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Abstract. We extend Delaune, Kremer and Steel’s framework for anal-
ysis of PKCS#11-based APIs from bounded to unbounded fresh data.
We achieve this by: formally defining the notion of an attribute policy ;
showing that a well-designed API should have a certain class of policy we
call complete; showing that APIs with complete policies may be safely
abstracted to APIs where the attributes are fixed; and proving that these
static APIs can be analysed in a small bounded model such that secu-
rity properties will hold for the unbounded case. We automate analysis
in our framework using the SAT-based security protocol model checker
SATMC. We show that a symmetric key management subset of the Era-
com PKCS#11 API, used in their ProtectServer product, preserves the
secrecy of sensitive keys for unbounded numbers of fresh keys and han-
dles, i.e. pointers to keys. We also show that this API is not robust: if an
encryption key is lost to the intruder, SATMC finds an attack whereby
all the keys may be compromised.

1 Introduction

RSA Laboratories standard PKCS#11 defines Cryptoki, a general pur-
pose API for cryptographic devices such as smartcard security tokens
and cryptographic hardware security modules (HSMs) [7]. It has been
widely adopted in industry. As well as providing cryptographic function-
ality, PKCS#11 is also supposed to enforce certain security properties.
In particular, it is stated in the standard that even if the device is con-
nected to an untrusted machine where the operating system and device
drivers might be compromised, keys marked “sensitive” cannot be com-
promised [7, §7]. However, in 2003, Clulow presented a number of attacks,
i.e. sequences of valid PKCS#11 commands, which result in sensitive keys
being revealed in the clear [2]. A typical one is the so-called ‘key separa-
tion attack’. The name refers to the fact that a key may have conflicting
roles. Clulow gives the example of a key configured for decryption of
ciphertexts, and for ‘wrapping’, i.e. encryption of other keys for secure
transport. To determine the value of a sensitive key, the attacker calls the



‘wrap’ command and then the ‘decrypt’ command, as shown in Figure 1.
Here (and subsequently) h(n1, k1) is what we call a handle binding, i.e. a
function application modelling the fact that n1 is a handle for (or pointer
to) key k1 on the device. The symmetric encryption of k1 under key k2 is
represented by the term senc(k1, k2). We model commands by giving the
inputs on the left of the arrow, and the output on the right. The result
of the attack is to reveal the value of k1 in the clear.

Delaune, Kremer and Steel have proposed a formal model for the op-
eration of the PKCS#11 API [5], which together with a model checker
allowed various configurations of the API to be examined and several
new attacks to be found. However, their model requires a bound on the
number of freshly generated names, used to model new keys and han-
dles. This means that when the model is shown to be secure up to the
bound, we cannot be sure that there is not an attack on a larger model of
the API. Moreover, they were only able to find secure configurations by
severely restricting the functionality of the interface - in effect restricting
the update of long-term keys to an operation requiring the device to be
connected to a trusted machine. In this paper, we motivate a restriction
to a certain class of APIs, showing how APIs outside this class are likely
to be problematic because of the wrapping and unwrapping operations
intrinsic to the API. We prove theorems showing that if there is an attack
on an API in our class in the unbounded model, then there is an attack in
a particular bounded model of a size suitable for treatment with a model
checker. We use version 3.0 of the SAT-based model checker for security
protocols SATMC [1] to carry out experiments on these APIs.

The rest of the paper is organised as follows. We first define our for-
mal model (§2). We make explicit the idea of an attribute policy, which
specifies what roles a key may have, and insist that API rules give rise
to a certain class of attribute policies, called complete policies (§3). We
explain why this is a reasonable demand, and show that an API with
a complete policy can be mapped to an equivalent (with respect to se-
curity) API with a static policy, i.e. one where the attributes are non-
mutable. We then show how security analysis of APIs with static policies
for unbounded numbers of keys and handles can be performed by model
checking carefully designed small bounded models (§4). Finally, we prove
by model checking the secrecy of sensitive keys for a small PKCS#11
based API, for unbounded numbers of keys and handles (§5). This API is
a subset of the implementation of PKCS#11 used by Eracom/SafeNet in
their ProtectServer product [6]. We also show how the loss of a key with
the encrypt attribute set can lead to the loss of all the keys, thanks to an
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Initial knowledge: The intruder knows h(n1, k1) and
h(n2, k2). The name n2 has the attributes wrap and
decrypt set whereas n1 has the attribute sensitive and
extract set.

