν] and Fn ∩ F′ =

supp tn[ν′] by (F). Since tn[ν′′] is simple, we apply the above
result: tn[pF∪F′ [ν′′]] is thin. Since n is arbitrary, pF∪F′ [ν′′]
is thin.

Then we define the maps r : σR(X) → θR(X) and
s : θR(X) → σR(X), as r(ν, f ) = (ν, f|Max F) and
s(ν, f ) = (ν, f ∗), where F = supp ν; f ∗ is the largest
continuous extension of f to the whole of F: this exists
because X is a bc-domain [7, Proposition II-3.9], and
Max F is dense in F. We use the explicit formula f ∗(ω) =

supω′ finite prefix of ω inf f 〈↑ω′ ∩Max F〉. It can be shown that
r and s form a retraction, i.e., they are continuous and
r ◦ s = idθR(X). We shall then conclude since every retract
of a bc-domain is a bc-domain [6, Proposition 4.1.3], and
the image of a basis by r is a basis [6, Lemma 3.1.3]. (The
proof for the uniform case is essentially the same.)

The main difficulty is showing the continuity of s. Let
(νi, fi)i∈I be a directed family of thin CRVs on X, Fi =

supp νi, and (ν, f ) their sup, with F = supp ν = cl(
⋃

i∈I Fi).

We must show that f ∗ ≤ supi∈I f ∗i ◦ pFi |F ; the converse
inequality is by monotonicity. It suffices to show that, for
every ω ∈ F, for every x ∈ X such that x � f ∗(ω), there
is an i ∈ I such that x ≤ f ∗i (pFi (ω)). Using the definition of
f and x � f ∗(ω), one obtains that (( fi ◦ pFi )

−1(↑↑ x))i∈I is a
(directed) open cover of ↑ω′ ∩Max F. It is an easy conse-
quence of Corollary IV.4 that ↑ω′∩Max F is compact in Ω.
So there is an i ∈ I such that ↑ω′∩Max F ⊆ ( fi ◦ pFi )

−1(↑↑ x),
from which we deduce x ≤ inf fi ◦ pFi〈↑ω

′ ∩Max F〉.
There is also a j ∈ I such that ω′ ∈ F j: indeed, the

open ↑ω′ meets F = cl(
⋃

j∈I F j) (at ω), hence some F j. By
directedness, we can assume i = j. Then ↑ω′ ∩ Max Fi ⊆

pFi〈↑ω
′ ∩Max F〉. So x ≤ inf fi〈↑ω′ ∩Max Fi〉. Since ω′ is

a finite prefix of ω and ω′ ∈ Fi, ω′ is also a finite prefix of
pFi (ω). So x ≤ f ∗i (pFi (ω)).

V. TM  T CRV,  U CRV
We now show that θR1 and υR1 define monads in the

category BCDBCDBCD of bc-domains. It is easy to extend this to
θR, υR, θRa and υRa, for every a ≥ 1.

Let ω.ω′ be the ordinary concatenation of ω and ω′ if ω
is a finite word, and as ω otherwise. Note that the function
(ω.) mapping ω′ to ω.ω′ is Scott-continuous; beware that
ω.ω′ is not continuous, even not monotonic, in ω.

There are several equivalent definitions of a monad
(θR1, ηηη,µµµ). One of the simplest [8] is given by a transforma-
tion ηηη, i.e., a collection of morphisms ηηηX : X → θR1(X) for
each object X, plus an extension morphism h† : θR1(X) →
θR1(Y), for each morphism h : X → θR1(Y), such that:
(a) ηηη†X = idθR1(X); (b) h† ◦ ηηηX = h for every morphism
h : X → θR1(Y); (c) k† ◦ h† = (k† ◦ h)† for all morphisms
k : Y → θR1(Z), h : X → θR1(Y). If so, then θR1
defines a functor, whose action on morphisms h : X → Y
is θR1(h) = (ηηηY ◦ h)†, ηηη is a natural transformation, and
the multiplication µµµX : θR2

1(X) → θR(X) is a natural
transformation defined as id†θR1(X).

Define ηηηX(x) as (δε , {ε 7→ x}). This is Scott-continuous in
x, using Proposition IV.6. Also, ηηηX(x) is thin, even uniform.

We define h† on continuous dcpos, through suitable ap-
proximates. Given a thin simple probability CRV (ν, f ) ∈
θR1(X), i.e., one such that F = supp ν is finite—write ν as∑
ω∈Max F aωδω—and given a simple map h : X → θR(Y),

i.e., one such that for every x ∈ X, h(x) is a thin simple
probability CRV—say h(x) = (ν′x, f ′x) where F′x = supp ν′x
is finite and ν′x =

∑
ω′∈Max F′x a′xω′δω′—we define h†(ν, f ) as

(ν′′, f ′′) where ν′′ =
∑
ω∈Max F,ω′∈Max F′f (ω)

aωa′f (ω)ω′δω.ω′ and
f ′′(ω.ω′) = f ′f (ω)(ω

′) for all ω ∈ Max F, ω′ ∈ Max F′f (ω).
(This is well-defined because ω is a finite word, and con-
tinuous because the topology of Max supp ν′′ = {ω.ω′ |
ω ∈ Max F, ω′ ∈ Max F′f (ω)} is discrete.) To avoid an
accumulation of indices in proofs, we note that ν′′ can be
written more synthetically as

∑
ω∈Max F aω.(ω.)[ν′f (ω)]. It is an

easy exercise to show that, if ν is partially uniform and each
ν′f (ω) is partially uniform, then so is ν′′.



