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Abstract

This paper extends to pomsets without auto-concurrency the fundamental no-
tion of asynchronous cellular automata (ACA) which was originally introduced for
traces by Zielonka. We generalize to pomsets the notion of asynchronous map-
ping introduced by Cori, Métivier and Zielonka and we show how to construct a
deterministic ACA from an asynchronous mapping.

Then we investigate the relation between the expressiveness of monadic second
order logic, nondeterministic ACAs and deterministic ACAs. We can generalize
Büchi’s theorem for finite words to a class of pomsets without auto-concurrency
which satisfy a natural axiom. This axiom ensures that an asynchronous cellular
automaton works on the pomset as a concurrent read and exclusive owner write
machine. More precisely, in this class non-deterministic ACAs, deterministic ACAs
and monadic second order logic have the same expressive power.

Then we consider a class where deterministic ACAs are strictly weaker than
nondeterministic ones. But in this class nondeterministic ACAs still capture
monadic second order logic. Finally it is shown that even this equivalence does
not hold in the class of all pomsets since there the class of recognizable pomset
languages is not closed under complementation.

Keywords: automata theory, monadic second order logic, concurrency, partial orders

1 Introduction

In a distributed system, some events may occur concurrently, meaning that they may
occur in any order or simultaneously or even that their executions may overlap. This
is the case in particular when two events use independent resources. On the other
hand, some events may causally depend on each other. For instance, the receiving of a
message must follow its sending. Therefore, a distributed behavior may be abstracted
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as a pomset, that is a set of events together with a partial order which describes causal
dependencies of events and with a labeling function. In this paper, we mainly deal with
pomsets without auto-concurrency: concurrent events must have different labels. These
pomsets are called semi-words in [Sta81, Die94]. For studies how general pomsets can be
used to represent parallel processes and how they can be composed, we refer the reader
e.g. to [Pra86, Gis88].

There are several ways to describe the behaviors of a system. For instance, logic
formulas are suited for specification purposes. Depending on the properties we have to
express, we can use various logics such as temporal logics, first order logics or (monadic)
second order logics. On the other hand, transition systems are often used to give more
operational descriptions. In this paper, we will concentrate on these two kinds of de-
scriptions of systems.

When dealing with distributed systems, it is natural to look for transition systems
which faithfully reflect the concurrency. For instance, Petri nets are a widely studied
class of such transition systems. Asynchronous cellular automata (ACA) form another
fundamental class of transition systems with built-in concurrency. They were introduced
for traces by Zielonka [Zie87, Zie89]. Mazurkiewicz introduced traces in order to describe
the behaviors of one-safe Petri nets [Maz77, Maz86]. A trace is a pomset where the partial
order is dictated by a static dependence relation over the actions of the system.

The primary aim of this work is to generalize the notion of ACA so that they can
work on pomsets without auto-concurrency. In Section 3, we define our notion of ACAs.
There are two possible definitions of runs of an ACA on a pomset and for each of these
definitions there are two possible criteria for acceptance. Thus, an ACA may work in
four different modes. Section 4 starts with the proof that two of them are equivalent for
nondeterministic ACAs.

Asynchronous mappings have proven to be a basic tool to construct ACAs for traces
[CMZ93]. In Section 4.2, we give a definition of asynchronous mappings for general
pomsets. We show that a pomset language recognized by an asynchronous mapping can
be accepted by a deterministic ACA in any mode.

The rest of this paper is devoted to the relation between ACAs and monadic second
order (MSO) logic for pomsets. We prove in Section 4.3 that from a (non deterministic)
ACA one can construct a MSO formula which defines precisely the pomset language
accepted by the automaton in a given mode. In Section 5, we prove the converse for
the special subclass of pomsets for which the ACA works as a concurrent read and
exclusive owner write (CROW) machine. These pomsets are called CROW-pomsets.
More precisely, from a MSO formula we construct a deterministic ACA which in a
given mode accepts precisely the CROW-pomsets defined by the formula. Therefore, for
CROW-pomsets, we have the equivalence between (existential) MSO logic, deterministic
ACAs and non deterministic ACAs (for any of the alternative modes). This result is
crucial since it opens the way of model checking for distributed systems whose behaviors
are described as CROW-pomsets.

