
Recent and Simple Algorithms For Petri Nets?

Alain Finkel1 and Jérôme Leroux2

1 LSV, ENS Cachan, CNRS & INRIA, France.
firstname.lastname@lsv.ens-cachan.fr

2 LaBRI, Université de Bordeaux, CNRS
firstname.lastname@labri.fr

Abstract. We show how inductive invariants can be used to solve coverability,
boundedness and reachability problems for Petri nets. This approach provides
algorithms that are conceptually simpler than previously pblished ones.

1 Introduction

We revisit the decidability proofs of the following well-known, decidable problems for
Petri nets: the coverability, the boundedness, the place boundedness and the reachabil-
ity problem. We present simple, unified and generalizable new or recent algorithms for
these four problems.

Our algorithms are simpler than the previous ones: this means they can be under-
stood easily, with the background of undergraduate students. We present a proof of
decidability for the place boundedness problem that avoids the non-trivial Karp and
Miller tree algorithm and only uses invariants. Moreover, our algorithm for deciding
reachability is incomparably simpler than all the different existing decidability proofs
of Mayr, Kosaraju and Lambert.

The structure of these four algorithms consists in finding inductive invariants by
simple enumeration. This unifies the proofs and facilitates the understanding.

Finally, our algorithms do not depend on the particularity of Petri nets, hence they
can be easily extended to apply to other similar models: for instance, our reachabil-
ity algorithm can be easily adapted to Lossy Channel Systems in replacing Presburger
invariants by recognizable invariants. This idea has been used in 2003 by Pachl for
(perfect) FIFO Channel Systems in [14].

Our algorithms are not only simple, they also provide quasi-optimal complexities
for all considered problems, except for the reachability problem whose complexity is
not known.

We don’t give all the proofs but we give precise references when we omit proofs.

? This work is supported by the french Agence Nationale de la Recherche, REACHARD (grant
ANR-11-BS02-001) and by the “Chaire DIGITEO-ENS CACHAN - ECOLE POLYTECH-
NIQUE”.

2 Alain Finkel and Jérôme Leroux

2 Petri Nets

2.1 Notations

We denote by Z,N,Q,Q≥0 the set of integers, natural numbers, rational numbers, and
non negative rational numbers. Vectors and sets of vectors are denoted in bold face. The
ith component of a vector v is written v(i).

We denote by ≤ the classical order over Z and we denote by ≤ its component-wise
extension over Zd defined by x ≤ y if x(i) ≤ y(i) for every 1 ≤ i ≤ d. Given a vector
v, we write ‖v‖+ and ‖v‖− for the sets of indexes i such that v(i) > 0 and v(i) < 0,
respectively.

2.2 Petri nets

A Petri net (net for short) is a tuple N = 〈P, T, F 〉 where P is a set of places, T is a set
of transitions disjoint from P , and F is a flow function that maps (P × T) ∪ (T × P)
to N. In the sequel, places are ordered by P = {1, . . . , d}. A marking m is a vector in
Nd. Intuitively, m(i) is the number of tokens in the ith place.

p1

t1

p2

t2

p3

t3

t4
p4

p5

2

Fig. 1. The Hopcroft and Pansiot net.

The operational semantics of a Petri net is formalized by the labeled transition re-
lation defined over markings x,y ∈ Nd, by x

t−→ y where t ∈ T if x(p) ≥ F (p, t)

Recent and Simple Algorithms For Petri Nets 3

and y(p) = x(p) − F (p, t) + F (t, p) for every p ∈ P . Given a word w = t1 . . . tn
of transitions tj ∈ T , we introduce the binary relation w−→ over the markings defined
by x

w−→ y if there exists a sequence m0, . . . ,mn of markings such that m0 = x,
mn = y, and:

m0
t1−→m1 . . .

tn−→mn

Given a language W ⊆ T ∗, we denote by W−→ the union of all w−→, for all w, hence,
W−→=

⋃
w∈W

w−→. The relation T∗

−−→ is called the reachability relation and it is denoted

by ∗−→, the relation T−→ is called the one-step reachability relation and it is also denoted
by→. Note that ∗−→ is the reflexive and transitive closure of−→. Given a set M ⊆ Nd of
markings, we introduce the following sets:

Post(M) =
⋃

m∈M

{y ∈ Nd |m −→ y} Pre(M) =
⋃

m∈M

{x ∈ Nd | x −→m}

Post∗(M) =
⋃

m∈M

{y ∈ Nd |m ∗−→ y} Pre∗(M) =
⋃

m∈M

{x ∈ Nd | x ∗−→m}

In this paper, we present simple algorithms deciding the following classical prob-
lems. In these problems, N denotes a Petri net, m0,m some markings, and p ∈
{1, . . . , d} is a place.