Trace:

Wrap: h(n2, k2), h(n1, k1) →senc(k1, k2)
SDecrypt: h(n2, k2), senc(k1, k2) →k1

Fig. 1. Decrypt/Wrap attack

attack found by SATMC. We show how to modify the API to prevent the
attack. Thus finally we are able to prove some robust guarantees of secu-
rity for a functional subset of PKCS#11, albeit in our symbolic model.
We conclude in section 6.

2 Formal Model

In Cryptoki’s logical view a “cryptographic token” (or simply “token”)
is a device that stores objects and can perform cryptographic functions
with these objects. For the subset of Cryptoki functions that we will
model, the objects will always be cryptographic keys. Each object will be
referenced by a handle, which (like a file handle) can be thought of as a
pointer to the object. Several instances of the same object are possible.
Attributes are characteristics that distinguish a particular instance of an
object. They enable or restrict the way functions can be applied to the
instance of the object. For example, the instance of a key can only be
used to decrypt a ciphertext (provided by the application programmer)
if the attribute decrypt is set. The combinations of attributes that an
instance of an object is allowed to have, and how the attributes can be
set and unset, depends on the particular configuration of the token. We
will model this by defining the concept of an attribute policy. The API
commands and their semantics will as usual be modelled by a rewriting
system over a term algebra.

Our model has two main differences to that of Delaune, Kremer and
Steel (DKS) [5]. First, justified by results therein [5, Theorem 1] we will
work with a typed term algebra, silently insisting that all APIs considered
are well-moded with respect to our types. Second, our concept of defining
our APIs relative to a attribute policy is new. Following DKS [5] we will
model handles by nonces, and the reference of an object k by a nonce n
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by the function application h(n, k), where h is a symbol unknown to the
attacker. However, to avoid ambiguity in informal discussions, we will call
such a function application a handle binding rather than just a handle as
in [5].

2.1 Term algebra

We consider the following types: Cipher,Key,Nonce, and HBinding where
Key and Nonce are atomic types. We assume four countably infinite sets:
a set N of ground terms of type Nonce; a set XN of variables of type
Nonce; a set K of ground terms of type Key; and a set XK of variables
of type Key. All other terms are built up from the atomic terms by the
following operators:

– encryption enc : Key × Key→ Cipher, and
– handle binding h : Nonce× Key→ HBinding.

We denote the set of terms by T , and the set of ground terms, i.e., terms
that do not contain any variables, by GT . We define the set of template
terms, denoted by T T , to be the set of terms that do not contain any
subterm of N ∪K. Thus, a template term is a term that does not contain
any ground nonce or key but may use variables to represent them. We
define key terms as TK = K ∪ XK, and nonce terms as TN = N ∪ XN
respectively. Given a term t ∈ T , let nonces(t) be the set of nonce terms
occurring in t. We extend this notation to sets of terms in the obvious
way.

We also consider a finite set A of predicate symbols, disjoint from the
other symbols, which we call attributes. In this paper we work with the
following restricted set of attributes:

A = {encrypt, decrypt,wrap, unwrap}.

The set of attribute terms is defined as

AT = {att(n) | att ∈ A & n ∈ TN }.

Attribute terms will be interpreted as propositions. A literal is an ex-
pression a or ¬a where a ∈ AT . Ground attribute terms and literals, and
template attribute terms and literals are defined analogously to above.
We denote template literals by T L.

4



2.2 Attribute policies and attribute states

An attribute valuation is a partial function a : A → {⊥,>}. If an attribute
valuation is total then it is an object state. We write S for the set of object
states. An attribute policy is a finite directed graph P = (SP ,→P ) where
SP ⊆ S is the set of allowable object states, and →P ⊆ SP ×SP is the set
of allowable transitions between the object states.

A token state is a partial function A : N → S which assigns an object
state to each nonce in dom(A), and thus to the keys represented by the
nonces in dom(A). Given an attribute policy P , we say A conforms to P
iff ran(A) ⊆ SP . Every token state induces a valuation VA for the set of
attribute terms over dom(A), defined by:

VA(att(n)) =


> if A(n)(att) = >
⊥ otherwise,

VA(¬att(n)) =


> if A(n)(att) = ⊥
⊥ otherwise.