In Section 6, we restrict our attention to k-pomsets and ACAs. We can show that
the expressive power of non-deterministic ACAs in any mode, MSO logic and existen-
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tial MSO logic coincide. Thus, in particular, any ACA running in a given mode can
be simulated by a non-deterministic ACA that runs in any other mode. But this sim-
ulating automaton has to be non-deterministic since, as we show, the four modes give
rise to incomparable concepts of deterministic recognizability. Thus, in the class of k-
pomsets, non-deterministic ACAs are strictly more expressive than deterministic ones
and deterministic ACAs are more expressive than asynchronous mappings. Furthermore,
emptiness, universality and equivalence for ACAs are decidable within this class.

In Section 7, we return to the class of all pomsets. We show that in this context the
modes give rise to two incomparable concepts of nondeterministic recognizability. This
already implies that for pomsets MSO logic is strictly more expressive than ACAs in any
mode. This negative result is sharpened in the final part where we present an example
of a first-order definable pomset property that cannot be recognized by an ACA. Since
the negation of this property is recognizable, we obtain that the class of recognizable
pomset languages is not closed under complementation.

Lodaya and Weil [LW98b, LW98a, LW99] define branching automata that can accept
series-parallel pomsets. They obtain characterizations of the languages accepted by these
devices in terms of generalized rational expressions as well as in terms of recognizing
morphisms. In [Kus99], it is shown that their expressive power, restricted to series-
rational pomsets without autoconcurrency, coincides with the power of monadic second
order logic and also with the power of our asynchronous cellular automata. Asynchronous
automata were generalized to P-asynchronous automata by Arnold [Arn91]. Starting
from a set of pomsets P (so called regular CCI-sets), he considers closed word languages,
i.e. word languages that contain for each pomset t from P either no linear extension of t
or all linear extensions of t. Arnold shows that recognizable closed word languages can
be accepted asynchronously by P-asynchronous automata. Alternatively, one can see a
P-asynchronous automaton as a device that runs on a pomset and accepts or rejects it.
Another result from [Kus99] states that their expressive power is also captured by our
asynchronous cellular automata.

The proofs of the present positive results are based on the classical result by Zielonka
[Zie87] and on a technique developed by Thomas [Tho90] for asynchronous automata
for traces. We provide a bridge between pomsets and these trace results by a close
analysis of the order structure of pomsets. This makes it possible to relabel pomsets by
asynchronous cellular automata that result in traces over suitably chosen dependence
alphabets. The negative results are shown by separating examples.

Preliminary versions of these results have appeared in the extended abstracts [DG96]
and [Kus98].

2 Preliminaries

2.1 Pomsets

Let Σ be a finite set, called alphabet. A pomset over Σ is (an isomorphism class of)
a finite labeled partial order t = (V,≤, λ) where V is a finite set of vertices, ≤ is the
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partial order on V and λ : V → Σ is the labeling function. The empty pomset (∅, ∅, ∅)
will be denoted by 1. Throughout the paper we will mainly deal with pomsets without
auto-concurrency, that is pomsets t = (V,≤, λ) such that λ−1(a) is totally ordered for
all a ∈ Σ.