For two bc-domains X, Z, the space [X → Z] of all
continuous maps from X to Z is again a bc-domain [7,
Proposition II-4.20], and has a basis of finite sups of step
functions. A step function is a map zχU where z ∈ Z
and U is open in X, defined as zχU(x) = z if x ∈ U,
zχU(x) is the least element ⊥ of Z otherwise. It is an easy
refinement to show that we can restrict to step functions
zχU where z is taken from a fixed basis of Z. This applies
to Z = θR1(Y) whenever Y is a bc-domain, by Theorem IV.7
(and subsequent discussion). So [X → θR1(Y)] has a basis
of simple functions.

Proposition V.1 Let X, Y be bc-domains. The formula
suph′ simple:X→θR1(Y),h′�h

(ν′, f ′) simple</(ν, f )
h′†(ν′, f ′) defines the unique Scott-

continuous extension of the map λh simple : X →

θR1(Y), (ν, f ) simple ∈ θR1(X) · h†(ν, f ) to [X → θR1(Y)] ×
θR1(X).

Proof: (Sketch.) This follows from the standard lemma,
sometimes called Scott’s extension formula, that the above
formula defines the largest continuous map below Dggr =

λh simple : X → θR1(Y), (ν, f ) simple ∈ θR1(X) · h†(ν, f ),
given that the domain of definition of Dggr is a basis,
provided Dggr is monotonic; and that this is its unique
continuous extension if Dggr is itself Scott-continuous on
its domain of definition. This is checked by laborious
computations.
We write h† for the continuous extension obtained in
Proposition V.1. Since h†(ν, f ) is uniform whenever (ν, f )
is a simple uniform CRV and h(x) is also simple and
uniform, the same formula also restricts to a continuous map
h, (ν, f ) 7→ h†(ν, f ) from [X → υR1(Y)]×υR1(X) to υR1(Y).

Instead of checking the monad laws explicitly, we exhibit
θR1(X) (and υR1(X)) as free objects. This has the benefit
of exhibiting the inequational theory that characterizes our
construction. We still need to check monad law (a): applying
the formula for h†(ν, f ) when h = ηηηX (which is simple),
ν =

∑
ω∈Max F aωδω, and F = supp ν is finite, we obtain

ηηη†X(ν, f ) = (ν′′, f ′′), where ν′′ =
∑
ω∈Max F,ω′=ε(aω×1)δω.ω′ = ν

and f ′′(ω+ε) = f ′f (ω)(ε) = f (ω). By uniqueness of extension
(Proposition V.1), ηηη†X = idθR1(X).

Let B be the domain of Booleans, identified with Σ =

{1, 0}, with equality as ordering. The lifting B⊥ (where X⊥
is X with a fresh least element ⊥ added) is a bc-domain.
For each p ∈ (0, 1), there is a (biased) coin-flipping element
>p = (pδ1 + (1 − p)δ0, idB). We extend the notation to the
cases p = 0 and p = 1: >0 = (δ0, {0 7→ 0}), >1 = (δ1, {1 7→
1}). (Although 0.δ1 + 1.δ0 = δ0, defining >0 as (δ0, idB) as
in the general case would be incorrect, as 1 is not in the
support of δ0.) For all elements x, y in a bc-domain Y , define
the parallel conditional map pif _ then x else y : B⊥ → Y
so that pif 1 then x else y = x, pif 0 then x else y = y,
pif ⊥ then x else y = inf(x, y). We can then define a prob-
abilistic choice operator ⊕p between two thin probability

CRVs by (ν, f )⊕p (ν′, f ′) = (pif _ then (ν, f ) else (ν′, f ′))† ◦
>p: flip a coin, and proceed with either (ν, f ) or (ν′, f ′).

Theorem V.2 A coin algebra is a pair of a dcpo C with
a continuous map ⊕p : C × C → C for each p ∈ [0, 1],
satisfying: (i) c ≤ c ⊕p c; (ii) ⊕0 is independent of its first
argument: c1 ⊕0 c′ = c2 ⊕0 c′; (iii) ⊕1 is independent of its
second argument: c⊕1 c′1 = c⊕1 c′2. This is a coin bc-algebra
iff C is also a bc-domain.