2.3 API rewrite systems

We model two types of API commands: key management commands and
the command SetAttributeValue, which allows the API programmer to
manipulate the token state. The actions of the intruder will be modelled
by a fixed set of intruder rules.

Syntax and informal semantics. Key management commands may
generate new objects, in which case the token state will be extended by
assigning an object state to each new object. The execution of a key
management command may be subject to whether the objects referenced
have certain attributes set or unset. Thus, formally, such commands are
described by key management rules of the form

R : T ; L new x̃−−−→ T ′ ; Anew

where T ⊆ T T is a set of template terms, L ⊆ T L is a set of template
literals such that vars(L) ⊆ vars(T ), x̃ ⊆ XN ∪ XK is a set of key and
nonce variables such that x̃ ∩ vars(T ) = ∅, T ′ ⊆ T T is a set of template
terms such that vars(T ′) ⊆ vars(T ) ∪ x̃, and Anew is a template token
state with dom(Anew ) = nonces(x̃).

The SetAttributeValue command is modelled by the parameterized
attribute rule set(n, a) where n ∈ N , and a is an attribute valuation.
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Whether an instance of this rule can indeed be applied at a given token
state will depend on the attribute policy.

An API rewrite system is a pair (P,R) where P is an attribute policy
andR is a set of key management rules that conform to P in the following
way: every rule that generates a new handle is parameterized by an object
state a ∈ SP such that the new handle is assigned object state a in Anew .
Note that the attribute rule set(n, a) is assumed to be part of all APIs
modelled here and does not need to be specified explicitly.

Example 1. As an example consider the rewrite system (P,R) where R
is given by the rules in Figure 2, and P is defined by:

– SP = {{encrypt, decrypt}, {wrap, unwrap}}, and
– →P = (SP , SP × SP ).

As in this example we often specify the allowed object states concisely as
sets of attributes rather than functions. Note that due to our concept of
attribute policy we do not need to specify rules for setting or unsetting
attributes.

Wrap : h(nw, kw), h(n, k); wrap(nw) → senc(k, kw)

For all a ∈ SP :
Unwrap(a) : h(nw, kw), senc(k, kw); unwrap(nw)

new n−−−→ h(n, k); {n 7→ a}

KeyGenerate(a) :
new n,k−−−−→ h(n, k); {n 7→ a}

SEncrypt : h(ne, ke), k; encrypt(ne) → senc(k, ke)

SDecrypt : h(ne, ke), senc(k, ke); decrypt(ne) → k

Fig. 2. PKCS#11 symmetric key management subset relative to an attribute policy P

Intruder capability. The following two rules represent the deduction
capabilities of the intruder. We will denote the intruder theory by I.

I-SEncrypt : ke, k→ senc(k, ke)

I-SDecrypt : senc(k, ke), ke → k
Note that the intruder rules can be considered to be in the same format

as the key management rules. We will make use of this when defining the
semantics.
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Semantics. Let (P,R) be an API rewrite system. A state of (P,R) is
a pair (Q,A) where Q ⊆ GT is a set of ground terms, and A is a token
state such that dom(A) = nonces(Q) and A conforms to P . Given a state
(Q,A) and a rule R ∈ R ∪ I of the form T ;L new x̃−−−→ T ′, Anew , we say R
can be applied at (Q,A) under substitution θ if

1. θ is grounding for R and assigns to the variables in x̃ distinct nonces
and keys that do not occur in Q,

2. Tθ ⊆ Q, and
3. VA(Lθ) = >.

The successor state of (Q,A) under R, θ is then defined as (Q′, A′) where
Q′ = Q ∪ T ′θ, and A′ = A ∪ Anewθ. This gives rise to a transition
(Q,A) R,θ (Q′, A′).

Given a state (Q,A) and an instance of the attribute rule R of the
form set(n, a), we say R can be applied at (Q,A) if

1. n ∈ nonces(Q), and
2. A(n)→P a

′, where a′ is defined by

a′(att) =
{
a(att) if att ∈ dom(a),
A(n)(att) otherwise.