Let s = (Vs,≤s, λs) and t = (Vt,≤t, λt) be two pomsets. We say that s is a prefix of
t, if s is (isomorphic to) a downward closed subpomset of t, that is, if Vs is a downward
closed subset of Vt (i.e. Vs ⊆ Vt and for all u, v ∈ Vt, u ≤t v and v ∈ Vs imply u ∈ Vs),
≤s is the restriction of ≤t to Vs (i.e. ≤s=≤t ∩Vs × Vs) and λs is the restriction of λt to
Vs. The prefix order relation is a partial order on the set of all pomsets (even if we allow
auto-concurrency). Since we have assumed non auto-concurrency, there is a unique way
to embed a prefix s of t as a downward closed subpomset of t. Hence, we will identify
a downward closed subset of vertices with the corresponding prefix of the pomset. Let
s1 = (Vs1 ,≤s1, λs1) and s2 = (Vs2 ,≤s2, λs2) be two prefixes of a pomset t = (Vt,≤t, λt).
Then, Vs1 ∪ Vs2 is a downward closed subset of Vt and the corresponding prefix of t is
s1 ∪ s2 = (Vs1 ∪ Vs2,≤s1 ∪ ≤s2 , λs1 ∪ λs2) where λs1 ∪ λs2 is the labeling which coincides
with λs1 on Vs1 and with λs2 on Vs2 (note that λs1 and λs2 agree on Vs1 ∩ Vs2).

Let t = (V,≤, λ) be a pomset. The downward closure of a vertex v is denoted by
↓v = {u ∈ V | u ≤ v}. The strict downward closure of a vertex v is denoted by
⇓v = ↓v \ {v}. Since ↓v and ⇓v are downward closed subsets of V , we will identify these
sets with the corresponding prefixes of t.

Let Σ1, . . . ,Σn be pairwise disjoint alphabets and let Σ = Σ1 ∪̇ · · · ∪̇ Σn. Intuitively,
we can view [n] = {1, . . . , n} as a set of labels of sequential processes and Σ1, . . . ,Σn as
the sets of actions of these sequential processes. Let p : Σ → [n] be the mapping which
associates with each letter a ∈ Σ the process p(a) ∈ [n] which executes the letter a, i.e.
a ∈ Σp(a).

Let t = (V,≤, λ) be a pomset. We say that a vertex v covers a vertex u, denoted
by u −−< v, if u < v and there is no vertex w such that u < w < v. We say that two
vertices u, v ∈ V are incomparable or concurrent, denoted by u ‖ v, if neither u ≤ v nor
u ≥ v. We may see the covering relation as the description of the interactions between
the processes. More precisely, we consider that an event v ∈ V reads the states of the
processes p ◦ λ({u | u −−< v}) and writes in the process p ◦ λ(v), which, by abuse of
notation, will be abbreviated by p(v). We will not allow concurrent writes, therefore two
concurrent events u ‖ v must write in different processes p ◦ λ(u) 6= p ◦ λ(v). This leads
to the following

Definition 2.1 A (Σ1,Σ2, . . . ,Σn)-pomset or ~Σ-pomset is a pomset t = (V,≤, λ) for

which λ−1(Σi) is totally ordered for all 1 ≤ i ≤ n. The set of all ~Σ-pomsets will be

denoted by P(~Σ).

Note that with this notation the set P(Σ) is the set of words over Σ. It is easily seen

that ~Σ-pomsets are special pomsets without auto-concurrency. If the sets Σ1, . . . ,Σn are
all singletons P(~Σ) is the set of all pomsets without auto-concurrency.

For A ⊆ Σ, we denote by ∂A(t) = ↓λ−1(A) the least prefix of a pomset t which
contains all elements labeled with letters from A. Note that ∂A(t) =

⋃

v|λ(v)∈A ↓v. For
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a ∈ Σ and i ∈ [n], we will use the following simplified notations: ∂a(t) = ∂{a}(t) and
∂i(t) = ∂Σi

(t).
Note that if λ−1(A) is totally ordered then ∂A(t) is either empty or has exactly one

maximal vertex. In particular, if t is a ~Σ-pomset then ∂i(t) is either empty or has exactly
one maximal vertex. Occasionally, we will identify ∂i(t) with its maximal vertex.

2.2 Traces

We recall now basic definitions for Mazurkiewicz traces which will be needed in this
paper. The reader is referred to [DR95] for a general presentation of trace theory.