For every bc-domain X, θR1(X) is a coin bc-
algebra with coin-flipping operation (ν, f ) ⊕p (ν′, f ′) =

(pif _ then (ν, f ) else (ν′, f ′))† ◦ >p. Actually, θR1(X) is the
free coin algebra: every continuous map h : X → C
to a coin algebra C has a unique continuous extension
hext : θR1(X)→ C (i.e., hext ◦ ηηηX = h) that is a coin algebra
morphism (hext((ν, f ) ⊕p (ν′, f ′)) = hext(ν, f ) ⊕p hext(ν′, f ′)).

Proof: Let X be a bc-domain. In every bc-domain,
the binary inf map is Scott-continuous [7, Proposition I-
1.8]. This applies to θR1(X), by Theorem IV.7. So
pif _ then (ν, f ) else (ν′, f ′) is continuous in (ν, f ) and
(ν′, f ′). Since h† is continuous in h (Proposition V.1), it
follows that ⊕p is continuous on θR1(X). Moreover, ηηηX(⊥) 5
>p in θR1(B⊥). So, (pif _ then (ν, f ) else (ν′, f ′))†(ηηηX(⊥)) 5
(ν, f ) ⊕p (ν′, f ′). By monad law (a), inf((ν, f ), (ν′, f ′)) 5
(ν, f ) ⊕p (ν′, f ′). In particular, (i) (ν, f ) 5 (ν, f ) ⊕p (ν, f ).
If p = 0, then (ν, f ) ⊕0 (ν′, f ′) = ((0.)[ν′], λ0.ω′ · f ′(ω′)),
which is independent of (ν, f ), so (ii) holds; (iii) is similar.

Consider now a continuous map h : X → C to a coin
algebra C. Define hext first on simple thin probability CRVs
(ν, f ), where ν =

∑
ω∈Max F aωδω, F = supp ν is finite, by

induction on the largest length `F of a word in Max F.
If `F = 0, then ν = δε , so (ν, f ) = ηηηX( f (ε)), and we
must let hext(ν, f ) = f (ε). If `F ≥ 1, then ε < Max F,
so every element ω ∈ Max F is either of the form 1.ω1
or 0.ω2. Let p = ν(↑ 1) =

∑
1.ω1∈Max F a1.ω1 , and ν1 be the

conditional probability 1
p
∑

1.ω1∈Max F a1.ω1δω1 if p , 0, else
δε (this is arbitrary). Define f1(ω1) = f (1.ω1) if p , 0,
and f1(ε) as some arbitrary element if p = 0. Similarly,
let ν2 = 1

1−p
∑

0.ω2∈Max F2
a0.ω2δω2 and f2(ω2) = f (0.ω2) if

p , 1, ν2 = δε and f2(ε) arbitrary otherwise. Note that
(ν, f ) = (ν1, f1) ⊕p (ν2, f2) (even if p = 0 or p = 1), so
we must define hext(ν, f ) as hext(ν1, f1) ⊕p hext(ν2, f2). This
defines hext uniquely on simple thin probability CRVs. So, if
hext is monotonic and Scott-continuous on the latter, it will
extend to a unique continuous map on θR1(X), as desired.

If (ν, f ) is as above, with F = supp ν, and (ν′, f ′) is
a simple thin probability CRV above (ν, f ), we show that
hext(ν, f ) ≤ hext(ν′, f ′) by induction on `F , splitting (ν, f )
recursively, with probability p = ν(↑ 1), and (ν′, f ′) in the
same way, with the same probability ν′(↑ 1) = p. When
p = 0 or p = 1, we use (ii), resp. (iii) to replace the argument
of ⊕p that was chosen arbitrarily by the right one. In the base
case, we rest on the auxiliary claim that if c ≤ f (ω) for every
ω ∈ Max F, then c ≤ hext(ν, f ). This is by induction on `F



again.
To show that hext is Scott-continuous on simple thin

probability CRVs, consider a directed family (νi, fi)i∈I whose
sup (ν, f ) is simple. Let F = supp ν. Since F is finite,
and supp is Scott-continuous, there is an i0 ∈ I such that
supp νi0 = F. Replacing the family by (νi, fi)i∈I,(νi0 , fi0 )5(νi, fi)
if necessary, we have supp νi = F for every i ∈ I. So
νi = pF[ν] = ν by (E). That hext(ν, f ) = supi∈I hext(ν, fi)
is then proved by induction on `F , using the fact that ⊕p is
Scott-continuous.

The following is proved similarly.

Theorem V.3 A fair-coin algebra is a pair of a dcpo C with
a continuous map ⊕p : C × C → C for each p ∈ {0, 1

2 , 1},
satisfying (i)–(iii).

For every bc-domain X, υR1(X) is the free fair-coin
algebra over X.

Thin probability CRVs have a very simple (in)equational
theory, given as (i)–(iii). The laws from a probabilistic choice
monad [1, Section 9] fail: commutativity (c⊕p c′ = c′⊕1−p c),
associativity (c ⊕p (c′ ⊕p′ c′′) = (c ⊕p′′ c′) ⊕p+p′−pp′ c′′ if
p = (p + p′ − pp′)p′′), absorption (c ⊕p c = c), and the one
and zero laws (c ⊕1 c′ = c′, c ⊕0 c′ = c′) all fail.