Reachability Input: (N,m0,m)

Question: Is m0
∗−→m ?

Coverability Input: (N,m0,m)

Question: Does there exist a y such that m0
∗−→ y and y ≥m ?

Boundedness Input: (N,m0)
Question: Is the set Post∗(m0) finite ?

Place-boundedness Input: (N,m0, p)
Question: Is the set {m(p) |m ∈ Post∗(m0)} finite ?

Example 2.1. The Petri net N , depicted in Fig. 1, was introduced in [10] as an example
of a Petri net having a reachability set (for some initial marking) that cannot be defined
by a Presburger formula. In fact, its reachability set Post∗({m0}), from the initial
marking m0 = (1, 1, 0, 0, 0), is equal to:{

(x1, x2, x3, x4, x5) ∈ N5 | (x1 = 1 ∧ x4 = 0 ∧ 1 ≤ x2 + x3 ≤ 2x5) ∨
(x1 = 0 ∧ x4 = 1 ∧ 1 ≤ x2 + 2x3 ≤ 2x5+1)

}

4 Alain Finkel and Jérôme Leroux

3 Upward and Downward Closed Sets

A set U ⊆ Nd is said to be upward closed if for every (u,m) ∈ U ×Nd, we have u ≤
m⇒m ∈ U . The upward closure of a vector u ∈ Nd is the set {m ∈ Nd | u ≤m}
denoted by ↑u. The upward closure of any set M ⊆ Nd is the set

⋃
m∈M ↑m denoted

by ↑M . Let us observe that ↑M is the least upward closed set (for the inclusion) that
contains M . Since Nd is well-ordered by ≤, for any upward closed set U ⊆ Nd, there
exists a finite set F ⊆ U such that U = ↑F . This means that upward closed sets can
be symbolicaly represented by finite sets F ⊆ Nd. Such a set is called an upward basis
(basis for short) of the upward closed set U . One can show that the minimal elements
of any basis F of U still form a basis which does not depend on F . It is minimal for
inclusion among all bases, and is called the minimal upward basis (minimal basis for
short) of the upward closed set U .

Example 3.1. Let us consider in N2 the upward closed set
{
(x, y) ∈ N2 | x ≥ 3 ∨ y ≥

1
}

. A (non-minimal) basis is {(3, 0), (3, 1), (0, 1)}. The minimal basis is {(3, 0), (0, 1)}.

Symmetrically, a set D ⊆ Nd is a said to be downward closed if for every (d,m) ∈
D×Nd, we have m ≤ d⇒m ∈D. The downward closure of a vector d ∈ Nd is the
set {m ∈ Nd | m ≤ d} denoted by ↓d. The downward closure of any set M ⊆ Nd
is the set

⋃
m∈M ↓m denoted by ↓M . Let us observe that ↓M is the minimal, for

the inclusion, downward closed set that contains M . The downward closure of a finite
set F ⊆ Nd is a finite set. Hence, we deduce that, in general, infinite downward closed
sets, like Nd × {0}, cannot be symbolically represented by finite sets F ⊆ Nd+1.

This problem is overcome as follows. Given an ordered set, one may, under suitable
assumptions, construct a topological completion of this set to recover a finite description
of downward closed sets [8,9]. The completion of Nd is Ndω , with Nω = N ∪ {ω},
where we extend ≤ by n ≤ ω for all n ∈ Nω . Given x ∈ Ndω , we denote by ↓x the
set {d ∈ Ndω | d ≤ x}. Given a set X ⊆ Ndω , we define the set ↓X =

⋃
x∈X ↓x.

The results of [8,9] yield that, if D ⊆ Nd is downward closed, then D = Nd∩ ↓F
for some finite set F ⊆ Ndω which we call a downward basis (basis for short when it is
not confusing)) of D. One can show that the maximal elements of any basis F of D
still form a basis which does not depend on F . It is minimal for inclusion among all
bases, and is called the minimal downward basis (minimal basis for short when it is not
confusing) of the downward closed set D.