A dependence alphabet is a pair (Σ, D) where Σ is a finite alphabet and D ⊆ Σ×Σ
is a reflexive and symmetric relation over Σ called the dependence relation. Intuitively,
two dependent actions (a, b) ∈ D must be executed sequentially while two independent
actions (a, b) /∈ D may occur concurrently. More formally, one considers the congruence
relation ∼ over the free monoid Σ? generated by the relation {(ab, ba) | (a, b) /∈ D}. A
trace is simply an equivalence class of words for the congruence ∼. The trace monoid is
then the quotient M(Σ, D) = Σ?/ ∼.

We give now an equivalent definition of traces which is more adequate in our context.
Basically, a trace can be seen as a pomset which satisfies additional requirements. More
precisely, we will see that a trace over the dependence alphabet (Σ, D) is a pomset
t = (V,≤, λ) such that for all vertices u, v ∈ V ,

(λ(u), λ(v)) ∈ D =⇒ u ≤ v or v ≤ u (1)

u −−< v =⇒ (λ(u), λ(v)) ∈ D (2)

Note that a linearization of a pomset t may be identified with a word of Σ?. Now, let
t = (V,≤, λ) be a pomset satisfying conditions (1) and (2). Then, the set of linearizations
of t is precisely a trace, that is, an equivalence class for ∼. Hence, with each pomset t
satisfying (1) and (2), one can associate a trace ϕ(t). Conversely, a word u ∈ Σ? defines
a labeled linear order (Vu,≤u, λu) over the occurrences of actions of u: Vu = {(a, i) | 1 ≤
i ≤ |u|a} (|u|a denotes the number of occurrences of a in u); (a, i) ≤u (b, j) if the i-th a
occurs before the j-th b in u; and λu((a, i)) = a. Since two equivalent words u ∼ v have
the same set of occurrences of actions (Vu = Vv), we can associate with a trace [u] the
pomset ψ([u]) = (Vu,

⋂

v∼u ≤v, λu). One can check that ψ([u]) satisfies conditions (1)
and (2) and that ψ and ϕ are inverse bijections. This explains why the two definitions
are equivalent.

We will now define recognizable trace languages. A trace automaton is a quadruple
A = (Q, T, I, F ) where Q is a finite set of states, I ⊆ Q is the set of initial states, F ⊆ Q
is the set of final states and T ⊆ Q× Σ ×Q is the set of transitions which satisfies the
diamond property: for all (a, b) ∈ (Σ × Σ) \ D and q, q′, q′′ ∈ Q, if (q, a, q′) ∈ T and
(q′, b, q′′) ∈ T then there exists some q′ ∈ Q such that (q, b, q′) ∈ T and (q′, a, q′′) ∈ T .
A word w = a1 · · ·an ∈ Σ? is accepted by A if there is a run q0, a1, q1, . . . , an, qn such
that q0 ∈ I, qn ∈ F and (qi−1, ai, qi) ∈ T for all 1 ≤ i ≤ n. A trace t ∈ M(Σ, D) is
accepted by A if some linear extension of t is accepted by A. Note that, thanks to the
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diamond property of a trace automaton, if some linear extension of a trace is accepted
by A then all linear extensions of t are accepted by A. A trace language L ⊆ M(Σ, D)
is recognizable if it is the set of traces accepted by some trace automaton. Equivalently,
it is a recognizable language in the monoid M(Σ, D), as usual, in the sense of [Eil74].

3 Asynchronous cellular automata

Definition 3.1 A (Σ1,Σ2, . . . ,Σn)-asynchronous cellular automaton (or ~Σ-ACA) is a
tuple A = ((Qi)i∈[n], (δa,J)a∈Σ,J⊆[n], F ) where

1. for all i ∈ [n], Qi is a finite set of local states for process i,

2. for all a ∈ Σ and J ⊆ [n], δa,J :
∏

i∈J Qi → P(Qp(a)) is a (nondeterministic)
transition function (where P denotes the power set operator) and

3. F ⊆
⋃

J⊆[n]

∏

i∈J Qi is a set of accepting states.