Theorem V.2 exhibits a left adjoint to the forgetful functor
from a suitable category of coin bc-algebras to BCDBCDBCD. By
standard category theory, (θR1, ηηη,µµµ) is a monad, where µµµX =

id†θR1(X). The action of the functor θR1 on morphisms h :
X → Y is then given by θR1(h) = (ηηηY ◦ h)†. One sees easily
that θR1(h)(ν, f ) = (ν, h◦ f ) for every simple thin probability
CRV (ν, f ), hence for every (ν, f ) ∈ θR1(X) by continuity.

Additionally, a tensorial strength for a monad (T, ηηη,µµµ)
is a transformation tttX,Y : X × T (Y) → T (X × Y) satisfying
a certain number of equations, due to A. Kock (see [9]).
Since the categories of dcpos we are interested in have finite
products and enough points, Proposition 3.4 of op.cit. entails
that every monad T has a unique tensorial strength, where
tttX,Y (x, u) = T (λy · (x, y))(u). So:

Theorem V.4 (θR1, ηηη,µµµ, ttt) and (υR1, ηηη,µµµ, ttt) are strong mon-
ads on BCDBCDBCD.

We observe here that general CRVs also form a coin
algebra, but they are not free. One of the reasons is that
there is no canonical way of sending a continuous valuation
over Ω to a thin valuation. Therefore, already on the one
point domain (where the f part of a CRV plays no role),
CRVs are not the free algebra.

To see that more concretely, consider the (non-thin) val-
uation ν = aδ0 + bδ1 + cδε with a + b + c = 1 and c > 0. For
any choice of r such that 0 ≤ r ≤ 1, we can build a coin
algebra homomorphism that sends ν to the thin valuation
ν′ = (a + rc)δ0 + (b + (1 − r)c)δ1. This shows that in general
there is not a unique homorphism between CRVs on the
one-point domain and another coin-algebra.

VI. T CRV  C V

Let X be a bc-domain. Since θR1(X) is the free coin
algebra (Theorem V.2), there is a unique continuous map
qX : θR1(X) → V1(X) such that qX(δε , {ε 7→ x}) = δx

and qX((ν, f ) ⊕p (ν′, f ′)) = pqX(ν, f ) + (1 − p)qX(ν′, f ′).
It is reasonable to see qX(ν, f ) as the image valuation
f [ν], although the latter is, formally, ill-typed. An easy
induction on `F makes this precise, at least for simple thin
CRVs (ν, f ), where ν =

∑
ω∈Max F aωδω, F = supp ν: then

qX(ν, f ) =
∑
ω∈Max F aωδ f (ω).

There is also a strong monad (V1, η, µ, t) on the category
of all dcpos [1]. Its extension operation h‡ : V1(X) →
V1(Y) (where h : X → V1(Y)) is defined by h‡(µ)(V) =∫

x∈X h(x)(V)dµ, where
∫

is the Jones integral. We shall need
the following disintegration formula (Dis):

∫
y∈Y k(y)dh‡(µ) =∫

x∈X

(∫
y∈Y k(y)dh(x)

)
dµ [1]. We write the integration variable

as a subscript to
∫

; in the left-hand side, this is y (e.g., not
µ), and the valuation along which we integrate is h‡(µ).

The definition of qX makes it a lifting of idX : X → X
to the algebras of the monads θR1, resp. V1 on BCDBCDBCD,
hence defines a monad morphism. In particular, for every
continuous map h : X → θR1(Y), (qY ◦ h)‡ ◦ qX = qY ◦ h†,
a property we shall call (Mor). A more concrete proof goes
by showing that both sides are coin algebra morphisms,
which coincide on elements of the form ηηηX(x), and applying
Theorem V.2. (Mor) with (Dis) yields the following, sec-
ond disintegration formula (Dis2):

∫
y∈Y k(y)dqY (h†(ν, f )) =∫

x∈X

(∫
y∈Y k(y)dqY (h(x))

)
dqX(ν, f ).

VII. S

We now show that thin (resp., uniform) probability CRVs
are as good as continuous probability valuations in giv-
ing semantics to higher-order probabilistic languages. As
a case study, consider M. Escardó’s probabilistic and non-
deterministic extension of PCF [5]. (We write Qτ instead of
his Sτ, to avoid a notational clash with the Sierpiński type
S.) Call this language EPCF.

The ground types are γ ::= Bool | Nat, the general types
are σ, τ ::= γ | σ × τ | σ → τ | Hτ | Qτ | Pτ | Vτ.
Escardó’s standard semantics of types τ is the dcpo ~τ�1,
see below. H(X) is the Hoare powerdomain, Q(X) is the
Smyth powerdomain, and P(X) is the Plotkin powerdomain
(see [7, Section IV-8]), but we will gloss over that part of
the language: the challenge is with the probabilistic types
Vτ. We also define an alternate semantics ~τ�2, which is
always a bc-domain: H(X) and Q(X) are bc-domains for
every continuous dcpo X [6, Theorem 6.2.10], and υR1(X) is
a bc-domain whenever X is (Theorem IV.7). I.e., we replace
V1(X) (and also P(X)), which is not a bc-domain even when



X is, by υR1(X) (resp., Q(X) ×H(X)).