The successor state of (Q,A) under R is then (Q,A′) where A′ is defined
by A′(n) = a′, and A′(n′) = A(n′) for all n′ ∈ dom(A) such that n′ 6= n.
This gives rise to a transition (Q,A) R (Q′, A′).

We write (Q,A) (Q′, A′) when there is some transition from (Q,A)
to (Q′, A′). We write ∗ for the reflexive and transitive closure of . We
call derivation a sequence of rule applicationsD = (S0, A0) (S1, A1) · · ·
 (Sn, An). We call (S0, A0) the initial state of D and (Sn, An) the final
state of D.

Queries. A query is a pair (T, L) where T is a set of template terms and
L is a set of template literals. A state (Q,A) satisfies a query (T, L) iff
there exists a substitution θ grounding for (T, L) and such that Tθ ⊆ Q
and VA(Lθ) = >. A derivation D satisfies a query (T, L) relative to an
initial state (T0, L0) iff the initial state of D satisfies (T0, L0) and the final
state of D satisfies (T, L).

3 Towards static attribute policies

An attribute policy is called static if it rules out any change of object
state. Formally, an attribute policy P = (S,→) is static if → = ∅. It is
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clear that, in general, a given set of API rules is much easier to analyse
and verify when the associated attribute policy is static: in an informal
analysis one does not need to consider any side effects that may arise
from moving between allowable object states; in a formal analysis one
does not need to consider any attribute set/unset rules; thereby the state
space is reduced and remains monotonic. Even though static attribute
policies may seem very restrictive, we will argue that well-designed at-
tribute policies should satisfy a criterion we call completeness, and that
complete attribute policies may be safely abstracted to static attribute
policies.

Due to limitation of space we will only consider API rewrite systems
whose rewrite rules are positive in that all the tests of attributes are
positive. In a future version of this paper we will show how our results
can be carried over to all APIs.

API rewrite systems in positive form. A rule T ;L new x̃−−−→ T ′, Anew

is positive if all literals l ∈ L are positive. An API rewrite system (P,R)
is in positive form if all the rules in R are positive.

Given an API rewrite system in positive form we adopt the following
simplifications. An object state a : A → {>,⊥} can be viewed as the set
of attributes {att | a(att) = >}, and a token state A : TN → S as the set
of attribute terms {att(n) | n ∈ dom(A) & att ∈ A(n)}. The valuation
induced by an attribute state A, VA, then simplifies to VA(att(n)) = > if
and only if att(n) ∈ A. (We never need to consider valuations of negative
literals.)

One could adopt similar conventions for API rewrite systems in gen-
eral. However, due to our restriction to positive form we have: for two
object states a ⊆ a′ the object state a′ enables at least as many com-
mands as a, and similarly for token states.

Complete attribute policies. In the following letR be a set of positive
API rules. Assume we wish to obtain a secure attribute policy for the
commands modelled by R. Typically we will start out with an idea of
which attributes are conflicting. For example, the attack in Figure 1 tells
us that no object should ever have both wrap and decrypt set. In this
way we can induce the set of allowable object states. It is clear from
previously discovered attacks, however, that defining a safe transition
relation between allowable states is non-trivial. For example, one might
try to prevent the attack in Figure 1 by disallowing the attributes wrap
and decrypt from being set on the same handle (which is illustrated by
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Initial knowledge: The intruder knows h(n1, k1) and
h(n2, k2). The handle n2 has the attribute wrap set.

Trace:

Wrap: h(n2, k2), h(n1, k1) → senc(k1, k2)

Unset wrap: set(n2, [wrap 7→ ⊥])

Set decrypt: set(n2, [decrypt 7→ >])

SDecrypt: h(n2, k2), senc(k1, k2) → k1

Fig. 3. Decrypt/Wrap attack II [8]

the policy of Example 1). The attack in Figure 3 shows that this will
not suffice. To address this, one might decide to declare wrap and decrypt
as ‘sticky’ attributes, i.e. attributes which cannot be unset. However, the
fact that the intruder can generally wrap and unwrap keys in order to
obtain multiple handles for the same key means the attack can still be
performed [5, Fig. 4].

For the rest of this paper, we will consider a restricted class of policies:

Definition 1. An attribute policy P = (S,→) is complete if P consists
of a collection of disjoint, disconnected cliques, and for each clique C,
c0, c1 ∈ C ⇒ c0 ∪ c1 ∈ C.