The automaton is deterministic if all the transition functions are deterministic, i.e. if
|δa,J((qi)i∈J)| ≤ 1 for all a ∈ Σ, J ⊆ [n] and qi ∈ Qi for i ∈ J .

We now explain how a ~Σ-ACA can accept a ~Σ-pomset t = (V,≤, λ). The idea is that

the ~Σ-ACA consists of n local processes whose local states are Qi. Then, any event x ∈ V
changes the state of its process p ◦ λ(x), only. This change depends on the local states
of the processes in the read domain of this event. There are (at least) two reasonable
read domains of an event x: The first one is that it reads only the local states reached
at the events covered by x. In particular, in this mode it may happen that x does not
read the last state of its own process p ◦ λ(x). In the second reading mode, x reads
for each process that acted in the past of x the state at the last event below x on this
process. Since the first reading mode is a restriction of the second one, we refer to it as
the R−-mode. The second is called the R+-mode.

To define these two kinds of runs uniformly, let t = (V,≤, λ) be a ~Σ-pomset and
x ∈ V . Then

R−(x) := p ◦ λ{y ∈ V | y −−< x} = p ◦ λ(max(⇓x)) and

R+(x) := p ◦ λ{y ∈ V | y < x} = p ◦ λ(⇓x).

Note that R−(x) ⊆ R+(x). For α ∈ {+,−}, an Rα-run of A on t is a function r : V →
⋃

i∈[n]Qi such that

r(x) ∈ δλ(x),Rα(x)(r(∂i(⇓ x))i∈Rα(x))

for any x ∈ V .
Note that an R−-run can be seen as a run on the Hasse-diagram of the ~Σ-pomset.

To compare it with an R+-run, let t = (V,≤, λ) be a ~Σ-pomset and define the binary
relation E on V by

E = {(∂i(⇓x), x) | x ∈ V, i ∈ R+(x)}.
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Then −−<⊆ E ⊆≤. Hence ≤ is the transitive and reflexive closure of E. An R+-run can
be seen as a run on the directed acyclic graph (V,E, λ).

Let us consider two examples that make the difference between the two reading modes
clear. In both examples, we present a deterministic ~Σ-ACA and then describe the set
of all ~Σ-pomsets that admit an Rα-run of this automaton. Later, we will see that these
sets cannot be accepted by a ~Σ-ACA in the other reading mode.

Example 3.2 Let n = 3, Σ1 = {a}, Σ2 = {b} and Σ3 = {c}. We consider the automaton
given by Q1 = Q2 = Q3 = {q} and

δx,J((qi)i∈J) =

{

∅ x = c and 1 ∈ J

{q} otherwise

for any x ∈ {a, b, c}. Next we describe the set of ~Σ-pomsets that admit an R−-run
of this automaton: Since there is only one state, for any pomset t = (V,≤, λ) there
is only one mapping r : V → {q}. This mapping is an R−-run iff no c-labeled event
covers an a-labeled one. Indeed, if we have x −−< y with λ(x) = a and λ(y) = c, then
δλ(y),R−(y)((qi)i∈R−(y)) = ∅ and therefore r does not satisfy the condition for an R−-run.

Note that a ~Σ-pomset has an R+-run of this automaton iff it does not contain an
a-labeled event below some c-labeled one.

Example 3.3 Let n = 4, Σ1 = {a}, Σ2 = {b}, Σ3 = {c} and Σ4 = {d}. The automaton
is given by Q1 = {0, 1}, Q2 = Q3 = Q4 = {0}, and

δa,J ((qi)i∈J) =

{

{(q1 + 1) mod 2} if 1 ∈ J

{1} otherwise

δb,J((qi)i∈J) = {0}

δc,J((qi)i∈J) = {0}

δd,J((qi)i∈J) =

{

{0} if q1 = 0 or 1 /∈ J

∅ otherwise.