~Bool�i = B⊥ ~Nat�i = N⊥
~σ × τ�i = ~σ�i × ~τ�i ~σ→ τ�i = [~σ�i → ~τ�i]
~Hτ�i = H(~τ�i) ~Qτ�i = Q(~τ�i)
~Vτ�1 = V1(~τ�1) ~Vτ�2 = υR1(~τ�2)
~Pτ�1 = P(~τ�1) ~Pτ�2 = Q(~τ�2) ×H(~τ�2)

The term constructors are those of PCF [10], a higher-
order lambda-calculus with constants for arithmetic and
logical operations, a conditional if _ then _ else _, and
a fixpoint combinator Yτ : (τ → τ) → τ; plus constants
>τ

F : Fτ×Fτ→ Fτ (non-deterministic choice; F ∈ {H, Q, P}),
⊕τ : Vτ×Vτ→ Vτ (non-biased random choice), ητF : τ→ Fτ,
µτF : FFτ → Fτ and tσ,τF : σ × Fτ → F(σ × τ) (unit,
multiplication, tensorial strength of F ∈ {H, Q, V, P}); also,
if M is a term of type σ → τ, then we have a term
FM : Fσ → Fτ, F ∈ {H, Q, V, P} (functor rule). The de-
notational semantics of these constructs is the obvious one.
E.g.,

�
ητV

�
1

(x) = δx,
�
ητV

�
2

= ηηη~τ�2 , ~⊕τ�1 (ν, ν′) = 1
2ν + 1

2ν
′,

~⊕τ�2 ((ν, f ), (ν′, f ′)) = (ν, f ) ⊕ 1
2

(ν′, f ′).
Escardó also considers the following extension to PCF

(not EPCF). PCF +S+I has two extra ground types S, with
~S�1 = ~S�2 = {⊥,>} (Sierpiński space; we have ⊥ ≤ >),
and I, interpreted as [0, 1] with its usual ordering. The terms
are also enriched with various constructs [5]. We shall only
need to know that max, min, ⊕ (where x ⊕ y = (x + y)/2),
of type I × I → I, are definable in PCF + S + I, and that
PCF + S + I is (real PCF-)computable: for any term M of
ground type γ other than I, for every value v of type γ, it
is semi-decidable whether ~M�1 = ~v�1.

Finally, Escardó internalizes questions of may, must, may-
must, and probabilistic testing of EPCF terms by consider-
ing yet another language MMP. MMP is EPCF enriched
with the above extensions of PCF + S + I to PCF, and
with testing primitives ^ : Oτ → OHτ (may testing,
a.k.a., existential quantification; Oτ abbreviates τ → S,
the type of opens on τ), � : Oτ → OQτ (must test-
ing, a.k.a., universal quantification), and © : Eτ → EVτ
(probabilistic testing, where Eτ = τ → I). © is integra-
tion: ~©�1 (h)(µ) =

∫
x1∈~τ�1

h(x1)dµ. Similarly, we define
~©�2 (h)(ν, f ) =

∫
x2∈~τ�2

h(x2)dq~τ�2 (ν, f ).
The following key result states that the semantics of

MMP terms depends on thin CRVs (ν, f ) only through their
image valuation qX(ν, f ). I.e., MMP is oblivious of the actual
random bits drawn along ν in Ω. This is fairly general, and
not specific to EPCF or MMP.

Theorem VII.1 Let M be any closed MMP term of ground
type. Then ~M�1 = ~M�2.

Proof: Define a logical relation (Rτ)τ type, where Rτ ⊆

~τ�1×~τ�2: Rγ is equality at each ground type γ, h1 Rσ→τ h2
iff h1(x1) Rτ h2(x2) for all x1 Rσ x2, a1 Rσ×τ a2 iff π1(a1) Rσ

π1(a2) and π2(a1) Rτ π2(a2) (where π1, π2 are projections).
On non-deterministic types, let ∃ = λv, h·^hv, ∀ = λv, h·�hv,

∫
= λv, h · ©hv, and define C1 RHτ C2 iff ~∃�1 (C1) ROOτ

~∃�2 (C2), Q1 RQτ Q2 iff ~∀�1 (Q1) ROOτ ~∀�2 (Q2), µ RVτ
(ν, f ) iff

�∫ �
1

(µ) REEτ
�∫ �

2
(qX(ν, f )). (This is defined along

a well-founded ordering � on types containing the subterm
ordering and such that Hτ, Qτ, Pτ � OOτ, Vτ � EEτ.) We
now prove the Basic Lemma [11, Section 8.2.2], namely:
whenever the free variables of M : τ are given related values,
the two semantics of M are related by Rτ. This implies the
Proposition when M is closed and τ is ground.