The intuition behind this is that we do not expect to be able to prevent
the intruder from making copies of an object via the import and export
mechanisms, as in certain known attacks [5, Fig. 4]. This means that for
policy P = (S,→), ∀s1, s2, s3 ∈ S, if s1 → s2 and s1 → s3 are in P ,
then by copying a handle in state s1, the intruder can obtain what is
effectively a handle for an object in state s2 ∪ s3 . A well designed policy
should take this into account. We further require the transition relation to
be symmetric. We believe that the results in this paper could be extended
to relax this restriction, but observe that our current definition has the
advantage of giving a simple and intuitive rule for attribute policy design.
Of course not all complete policies will be secure: consider a trivial policy
in which all object states, including conflicting ones, are connected (such
as the policy of Example 1). However, complete policies are amenable to
analysis, as we will now show.
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End point abstractions. Let P = (S,→) be a complete attribute pol-
icy. We call the object states of S that are maximal in S with respect to
set inclusion end points of P , denoted by ε(P ). Such object states are end
points in the following sense: once an attacker has reached an end point
for an object he does not gain anything by leaving it: any object state
that can be reached from an end point will have less enabling power.

P naturally gives rise to a static attribute policy where the allowable
object states are taken to be the end points of P . Formally, we define the
end point abstraction of P , denoted by EP(P ), to be the attribute policy
(ε(P ), ∅). In Theorem 1 below we prove that EP(P ) provides a sound and
complete abstraction of P .

Given a ∈ S, define ε(a) to be the uniquely given end point e such
that a ⊆ e. Given an object state A, define ε(A) to be the object state
that results when replacing every map [n 7→ a] ∈ A by [n 7→ ε(a)]. If a
rule R ∈ R generates a new handle with object state a then ε(R) is the
rule that results from R by replacing a by ε(a). (Recall that ε(R) ∈ R by
definition of API rewrite systems.)

Proposition 1. 1. For all standard rules R, we have:
if (Q1, A1) R (Q2, A2) then (Q1, ε(A1)) ε(R) (Q2, ε(A2)).

2. For all attribute rule instances R, we have:
if (Q1, A1) R (Q2, A2) then ε(A1) = ε(A2) (and Q1 = Q2 as usual).

Proof. (1) is a consequence of the definition of ε(a) and our restriction to
positive rules. (2) follows since by definition of complete attribute policies
if a1 → a2 is a transition in P then ε(a1) = ε(a2).

Theorem 1. If there is a derivation under P from (Q0, A0) to (Qm, Am)
then there is a derivation under EP(P ) from (Q0, ε(A0) to (Qm, ε(Am)).

Conversely, if there is a derivation under EP(P ) from (Q0, A0) to
(Qm, Am) then there is a derivation under P from (Q0, A0) to (Qm, Am).

Proof. To prove the first part assume a derivation D under P . By Prop. 1
we can transform D into a derivation under EP(P ) in the following way:
replace each state (Qi, Ai) occurring in D by (Qi, ε(Ai)), and remove all
attribute rule transitions from D. The converse direction is immediate
since EP(P ) is a subgraph of P .

Altogether our results mean that for our class of APIs it suffices to
analyse security under a static attribute policy. As we will demonstrate
in the next section, together with further insights, this will lead us to
reducing two variants of the PKCS#11 API to a bounded model.
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4 Reducing APIs with static attribute policies to
bounded models

We consider the symmetric key fragment of the PKCS#11 key manage-
ment API as modelled in Figure 2, and the Eracom version of the API
to be introduced in this section. We show that for both these rewrite
systems, when we assume a static attribute policy, it is sufficient to work
with a bounded number of freshly generated values.

In the following we assume an API rewrite system (P,R) where P =
(E , ∅) is any static attribute policy and R will be specified in each para-
graph. Derivations will always be assumed to start from a given initial
state (Q0, A0). Since we work with static attribute policies only, the object
state of every handle stays constant:

Proposition 2. Let (Q0, A0)  (Q1, A1) · · ·  (Qm, Am) be a deriva-
tion. Let n be a nonce, and i such that n is generated by the ith transition.
Then for all j ∈ [i,m], Aj(n) is defined and Ai(n) = Aj(n).