This automaton is meant to run in the R+-mode. Note that in this case the first
process simply counts its events modulo 2. The second and third process do “nothing”.
Now consider the fourth process. It allows a transition as long as no event from the
first process occurred. Once such an a-labeled event occurred, it only allows a transition
if the state on the last such event is 0. Thus, the automaton cannot proceed if some
d-labeled event dominates an odd number of a-labeled events. Since this is the only case
where it cannot proceed, this ~Σ-ACA allows an R+-run on a ~Σ-pomset iff any d-labeled
event dominates an even number of a-labeled ones.

In the R−-mode, the first process does not count the occurrences of a-labeled events
modulo 2 because it restarts with 1 whenever some a-labeled event does not directly
cover another such a-labeled element.
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Similarly, there are two possibilities to define when a run is successful. The first one is
to consider all local final states. Alternatively, we may restrict our attention to the states
that correspond to the maximal elements of the pomset in consideration. More formally,
let A be a ~Σ-ACA with final states F and let t be a ~Σ-pomset. Then F+(t) := p ◦ λ(t)
denotes the set of local processes that perform at least one step when t is executed. The
set F−(t) := p◦λ(max(t)) comprises those local processes that perform a maximal event.
For α, β ∈ {+,−}, an Rα-run r is Fβ-successful iff

r(∂i(t))i∈Fβ(t) ∈ F.

Example 3.4 Our next example is a deterministic ~Σ-ACA which accepts precisely the
set of ~Σ-pomsets satisfying condition (2) of Section 2.2. More precisely, let (Σ, D) be a
dependence alphabet with Σ = Σ1 ∪̇ · · · ∪̇ Σn where each Σi is a clique of (Σ, D). We

define the ~Σ-ACA A = ((Qi)i∈[n], (δa,J)a∈Σ,J⊆[n], F ) where Qi = Σi ∪ {⊥} for all i ∈ [n]
and

δa,J((qj)j∈J) =

{

{a} if qj 6= ⊥ and (a, qj) ∈ D for all j ∈ J

{⊥} otherwise

for all a ∈ Σ and J ⊆ [n]. Finally, the set of accepting states is F =
⋃

J⊆[n]

∏

i∈J Σi.

In an R−-run of this automaton, each process remembers the last action performed
and therefore is able to check that an event covers only dependent events.

One can easily check that R−Fβ(A) is the set of ~Σ-pomsets (V,≤, λ) such that for all
u, v ∈ V , if u −−< v then (λ(u), λ(v)) ∈ D. For instance, if (Σ, D) = a b c d
with Σ1 = {a, b}, Σ2 = {c} and Σ3 = {d}, we give below a rejecting run and an accepting
run of A. In this picture, each vertex v is labeled by the pair (λ(v), r(v)). Note that, in
order to obtain the states of minimal vertices, we apply transition functions of the form
δλ(v),∅.

Σ1

Σ2

Σ3

a,⊥b, b b,⊥

c, c c,⊥

d, d d, d d, d

Σ1

Σ2

Σ3

a, ab, b b, b b, b

c, c c, c

d, d d, d d, d

Example 3.5 Later, we will see that for any dependence alphabet (Σ, D), it is pos-
sible to construct a nondeterministic ACA A that accepts precisely the traces over
(Σ, D). Here, we give such an automaton for the simple dependence alphabet (Σ, D) =
a b c. We consider the processes Σ1 = {a}, Σ2 = {b} and Σ3 = {c}. The sets
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of states of the (Σ1,Σ2,Σ3)-ACA A are Q1 = Q2 = Q3 = {a, b} × {b, c} and all possible
combinations of states are accepting. Intuitively, a state (x, y) claims that the next event
labeled by a or by b is actually labeled by x (and similarly the next event labeled by c or
by b is actually labeled by y). The transition functions are the following (we only give
the non empty transitions):

δb,∅ = δb,{1}((b, b)) = δb,{2}((b, b)) = δb,{3}((b, b))