Fig. 2. A downward closed set.

Recent and Simple Algorithms For Petri Nets 5

Example 3.2. Let us consider in N2 the downward closed set
{
(x, y) ∈ N2 | x ≤

3 ∨ y ≤ 1
}
∪
{
(4, 2), (4, 3), (5, 2)

}
depicted in Fig. 2. A (non-minimal) basis is

({0, 1, 2, 3} × {ω}) ∪ {(4, 3), (5, 2)} ∪ ({ω} × {0, 1}). It is shown with dots • in the
figure, where elements involving ω fall beyond the grid. The elements of the minimal
basis are circled.

In the following, we will define some algorithms that need the operational semantics
of Petri nets to be extended over Ndω . More formally, we have x

t−→ y for (extended)
markings x,y ∈ Ndω if x(p) ≥ F (p, t) and y(p) = x(p)+(F (t, p)−F (p, t)) for every
p ∈ P where the addition is defined by ω + z = ω for every z ∈ Z. The relations w−→,
where w ∈ T ∗, ∗−→ and −→, and the sets Post(M), Pre(M), Post∗(M), and Pre∗(M)
where M ⊆ Ndω are defined as well. The four considered reachability problems are still
over Nd.

The coverability set (the cover for short) is defined as the downward closure of the
reachability set: Cover(m0) = ↓Post∗(m0), hence there exists a finite basis F ⊆ Ndω
such that Cover(m0) = Nd∩ ↓F . For a Petri net N and an initial marking m0, the
computation of a finite basis F of the coverability set allows to decide the coverability,
the boundedness and the place-boundedness problems (and also other problems like the
regularity of the language of traces).

Example 3.3. Let us come back to the Petri net N depicted in Fig. 1. Observe that
Cover(m0) = Nd∩ ↓F where F = {(1, ω, ω, 0, ω), (0, ω, ω, 1, ω)} is the minimal
basis (called the clover in [9]).

4 Coverability

4.1 Coverability is semi-decidable

Recall that a marking x ∈ Nd is coverable from x0 if, and only if, there exists a
reachable marking y larger than or equal to x. Coverability is semi-decidable for Petri
nets. Coverability is also semi-decidable for general machines having a finite number
of transitions and for which the computation of the one-step reachability set is effective
(as Minsky machines and Turing machines).

Semi-algorithm coverability(N,x0,x)
1. Enumerate all the words w ∈ T ∗ and check:
2. if x0

w−→ y and y ≥ x
3. return "x is coverable"

To prove that non-coverability is also semi-decidable, we must find a witness in the
case where m is not coverable.

6 Alain Finkel and Jérôme Leroux

4.2 Non-coverability is semi-decidable

We may give two different proofs that non-coverability is semi-decidable. The first
semi-algorithm is based on the following equivalence:

For every y such that m0
∗−→ y, we have y 6≥m

⇐⇒
There exists a finite set F ⊆ Nd such that m0 6∈ ↑F , m ∈ ↑F and Pre(↑F) ⊆ ↑F .

(⇐) : Naturally, if there exists a finite set F ⊆ Nd such that m0 6∈ ↑F , m ∈ ↑F ,
and Pre(↑F) ⊆ ↑F , by induction, we may deduce that Pre∗(↑m) ⊆ ↑F . Since
m0 6∈ ↑F , we deduce that m0 6∈ Pre∗(↑m). Thus for every y such that m0

∗−→ y, we
have y 6≥m.

(⇒) : In this case, m0 6∈ Pre∗(↑m). Let us remark that for all Well Structured
Transition Systems [6] (hence for Petri nets), this set is upward closed. Hence there
exists a finite basis, say F ⊆ Nd, such that Pre∗(↑m) = ↑F . Now, just observe that
m0 6∈ ↑F and Pre(↑F) ⊆ ↑F .

In order to implement the test Pre(↑F) ⊆ ↑F , let us first remark that the set
Pre(↑m) is upward-closed for every m ∈ Nd, and we may effectively compute a finite
basis of Pre(↑m) as follows. First notice the following equality:

Pre(↑m) =
⋃
t∈T
↑mt

where mt is the unique minimum marking such mt
t−→m′t for some marking m′t ≥m.