Justified by this, in the context of a derivation as above, for every
nonce n occurring in D we write A(n) for the one object state it can
assume. Also note that we no longer need to consider any attribute rule
instances.

Atom substitutions. One key insight behind our reductions is that we
can eliminate freshly generated keys and handles whenever we are able to
replace them by already existing keys and handles that provide the same
functionality. Formally, we will require the concept of atom substitutions,
following [?]. We use Atoms to denote the set of ground atomic terms,
i.e., N ∪K.

An atom substitution is a partial function δ : Atoms → Atoms that
respects the type of the atoms. We extend atom substitutions to sets,
relations, etc. in the usual way. Given a token state A, we say atom
substitution δ, is defined for A if for all n1, n2 ∈ dom(A) we have:

1. n1 7→ n2 ∈ δ & n2 6∈ dom(δ) =⇒ A(n1) = A(n2), and
2. n1 7→ n, n2 7→ n ∈ δ for some n =⇒ A(n1) = A(n2).

Proposition 3. If A is a token state and δ is an atom substitution de-
fined for A then we have:

1. Aδ is a token state with dom(Aδ) = dom(A) δ, and
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2. for all literals l, if VA(l) is defined then VAδ(lδ) is defined and VA(l) =
VAδ(lδ).

The following two propositions show that atom substitutions preserve
rule applications as well as queries in a natural way. Both propositions
are routine to prove by Prop. 3 and inspection of the definitions.

Proposition 4. Let R be a rule of the form T ;L new x̃−−−→ T ′, Anew . If
(Q,A)  R,θ (Q′, A′) and δ is an atom substitution defined for A such
that θ(x̃) ∩ (dom(δ) ∪ ran(δ)) = ∅ then we have (Q,A)δ  R,θδ (Q′, A′)δ.

Proposition 5. If a state (Q,A) satisfies a query (T, L) by a substitution
θ, and δ is an atom substitution defined for A, then (Q,A)δ satisfies (T, L)
by θδ.

PKCS#11 rewrite system. Consider the symmetric key fragment of
the standard PKCS#11 API as modelled in Figure 2. There are only two
rules that generate fresh values: KeyGenerate and Wrap.

It is intuitive that a pair k, n generated by KeyGenerate with, say,
the object state of n set to ε provides the same functionality as any
other pair k′, n′ generated by KeyGenerate with n′ set to the same object
state ε. Thus, it is plausible that to check whether a query is satisfied we
need to consider at most one instance of KeyGenerate for each allowable
object state. The following proposition gives us the means to successively
delete instances of KeyGenerate from any derivation until we arrive at a
derivation that is bounded in this way.

Proposition 6. Assume a derivation

(Q0, A0) · · · Ri (Qi, Ai) · · · Rj (Qj , Aj) · · · Rn (Qn, An)

such that for some ni, nj , ki, kj,

1. Ri is an instance of KeyGenerate producing h(ni, ki),
2. Rj is an instance of KeyGenerate producing h(nj , kj), and
3. A(ni) = A(nj).

Then

(Q0, A0) · · · Ri (Qi, Ai) · · · Rj−1 (Qj−1, Aj−1) Rj+1δ (Qj+1, Aj+1)δ · · ·
· · · Rnδ (Qn, An)δ

is a derivation, where δ = [nj 7→ ni, kj 7→ ki].

12



Proof. This follows by Prop. 4 when considering that (Qj−1, Aj−1) =
(Qj , Aj)δ, and that δ satisfies the conditions of Prop. 4 with respect to
each transition  Rm , m ≥ j.

It can be read from the rules that, given a key k, whenever two handles
for k, say n1 and n2, have the same object state then they can be employed
in exactly the same way. Hence, it is plausible that for each key we need
at most one handle per allowable object state. The following proposition
gives us the means to eliminate instances of Unwrap until we arrive at a
derivation that is reduced in this way.

Proposition 7. Assume a derivation

(Q0, A0) · · · Ri (Qi, Ai) · · · Rn (Qn, An)

such that for some n1, n2, k

1. h(n1, k) ∈ Qi−1 , and
2. Ri is an instance of Unwrap producing h(n2, k) with A(n1) = A(n2).