= δb,{1,3}((b, c), (a, b)) = {(b, b), (a, b), (b, c), (a, c)}

δa,{1}((a, b)) = δa,{2}((a, b)) = {(a, b), (b, b)}

δa,{1}((a, c)) = δa,{2}((a, c)) = {(a, c), (b, c)}

δc,{2}((b, c)) = δc,{3}((b, c)) = {(b, c), (b, b)}

δc,{2}((a, c)) = δc,{3}((a, c)) = {(a, c), (a, b)}

Here is an R−-run of this automaton:

a, (a, c) a, (b, c)

b, (a, c) b, (b, b) b, (b, c) b, (a, b)

c, (a, b) c, (b, b)

It is easy to see that all traces starting with b admit an F−-successful R−-run of A.
Although less trivial, the converse is also true. Therefore, in the mode R−F−, this
automaton accepts the set of traces starting with b. By changing the initial condition of
the automaton, we can recognize all traces starting with a or with c or with a and c. For
instance, if we set δb,∅ = δc,∅ = ∅ and δa,∅ = {(a, b), (b, b)} we accept all traces starting
with a.

Now let P ⊆ P(~Σ) be some set of ~Σ-pomsets and let α, β ∈ {+,−}. For a ~Σ-ACA A,
the language of pomsets from P accepted by A in the mode RαFβ, denoted by RαFβ(A,P),

is the set of all ~Σ-pomsets t ∈ P that admit an Fβ-successful Rα-run. Then RαFβ(P)

denotes the set of all languages RαFβ(A,P) for some ~Σ-ACA A. The set dRαFβ(P)

contains all languages RαFβ(A,P) for some deterministic ~Σ-ACA A. Often, we will

abbreviate (d)RαFβ(A,P(~Σ)) by (d)RαFβ(A).

We conclude this section with a few remarks. First, the covering of pomsets by the
chains formed by the fixed sequential processes is crucial in the definition of asynchronous
cellular automata. It allows us to use a fixed number of local states and to determine
the read and write domains of the actions using the labeling and the order relation. The
weakest covering is when each Σi is a singleton. In this case we have a set of local states
per letter as in the asynchronous cellular automata for traces [Zie89, CMZ93]. Note
that, even with this trivial covering, our definition is not the same as that of Zielonka
for traces. Mainly, in our definition, a run of the ACA is over the Hasse diagram (over
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the directed acyclic graph (V,E, λ), respectively) of the pomset whereas with Zielonka’s
ACA for traces, a run is in fact over the dependence graph of the trace. A dependence
graph is an intermediary representation of a trace between its Hasse diagram and its
directed acyclic graph (V,E, λ). This intermediary representation is possible thanks to
the existence of a static dependence relation over actions. More precisely, our definition of
ACA for pomsets and that of Zielonka for traces differ in three respects. First, Zielonka’s
definition uses a global initial state which in our case is coded in the transition functions
of the form δa,∅. Second, the read domains in our definition depend on the actual pomset
whereas in Zielonka’s definition a fixed set of processes is read even if the last executions
of some of these processes are far below the current action. Third (especially in the
acceptance mode F−), we do not necessarily read the final states of all local processes
to determine whether a run is successful whereas in Zielonka’s definition the states of all
processes are collected globally to decide acceptance.

4 ACAs on general pomsets - positive results

4.1 The acceptance mode

First we show that changing the acceptance mode between − and + preserves the ex-
pressive power of nondeterministic asynchronous cellular automata. Our constructions
yield a nondeterministic automaton even if we start with a deterministic one. Later, in
Proposition 6.4, we will see that in general for a deterministic ACA there is no deter-
ministic automaton that accepts the same language in the other acceptance mode, i.e.
that the following theorem does not hold for deterministic ACAs.

Theorem 4.1 Let α ∈ {+,−}. Then RαF−(P(~Σ)) = RαF+(P(~Σ)), i.e. for any ~Σ-ACA

A there exist nondeterministic ~Σ-ACAs A1 and A2 such that

RαF−(A,P(~Σ)) = RαF+(A1,P(~Σ)) and RαF+(A,P(~Σ)) = RαF−(A2,P(~Σ)).