The marking mt satisfies the following equality for every place p ∈ P :

mt(p) = max{F (p, t),m(p) + F (p, t)− F (t, p)}

We denote by pb(m) = {mt | t ∈ T} a finite basis of Pre(↑m). Observe that the basis
pb(m) is not necessarily the minimal upward basis. For a given finite set F ⊆ Nd, we
denote by pb(F) the set

⋃
m∈F pb(m). Hence, one may deduce the following semi-

algorithm:

Semi-algorithm non-coverability-1(N,m0,m)
1. Enumerate all the finite subsets F ⊆ Nd and check:
2. if m0 6∈ ↑F and m ∈ ↑F and pb(F) ⊆ ↑F
3. return "m is not coverable"

The enumeration of line 1 can be algorithmicaly implemented by enumerating for
all the natural numbers n, all the finite subsets of {0, . . . , n}d. The three tests of line
2 are decidable. For instance m ∈ ↑F is equivalent to ∃f ∈ F , m ≥ f which
can be decided since F is finite. The condition pb(F) ⊆ ↑F is equivalent to ∀x ∈
pb(F) ∃f ∈ F x ≥ f . When line 3 is executed, the equivalence relation proved at the
beginning of the section, ensures correctness of the semi-algorithm.

A second and similar proof for the semi-decidability of non-coverability is based on
the following equivalence:

Recent and Simple Algorithms For Petri Nets 7

For every y such that m0
∗−→ y, we have y 6≥m

⇐⇒
There exists a finite set F ⊆ Ndω such that m0 ∈ ↓F , m 6∈ ↓F , and Post(↓F) ⊆ ↓F .

(⇐) : Assume that there exists a finite set F ⊆ Ndω such that m0 ∈ ↓F , m 6∈ ↓F ,
and Post(↓F) ⊆ ↓F . By induction we deduce that ↓Post∗(m0) ⊆ ↓F . Since
m 6∈ ↓F , we get m 6∈ ↓Post∗(m0). Hence for every y such that m0

∗−→ y, we have
y 6≥m.

(⇒) : Conversely, assume that for every y such that m0
∗−→ y, we have y 6≥ m.

Since ↓Post∗(m0) is downward closed, we deduce that there exists a finite basis F ⊆
Ndω of this set. Now just observe that Post(↓F) ⊆ ↓F .

Testing the inclusion Post(↓F) ⊆ ↓F can be implemented by observing that this
condition is equivalent to Post(F) ⊆ ↓F . Hence, non-coverability is semi-decidable
by using the following semi-algorithm:

Semi-algorithm non-coverability-2(N,m0,m)
1. Enumerate all the finite subsets F ⊆ Ndω and check:
2. if m0 ∈ ↓F and m 6∈ ↓F and Post(F) ⊆ ↓F
3. return "m is not coverable"

Remark 4.1. These two semi-algorithms are very similar since for every partition (X,Y)
of Nd, we have Post(X) ⊆X if, and only if Pre(Y) ⊆ Y .

From these two semi-algorithms (for coverability and for non-coverability), we de-
duce that coverability is decidable.

4.3 An algorithm for deciding coverability

The following algorithm works in Nd (and not in Ndω). Let us still remark that for two
markings m0,m ∈ Nd, the property "m is coverable from m0" is equivalent to "m0 ∈
Pre∗(↑m)". We now present a backward algorithm to compute a finite basis of the
upward closed set Pre∗(↑m). We will present a forward algorithm for coverability in
Section 6.

Algorithm Coverability(N,m0,m)
1. Let F := {m};
2. while pb(F) 6⊆ ↑F
3. F := F ∪ pb(F);
4. If m0 ∈ ↑F then return "m is coverable" else return "m is not coverable"

The termination and the correctness of this algorithm are obtained as follows. Let
F n be the value of the set F at line 2 at the nth iteration of the while-loop. An imme-
diate induction shows the following equality:

↑F n =
⋃

y∈↑m

{x ∈ Nd | ∃w ∈ T ∗, x w−→ y ∧ |w| ≤ n}

8 Alain Finkel and Jérôme Leroux

We deduce that if the while loop condition "pb(F n) ⊆ ↑F n" holds then ↑F n =
Pre∗(↑m). Hence the algorithm is correct.

For the termination, observe that there exists a finite basis G of Pre∗(↑m). Since
every element of G is a member of ↑F n for some large enough n, we deduce that there
exists an n0 such that G ⊆ ↑F n0

. In this case, we deduce that ↑F n0
= Pre∗(↑m).