(Q0, A0) · · · Ri−1 (Qi−1, Ai−1) Ri+1δ (Qi+1, Ai+1)δ · · · Rnδ (Qn, An)δ

is a derivation, where δ = [n2 7→ n1].

Proof. This follows similarly to Prop. 6.

Altogether we obtain:

Lemma 1. If there is a derivation of a query (T, L) then there is a
derivation D′ of the same query such that, in D′, the following holds:

1. for all pairs k1, n1 and k2, n2 generated by KeyGenerate, k1 6= k2 im-
plies A(n1) 6= A(n2);

2. for every key k and all handles n1, n2 with bindings h(n1, k), h(n2, k),
n1 6= n2 implies A(n1) 6= A(n2).

Proof. The lemma easily follows by successively applying the above two
propositions and because by Prop. 5 the transformations preserve the
query.

The lemma implies that for the PKCS#11 rewrite rules we can reduce
the static model to a bounded model. We also make use of the fact that
in a model with no disequalities on keys, an attacker is as powerful when
given one key (without a handle) in his initial knowledge as when given
many such keys.
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Theorem 2. In the PKCS#11 rewrite system with attribute policy (E , ∅),
if there is a derivation of a query (T, L) then there is a derivation of the
same query using

1. at most 1+|E| keys: at most 1 key in Q0, and at most |E| keys generated
by KeyGenerate, and

2. at most |E| × (1 + |E|) handles.

For all e ∈ E :

KeyGenerate(e) :
new n,k−−−−→ h(n, k); e(n)

Wrap(e) :

h(nw, kw), h(n, k); wrap(nw), e(n)
new km−−−−→ enc(k, kw), enc(mk, kw), hmackm(k, e)

Unwrap(e) :

h(nw, kw), enc(k, kw), enc(km, kw), hmackm(k, e); unwrap(kw)
new n−−−→ h(n, k); e(n)

SEncrypt : h(ne, ke), k; encrypt(ne) → enc(k, ke)
SDecrypt : h(ne, ke), enc(k, ke); decrypt(ke) → k

Fig. 4. Symmetric Key Management subset of the Eracom PKCS#11 API. e(n) is a
short-hand for “n is in object state e”.

Eracom rewrite system. Consider the API rules given in Figure 4,
derived from the symmetric key management commands of the Eracom
ProtectServer [6]. Here, an HMAC is used to bind the attributes to the
wrapped key, to prevent an attacker from re-importing several copies of
a key with different attributes. Formally, we have the new type mac and
the function symbol hmac : Key × Key × att → mac. Although the proof
of Lemma 1 carries over to this set of rules, Theorem 2 no longer holds,
since the wrap rule gives an additional way of generating fresh keys (the
key to be used as MAC-key). However, we can recover the result with a
simple abstraction: if there is an attack, then there is an attack where the
MAC-key generated by the wrap command is constant:

Proposition 8. Given a derivation under the rules of Figure 4, we can
map in the obvious way to a derivation under rules that are like those of
Figure 4 apart from that the wrap rule always uses a constant mac-key
mK.

This gives us an abstraction, not an equivalence. It may in theory lead
to false attacks, but it is sound for proofs since in our queries we have no
disequalities on keys. In this model, we have:
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Theorem 3. In the abstracted Eracom rewrite system with attribute pol-
icy (E , ∅), if there is a derivation of a query (T, L) then there is a deriva-
tion of the same query using

1. at most 1 + |E|+ 1 keys:
at most 1 key in Q0,
at most |E| keys generated by KeyGenerate, and
at most 1 key used by Wrap; and

2. at most |E| × (2 + |E|) handles.

In fact we can recover an exact version (i.e. without the abstraction)
of Theorem 2 for the Eracom rewrite system involving a slightly larger
number of keys and handles, but due to lack of space we leave this for a
future longer version of the paper.

5 Experiments

Having established the validity of model checking a small bounded model
of our Eracom-based PKCS#11 API (Fig. 4), we can now investigate
security properties for unbounded keys and handles. We assume an end-
point attribute policy P = ({ed, wu}, ∅), where ed represents encrypt and
decrypt and wu represents wrap and unwrap. All keys are assumed to
be sensitive. SATMC includes the usual rules for encryption and decryp-
tion by known keys. First we investigate the stated property required of
PKCS#11 in the specification [7, §7].