This is proved by induction on terms. The lambda-
calculus constructs are classical, and we need to show that
~c�1 Rτ ~c�2 for each constant c : τ, and that the functor
rules preserve relatedness. We deal with the probabilistic
constructs only here. The case of

∫
: Vτ → EEτ is by

definition. For ητV, we must show that whenever x1 Rτ x2,�∫ �
1

(δx1 ) REEτ
�∫ �

2
(qX(ηηη~τ�2 (x2))), i.e., that whenever

h1 REτ h2,
∫

y1∈~τ�1
h1(y1)dδx1 =

∫
y2∈~τ�2

h2(y2)dδx2 ; equiva-
lently, h1(x1) = h2(x2), which is clear.

For the other constructs, we show that if h1 Rσ→Vτ h2,
then h‡1 RVσ→Vτ h†2. I.e., assume µ RVσ (ν, f ), let k1 REτ
k2, and show that

�∫ �
1

(h‡1(µ))(k1) =
�∫ �

2
(h†2(ν, f )), i.e.,

that
∫

y1∈~τ�1
k1(y1)dh‡1(µ) =

∫
y2∈~τ�2

k2(y2)dq~τ�2 (h†2(ν, f )). Let
j1(x1) =

∫
y1∈~τ�1

k1(y1)dh1(x1), j2(x2) =
∫

y2∈~τ�2
k2(y2)dh2(x2).

Whenever x1 Rσ x2, j1(x1) = j2(x2), since h1 Rσ→Vτ

h2 and k1 REτ k2. So j1 REσ j2. Since µ RVσ
(ν, f ),

∫
x1∈~σ�1

j1(x1)dµ =
∫

x2∈~σ�2
j2(x2)dq~σ�2 (ν, f ). By

the disintegration formula (Dis), the left-hand side is∫
y1∈~τ�1

k1(y1)dh‡1(µ), and by (Dis2), the right-hand side is∫
y2∈~τ�2

k2(y2)dq~τ�2 (h†2(ν, f )).
For ⊕τ, we realize that ~⊕�1 (µ, µ′) =

(pif _ then µ else µ′)‡( 1
2δ1 + 1

2δ0), while by definition
~⊕�2 ((ν, f ), (ν′, f ′)) = (pif _ then (ν, f ) else (ν′, f ′))†(>1/2).
To show that ~⊕τ�1 RVτ ~⊕τ�2, it is therefore enough to
show 1

2δ1 + 1
2δ0 RVBool >1/2. This is an easy consequence of

1
2δ1 + 1

2δ0 = qB⊥ (>1/2).
As the semantics of µτV, of the functor rule V, and of the

tensorial strength tσ,τF are derived from the semantics of the
extension operation, we conclude.

VIII. S-D  T

Escardó shows that the semi-decidability of may, must,
and probabilistic testing in EPCF is reducible to the question
of proving ~M�1 =

�
φ(M)

�
1 for every closed MMP term M

of ground type [5, Lemma 6.2], where φ is the translation
given below. (We refer the reader to op.cit. for further details
on the actual connection with testing.) He stumbles on the
question of the existence of a Cartesian-closed category of
continuous domains that would be stable under V1. There
is one that is stable under υR1 instead, namely BCDBCDBCD, and
υR1 is as good as V1 in giving a semantics to EPCF
(Theorem VII.1). We use this to solve Escardó’s question.

At the level of types, φ(γ) = γ, φ(σ × τ) = φ(σ) × φ(τ),
φ(σ → τ) = φ(σ) → φ(τ), and φ(Fτ) = Cantor → φ(σ),



where Cantor = Nat → Bool. On terms, we only describe
φ for probabilistic constructs, and direct the reader to [5]
for the other cases. First, φ(ητV) = λx · λs · x. Then,
φ(⊕τ) = λ(k1, k2) · λs · if hd s then k1(tl s) else k2(tl s),
where hd s = s(0), tl s = λn · s(n + 1). Third, φ(©) =

λu ·λk ·int(λs ·u(k(s))), where int encodes integration with
respect to the uniform probability measure on Cantor space:
int = Y (Cantor→I)→I(λint ·λh ·max(h(⊥), int(λs ·h(cons 1s))⊕
int(λs · h(cons 0s)))). Here cons = λu · λs · λn · if n =

0 then u else s(n − 1).
The key point is that

�
φ(Vτ)

�
2 is a fair-coin algebra:

⊕ 1
2

is
�
φ(⊕τ)

�
2, ⊕0 is ~λ(k1, k2) · λs · k2(tl s)�2 and ⊕1 is

~λ(k1, k2) · λs · k1(tl s)�2. Since ~τ�2 is a bc-domain, ~Vτ�2
is the free fair-coin algebra (Theorem V.3). So there is a
unique continuous fair-coin algebra morphism ψ : ~Vτ�2 →�
φ(Vτ)