Therefore pb(F n0) ⊆ ↑F n0 and the algorithm terminates.

5 Boundedness and Place-boundedness

5.1 An algorithm for deciding boundedness

Boundedness is semi-decidable for Petri nets. In fact, if the reachability set from an ini-
tial marking m0 ∈ Nd is finite, one can effectively compute it. We deduce the following
semi-algorithm where the set F is always a finite subset of Nd.

Semi-algorithm boundedness(N,m0)
1. F ← {m0}
2. while Post(F) 6⊆ F do
3. F ← F ∪ Post(F)
4. return “bounded”

The non-boundedness is proved to be semi-decidable as follows. Since the reach-
ability tree is finite-branching, a Petri net is not bounded from an initial marking m0

if, and only if, there exist3 w, σ ∈ T ∗ such that m0
w−→ x

σ−→ y with x ≤ y and
x 6= y. Based on this property, we deduce a semi-algorithm that enumerates the words
w, σ ∈ T ∗ and check the previous conditions.

Semi-algorithm non-boundedness(N,m0)
1. Enumerate all the pair of words (w, σ) and check:
2. if one has: m0

w−→ x
σ−→ y with x ≤ y and x 6= y

3. return “unbounded”

5.2 An algorithm for deciding place boundedness

Place boundedness is proved to be semi-decidable for Petri nets thanks to the following
equivalence:

The place p is bounded from the initial marking m0 ∈ Nd
⇐⇒

There exists a finite set F ⊆ Ndω such that m0 ∈ ↓F ∩ Nd, Post(F) ⊆ ↓F and
m(p) 6= ω for every m ∈ F .

(⇒) : Let F ⊆ Ndω be a finite basis of the coverability set Cover(m0) where
m0 ∈ Nd. Since p is bounded, we deduce that for every m ∈ F , we have m(p) ∈ N.

3 Words that can be iterated are denoted with the letter σ.

Recent and Simple Algorithms For Petri Nets 9

Note that F satisfies m0 ∈ ↓F and Post(F) ⊆ ↓F .

(⇐) : Assume that there exists a finite set F ⊆ Ndω such that m0 ∈ ↓F ,
Post(F) ⊆ ↓F , and m(p) ∈ N for every m ∈ F . Then from Post∗(m0) ⊆
Nd∩ ↓F , we deduce that p is bounded. Hence, place boundedness is semi-decided by
the following semi-algorithm.

Semi-algorithm place boundedness(N,m0, p)
1. Enumerate all the finite subsets F ⊆ Ndω and check:
2. If m0 ∈ ↓F and Post(F) ⊆ ↓F and m(p) 6= ω for every m ∈ F
3. return “place p is bounded”

Place non-boundedness is semi-decidable as follows. Based on Higman’s Lemma
over the runs, we may prove [4] that a place p is unbounded from m0 if, and only if,
there exists a run (where d is the number of places, w1, σ1, . . . , wd, σd ∈ T ∗):

m0
w1−−→ x1

σ1−→ y1 · · ·
wd−−→ xd

σd−→ yd

satisfying the two following (set of) inequalities:
(1) y1 + · · ·+ yj ≥ x1 + · · ·+ xj for every 1 ≤ j ≤ d, and
(2) y1(p) + · · ·+ yd(p) > x1(p) + · · ·+ xd(p).

We deduce the following semi-algorithm for place non-boundedness:

Semi-algorithm place non-boundedness(N,m0, p)
1. Enumerate all the finite sequences of 2d words (w1, σ1, . . . , wd, σd) and check:
2. if m0

w1−−→ x1
σ1−→ y1 · · ·

wd−−→ xd
σd−→ yd and

3. y1 + · · ·+ yj ≥ x1 + · · ·+ xj for every 1 ≤ j ≤ d and
4. y1(p) + · · ·+ yd(p) > x1(p) + · · ·+ xd(p)
5. return “place p is unbounded”

6 A Single Algorithm for Solving the Three Previous Problems

We wish to decide the three previous problems and also, for instance, to compute the
maximal values of each place. This is possible by computing a finite basis of the cover-
ability set Cover(m0). The following is a simple algorithm that computes a finite basis
for Cover(m0).