Definition 2. A known key is a key k such that the intruder knows the
plaintext value k and the intruder has a handle h(n, k).

Property 1. If an intruder starts with no known keys, he cannot obtain
any known keys.

In the API of Figure 4, this property is verified by SATMC in 0.4
seconds. A further desirable property of such an API is that if a session key
(i.e. an encryption/decryption key) is lost to the intruder by some means
beyond the scope of the model, then no further keys are compromised.

Property 2. If an intruder starts with a known key ki with handle h(ni, ki),
and ed(ni) is true, then he cannot obtain any further known keys.

Unfortunately this does not hold for the Eracom-based API. An attack
is found by SATMC in 0.4 seconds. We give the attack in Figure 5. The
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intruder first wraps his key ki, then fakes an HMAC for it using ki as the
MAC key. This allows him to re-import ki as a wrap/unwrap key. One
way to prevent this attack is to add the wrapping key inside the HMAC
(see Figure 6). SATMC verifies this property in about 0.5 seconds.

Full details of our model checking experiments, including all relevant
model files, are available at http://www.lsv.ens-cachan.fr/∼steel/
pkcs11/.

Initial knowledge: Handles h(n1, k1), h(n2, k2), and h(ni, ki). Key ki. Attributes
ed(n1),wu(n2), ed(ni). The HMAC key is k3.

Trace:

Wrap: (ed) h(n2, k2), h(ni, ki) → senc(ki, k2), senc(k3, k2), hmack3(ki, ed)
Unwrap: (wu) h(n2, k2), senc(ki, k2), senc(ki, k2), hmacki(ki,wu) → h(n2, ki)
Wrap: (ed) h(n2, ki), h(n1, k1) → senc(k1, ki), senc(k3, ki), hmack3(k1, ed)
Decrypt: ki, senc(k1, ki) → k1

Fig. 5. Lost session key attack

Wrap :

h(x1, y1), h(x2, y2); wrap(x1),A(x2)
new mk−−−−→ enc(y2, y1), enc(mk, y1), hmacmk(y2,A, y1)

Unwrap :

h(x1, y2), enc(y1, y2), enc(xm, y2), hmacxm(y1,A, y2); unwrap(x1)
new n1−−−−→ h(n1, y1); A(n1)

Fig. 6. Revised Wrap/Unwrap Mechanism for the Eracom API

6 Conclusions

We have presented our framework for analysing PKCS#11 based APIs in
an unbounded model. We described an attack on a version of the API used
by Eracom, discovered using our model and the model checker SATMC.
We suggested a fix and proved the secrecy of sensitive keys for the fixed
version of the API, for unbounded numbers of keys, handles and command
calls. An extension to asymmetric cryptography is our first priority, and
then experiments with further proprietary implementations of PKCS#11.
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We have explained how our work extends previous work by Delaune,
Kremer and Steel [5]. There have been other attempts to analyse PKCS#11,
but these were also for bounded models [8, 9], and included further ap-
proximations such as monotonic global state. With our endpoint abstrac-
tions, we also obtain a monotonic global state, however we have formally
justified this in the presence of a complete attribute policy. In fact, our
analysis suggests that robust attribute policies can be reduced to static
ones. There have also been proofs of security for other APIs, such as re-
vised versions of the IBM Common Cryptographic Architecture, again in
bounded models [3, 4]. We plan to adapt our method to this API.
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6. Sibylle Fröschle. The insecurity problem: tackling unbounded data. In IEEE
Computer Security Foundations Symposium 2007. IEEE Computer Society, 2007.

7. J. Krhovják. PKCS #11 based APIs. Talk given at the Analysis of Security APIs
Workshop (ASA-1), July 2007. Slides available at http://homepages.inf.ed.ac.
uk/gsteel/asa/slides/.

8. RSA Security Inc., v2.20. PKCS #11: Cryptographic Token Interface Standard.,
June 2004.

9. E. Tsalapati. Analysis of PKCS#11 using AVISPA tools. Master’s thesis, Univer-
sity of Edinburgh, 2007.

10. P. Youn. The analysis of cryptographic APIs using the theorem prover Otter.
Master’s thesis, Massachusetts Institute of Technology, 2004.

17