�
2 with ψ(ηηη~τ�2 (x)) =

�
φ(ητV)

�
2

(x) = λs · x.
An alternate definition of I = ~int�2 is I = supn∈N In,

where I0(h) = h(⊥), and In+1(h) = In(λs · h(cons 1s)) ⊕
In(λs · h(cons 0s)). (To show the equivalence, we need to
check that h(⊥) ≤ In(h), which is easy.) This makes it clear
that: (Unit) I(λ_ · a) = a for every a ∈ X (λ_ · a being
the constant map with value a), that: (Midp) I(ξ1 ⊕ 1

2
ξ2) =

I(ξ1)⊕I(ξ2) (recall that ξ1 ⊕ 1
2
ξ2 =

�
φ(⊕)
�

2 (ξ1, ξ2)); (Zero)
I(ξ1 ⊕0 ξ2) = I(ξ2); (One) I(ξ1 ⊕1 ξ2) = I(ξ1).

Using this, we show that int implements integration
correctly: (Int) I(k ◦ (ψ(ν, f ))) =

∫
x∈X k(x)dqX(ν, f ) when-

ever X is a bc-domain. Indeed, both sides define fair-coin
morphisms from (ν, f ) ∈ υR1(X) to [0, 1] by (Midp), (Zero),
and (One), and both extend k, using (Unit).

We now show that Escardó’s implementation of µτV is
correct, too. As usual, we go through extension instead.
Let evens, odds : Cantor → Cantor be defined by
evens = λs · λn · s(2n), odds = λs · λn · s(2n + 1), and
define extension h~ : (Cantor → σ) → (Cantor → τ) of
h : σ → (Cantor → τ) as λ j · λs · h( j(evens s))(odds s).
Then let φ(µτV) = (λx · x)~, φ(Vh) = (λx · ητV(h(x)))~ for each
h : σ→ τ, and φ(tσ,τV ) = λx · λu · φ(V(λx · (x, y)))(u). We also
write h~ for the corresponding semantic form.

It is a simple exercise to show the Fubini formula (Fub):
I(λs · k(~evens�2 s, ~odds�2 s)) = I(λs · I(λs′ · k(s, s′))),
using the rectangle law (x ⊕ y) ⊕ (z ⊕ t) = (x ⊕ z) ⊕ (y ⊕ t).

One would expect h~ to implement extension, in the sense
that if ψ(ν, f ) = ξ, then ψ(h†(ν, f )) = (ψ ◦ h)~(ξ), but this is
not true. Intuitively, the two extension formulae implement
sequential composition, one by concatenation ω.ω′ (on fi-
nite approximates), the other one by interleaving (infinite
sequences). However, defining ξ ∼ ξ′ on [~Cantor�2 → X]
(“ξ and ξ′ define the same distribution on X”) iff I(k ◦ ξ) =

I(k ◦ ξ′) for every continuous map k : X → [0, 1], we
obtain: (Ext) if ψ(ν, f ) ∼ ξ and (ψ ◦ h1)(x) ∼ h2(x) for
every x ∈ X, then ψ(h†1(ν, f )) ∼ h~2 (ξ). To check this, let
k : X → [0, 1] be continuous, and define j(x) = I(k◦(h2(x))).
Then I(k ◦ ψ(h†1(ν, f ))) =

∫
y∈Y k(y)dqY (h†1(ν, f )) (by (Int))

=
∫

x∈X

(∫
y∈Y k(y)dqY (h1(x))

)
dqX(ν, f ) (by (Dis2)) =

∫
x∈X I(k◦

(ψ(h1(x))))dqX(ν, f ) (by (Int)) =
∫

x∈X I(k ◦ (h2(x)))dqX(ν, f )
(since (ψ ◦ h1)(x) ∼ h2(x)) =

∫
x∈X j(x)dqX(ν, f ) = I( j ◦

(ψ(ν, f ))) (by (Int)) = I( j ◦ ξ) (since ψ(ν, f ) ∼ ξ) = I(λs ·
I(λs′ ·k[h2(ξ(s))(s′)])) = I(λs ·k[h2(ξ(evens(s)))(odds(s))])
(by (Fub)) = I(k ◦ (h~2 (ξ))).

Proposition VIII.1 Let M be any closed MMP term of
ground type. Then ~M�2 =

�
φ(M)

�
2.

Proof: Define again a logical relation (Rτ)τ type, where
now Rτ ⊆ ~τ�2×

�
φ(τ)
�

2. We only deal with the probabilistic
types and constructs—again, Rγ is equality on ground types
γ, but this time we define (ν, f ) RVτ ξ iff ψ(ν, f ) ∼τ ξ; the
∼τ relation is a slight modification of ∼: ξ1 ∼τ ξ2 iff for all
k1 Rτ→I k2, I(k1 ◦ ξ1) = I(k2 ◦ ξ2). We then show that each
constant c is related to φ(c): the case of © is by (Int), ητV
is by the definition of ψ, ⊕τ is by (Midp). Finally, we show
that if h1 Rσ→Vτ h2, then h†1 RVσ→Vτ h~2 by a slight adaptation
of our proof of (Ext) above. This implies the cases of µτV,
the V functor, and tσ,τV .
So, also, ~M�1 =

�
φ(M)

�
1. By our earlier remarks:

Theorem VIII.2 May, must, may-must, and probabilistic
testing of EPCF terms is semi-decidable.