Procedure clover(N,m0)
1. F ← {m0}
2. while Post(F) 6⊆ ↓F do

(a) Choose fairly (see below) (w,m) ∈ T ∗ × F such that m w−→ y with m ≤ y
(b) F ← F ∪ {m+ ω(y −m)}

3. return F

In this algorithm, m + ω(y −m) denotes the vector v ∈ Ndω defined as v(i) = m(i)
if y(i) = m(i) and v(i) = ω if y(i) >m(i).

10 Alain Finkel and Jérôme Leroux

The fairness condition that line (2.a) must implement is defined as follows. Let us
denote by F n the set F of vectors at line (2) before the nth execution of the while-
loop, and let us introduce M =

⋃
n∈N F n. The fairness condition means that on every

execution, every pair (w,m) ∈ T ∗ ×M is chosen at least once at line (2).
When the algorithm terminates, we observe that Nd∩ ↓F is the coverability set. The

termination is obtained thanks to the Koenig’s and the Dickson’s lemmata.
We may also compute the (unique) set of maximal elements of the limit of the cover,

(called the minimal coverability set in [7] and called the clover in [9]). In this case, the
set of maximal elements of F is the clover.

7 Reachability

7.1 Reachability is semi-decidable

In this Section, we will stay in the set Nd and we will not use the ω. The reachability
problem is semi-decidable with the following semi-algorithm:

Semi-algorithm reachability(N,m0,m)
1. Enumerate all the words w ∈ T ∗ and check:
2. if m0

w−→m
3. return "m is reachable"

7.2 Non-reachability is semi-decidable

To prove that non-reachability is also semi-decidable, we must find a witness proving
that a configuration m is not reachable. Formulas in the decidable logic FO (N,+),
a.k.a the Presburger arithmetic, will provide these witnesses.

In [12], we proved that reachability sets can be over-approximated in such a way
that any non-reachable marking can be witnessed by a Presburger inductive invariant.

Theorem 7.1 ([12]). If a marking m is not reachable from an initial marking m0 then
there exists a set M ⊆ Nd definable in the Presburger arithmetic such that Post(M) ⊆
M , m0 ∈M , and m 6∈M .

We deduce that the following semi-algorithm "decides" the non-reachability prob-
lem. In fact, the conditions on line 2 can be implemented as a satisfiability problem for
the Presburger arithmetic.

Semi-algorithm non-reachability(N,m0,m)
1. Enumerate all the Presburger formulas denoting Presburger sets M ⊆ Nd
2. if Post(M) ⊆M , m0 ∈M , and m 6∈M
3. return “m is not reachable”

Recent and Simple Algorithms For Petri Nets 11

8 Conclusion

The coverability, the boundedness, and the place boundedness problems are proved to
be decidable thanks to inductive invariants that are upward or downward closed. The
reachability problem is proved to be decidable with inductive invariants that are in the
richer class of Presburger definable sets (every upward or downward closed set in Ndω
is Presburger definable).

Another kind of result that can be easily deduced from the presented algorithms is
that the boundedness and the place-boundedness problems are recursively enumerable
for Lossy Channel Systems (to the best of our knowledge, this was not known).

From a complexity point of view, coverability, boundedness, and place-boundedness
problems are known to be EXPSPACE-complete with Rackoff’s technique. In fact, on
the positive instances of the coverability problem, and the negative instances of the
boundedness, and place-boundedness problems, there exist runs with lengths bounded
by a double exponential in the size of the problem input (encoded in binary) prov-
ing that the three semi-algorithms coverability, non-boundedness, and place-non-
boundedness can be directly transformed into optimal EXPSPACE algorithms. Con-
cerning the other algorithms and semi-algorithms, the following table sums up the sizes
(encoded in binary), for some Petri nets, of the structures (words, sequences of words, or
finite sets) enumerated or computed by the algorithms or by the semi-algorithms on the
terminating instances. Let us analyze the size of the set searched by the semi-algorithm
boundedness in Section 5.1. We know from [13,5] that there exists an infinite sequence
of Petri nets (Nn)n∈N, having finite reachability sets, which only contain incomparable
elements, such that the number of elements in Post∗Nn

(m0) is not primitive-recursive
but Ackermannian in the size of Nn. The semi-algorithm boundedness seeks an induc-
tive invariant F which must, at least, contain Post∗Nn

(m0) as a subset. If we use this
semi-algorithm on the sequence (Nn)n∈N, it will necessarily find a set that is larger than
Ack(size(Nn)), hence we deduce the complexity. The same reasoning may be done for
the semi-algorithm place boundedness and for the algorithm clover.