One cannot hope for more, since one can easily encode prob-
abilistic finite automata (PFA) in EPCF, and all quantitative
reachability questions are undecidable for PFAs [12].

IX. L H I V
This work originated in our desire to provide an explicit

description (much like the space of all non-empty closed
subsets of X is an explicit description of the Hoare powerdo-
main over X) of Varacca and Winskel’s indexed valuations.
These were defined as a way of obtaining a categorical dis-
tributive law between a non-deterministic and a probabilistic
monad [3]. While CRVs are reasonably explicit, they do not
quite match the latter: we show that (layered, Hoare) indexed
valuations are intermediate between CRVs and valuations.
As with CRVs, with indexed valuations, different sequences
ω ∈ Ω of coin flips terminating on the same value are
not equated. But indexed valuations forget the identities
of sequences ω, and just count their number. Additionally,
computations with probability 0 are completely ignored.

The notion presented here is slightly different from the
ones in [3], because of layering. The proof techniques are
essentially the same.

Call a finite random variable (FRV) on X any finite family
ν = (xi, pi)i∈I in X × R+. Write Supp(ν) for {i ∈ I | pi > 0},
and let ν ≡ ξ, where ξ = (y j, q j) j∈J , iff there exists a bijection
h : Supp(ν) → Supp(ξ) such that yh(i) = xi and qh(i) = qi for
every i ∈ Supp(ν). The set IV(X) of finite indexed valuations
is the set of all ≡-equivalence classes of FRVs.

(IV(X),≺) is an abstract basis [6, Section 2.2.6] when X
is a continuous dcpo; for ν, ξ as above (up to ≡), let ν ≺ ξ



iff there is a surjective map f : J → I such that x f ( j) � y j

and pi =
∑

f ( j)=i q j for every j ∈ J. (The = sign implements
layering: the second author instead required pi ≤

∑
f ( j)=i q j

in his definition of Hoare indexed valuations [3].) So one
can build the round ideal completion IV(X) of (IV(X),≺):
call this the domain of layered Hoare indexed valuations.
We have:

Theorem IX.1 A continuous quasi-cone is any structure
(D,v,⊕, 0,�) where D is a continuous dcpo, ⊕ : D×D→ D
is continuous, � : R+ × D→ D is continuous in the second
argument (only! this is layering), and the following axioms
are satisfied: (1) A⊕B = B⊕A; (2) A⊕(B⊕C) = (A⊕B)⊕C;
(3) A ⊕ 0 = A; (4) 0 � A = 0; (5) 1 � A = A;
(6) p� (A⊕B) = (p�A)⊕ (p�B); (7) p� (q�A) = (pq)�A;
(8) (p + q)�A ≤ (p�A)⊕ (q�A). For each continuous dcpo
X, IV(X) is the free continuous quasi-cone over X.

I.e., the functor IV is left-adjoint to the forgetful functor
from the category QCONT of continuous quasi-cones and
quasi-cone morphisms to the category CONT of continuous
dcpos. For comparison, V(X) is the free continuous cone
over X in CONT: their axioms are (1)-(8) above, with equal-
ity in (8), plus continuity of �. In particular, there is a unique
continuous quasi-cone morphism Flat : IV(X) → V(X)
with Flat((δi, xi)i∈{∗}) = δx∗ .

Every continuous quasi-cone is a coin algebra, defin-
ing A ⊕p B as (p � A) ⊕ ((1 − p) � B). It follows eas-
ily that IV1(X) is a coin algebra, hence that (for X a
bc-domain) qX : θR1(X) → V1(X) factors uniquely as

θR1(X)
ρ // IV1(X) Flat // V1(X) . As claimed above,

the ρ map forgets the identities of sequences ω of coin flips:
ρ(

∑
ω∈Max F aωδω) (for F finite) is the ≡-equivalence class of

the FRV (aω, δω)ω∈Max F .

X. C

We have defined monads θR1 and υR1 of thin (resp.,
uniform) CRVs, inspired by the second author’s layered
Hoare indexed valuations. They live in the well-behaved,
Cartesian-closed category BCDBCDBCD of bc-domains. They also
provide alternatives to the probabilistic powerdomain functor
V1, which is not known to restrict to an endofunctor of any
Cartesian-closed category of continuous dcpos: the closed
terms of ground types in a rich probabilistic higher-order
language have the same meaning, whether we use θR1, υR1,
or the V1 monad. We have applied this to solve an open
question by M. Escardó. We believe the notion should have
other interesting applications as well.
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