All these given sizes are optimal since they can be reached on some instances.

Section Algorithm/Semi-algorithm minimal size for some instances
4.1 coverability 2-EXP [3,15]
4.2 non-coverability-1&2 2-EXP [3,2]
4.3 coverability 2-EXP [3,2]
5.1 boundedness Ackermann [13,5]
5.1 non-boundedness 2-EXP [3,15]
5.2 place boundedness Ackermann [13,5]
5.3 place non-boundedness 2-EXP [15,2]
6 clover Ackermann [13,5]

The complexity of the reachability problem is known to be between EXPSPACE-hard
[3] and decidable from Mayr and Kosaraju and more recently from Leroux [12]. Reduc-
ing this complexity gap is an open problem. Note that even the existence of a primitive
recursive upper bound on the complexity of the reachability problem is still open ([1]
introduced such a bound but it was proved to be incorrect in [11]).

12 Alain Finkel and Jérôme Leroux

Acknowledgements: We thank Pierre McKenzie and Wolfgang Reisig for their
careful reading of the paper.

References

1. Bouziane, Z.: A primitive recursive algorithm for the general petri net reachability problem.
In: FOCS 1998. (nov 1998) 130 –136

2. Bozzelli, L., Ganty, P.: Complexity analysis of the backward coverability algorithm for vass.
In Delzanno, G., Potapov, I., eds.: Reachability Problems - 5th International Workshop, RP
2011, Genoa, Italy, September 28-30, 2011. Proceedings. Volume 6945 of Lecture Notes in
Computer Science, Springer (2011) 96–109

3. Cardoza, E., Lipton, R.J., Meyer, A.R.: Exponential space complete problems for Petri nets
and commutative semigroups: Preliminary report. In: STOC’76, ACM (1976) 50–54

4. Demri, S.: On selective unboundedness of vass. In Chen, Y.F., Rezine, A., eds.: Proceedings
12th International Workshop on Verification of Infinite-State Systems. Volume 39 of EPTCS
(2010) 1–15

5. Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and primitive-
recursive bounds with dickson’s lemma. In: Logic in Computer Science (LICS), 2011 26th
Annual IEEE Symposium on. (june 2011) 269 –278

6. Finkel, A., Schnoebelen, Ph.: Well-structured transition systems everywhere! Theoret. Com-
put. Sci. 256(1–2) (2001) 63–92

7. Finkel, A.: The minimal coverability graph for petri nets. In Rozenberg, G., ed.: Advances
in Petri Nets 1993. Volume 674 of Lect. Notes Comp. Sci. Springer (1993) 210–243

8. Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part I: Completions. In Albers,
S., Marion, J.Y., eds.: 26th Symp. on Theoretical Aspects of Computer Science, STACS’09,
Springer (2009) 433–444

9. Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, Part II: Complete WSTS. In
Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.E., Thomas, W., eds.: 36th
Int. Colloquium on Automata, Languages and Programming, ICALP’09. Volume 5556 of
Lect. Notes Comp. Sci., Springer (2009) 188–199

10. Hopcroft, J.E., Pansiot, J.J.: On the reachability problem for 5-dimensional vector addition
systems. Theoritical Computer Science 8 (1979) 135–159

11. Jančar, P.: Bouziane’s transformation of the petri net reachability problem and incorrectness
of the related algorithm. Inf. Comput. 206 (November 2008) 1259–1263

12. Leroux, J.: Vector addition systems reachability problem (a simpler solution). In Voronkov,
A., ed.: The Alan Turing Centenary Conference, Turing-100, Manchester UK June 22-25,
2012, Proceedings. Volume 10 of EPiC Series, EasyChair (2012) 214–228

13. Mayr, E.W., Meyer, A.R.: The complexity of the finite containment problem for petri nets.
J. ACM 28(3) (1981) 561–576

14. Pachl, J.K.: Reachability problems for communicating finite state machines. CoRR
cs.LO/0306121 (2003)

15. Rackoff, Ch.: The covering and boundedness problems for vector addition systems. Theoret.
Comput. Sci. 6(2) (1978) 223–231