Proof. First, we construct the ~Σ-ACA A1. This ~Σ-ACA A1 will simulate the run of
A on some pomset t and additionally will guess the maximal node of t for each process.
To do this, along a successful Rα-run of A1 on t, any local process i nondeterministically
picks one and only one node x with p◦λ(x) = i. This node sends a signal Endi upwards.

To check this guess, whenever a node y with p◦λ(y) = i receives the signal Endi, the
automaton stops, i.e. no successor state is defined and therefore the automaton is forced
to reject. Note that i ∈ F+(t) is actually in F−(t) iff there is no node z with p ◦ λ(z) 6= i
that received the signal Endi. Hence, the automaton A1 can compute the tuple of final
maximal states of the run of A from its tuple of final states and accept or reject the
pomset accordingly.

Now we construct the ~Σ-ACA A2. The idea is as follows: Similarly to the construction
above, A2 simulates A. Additionally, any local process i ∈ [n] guesses its maximal node
and sends a signal (Endi, pi) upwards where pi is the current state of process i. This
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signal is forwarded upward by all transitions. The ACA A2 stops if a node of process
i receives the signal Endi since this means that the guessed node was not maximal in
its chain. By reading the maximal states of the run of A2 on t we can now recover the
final state of each process in F+(t) and accept or reject the pomset according to the
acceptance condition of A. ut

4.2 Asynchronous mapping

Asynchronous mappings were introduced in [CMZ93] in order to simplify the construction

of ACAs for traces. Here we generalize this notion to ~Σ-pomsets. The domain of an
asynchronous mapping must be a prefix closed subset of the set of ~Σ-pomsets, that is a
subset Q of ~Σ-pomsets such that if some ~Σ-pomset s is a prefix of t ∈ Q then s ∈ Q.
For instance, P(~Σ) and M(Σ, D) are prefix closed sets of ~Σ-pomsets.

Definition 4.2 Let Q be a prefix closed set of ~Σ-pomsets and let S be a finite set. A
mapping σ : Q → S is asynchronous if for all t = (V,≤, λ) ∈ Q,

1. for all vertices x ∈ V , the value σ(↓x) is uniquely determined by σ(⇓x) and λ(x).

2. for all A,B ⊆ Σ, the value σ(∂A∪B(t)) is uniquely determined by σ(∂A(t)) and
σ(∂B(t)).

A language L ⊆ Q is recognized by an asynchronous mapping σ : Q → S whenever
L = σ−1(σ(L)).

Proposition 4.3 Let Q ⊆ P(~Σ) be a prefix closed set of ~Σ-pomsets and α, β ∈ {+,−}.

Let L ⊆ Q be a language of ~Σ-pomsets recognized by some asynchronous mapping σ :
Q → S. Then there exists a deterministic ~Σ-asynchronous cellular automaton A such
that RαFβ(A,Q) = L.

Proof. In this proof, we consider only the case α = β = −. For the other modes, the
proof remains essentially the same. One only has to change accordingly the definitions
of the transition functions and of the final set. This is left to the reader.

Our proof follows the same ideas as the corresponding one for traces. Assume that
σ : Q → S recognizes the language L ⊆ Q. We define a deterministic ~Σ-ACA A as
follows:

1. For all i ∈ [n], let Qi = S,

2. For all a ∈ Σ, J ⊆ [n] and (qi)i∈J ∈ SJ , let

δa,J ((qi)i∈J) = {σ(t) | t ∈ Q, t = ↓x for some x such that

λ(x) = a,R−(x) = J and σ(∂Σi
(⇓x)) = qi for all i ∈ J}

3. F = {σ(∂Σi
(t))i∈F−(t) | t ∈ L}.

11



Claim 1. A is deterministic.
Indeed, let a ∈ Σ, J ⊆ [n] and (qi)i∈J ∈ SJ . Choose t = ↓x and t′ = ↓x′ in Q with

λ(x) = λ(x′), R−(x) = J = R−(x′) and σ(∂Σi
(⇓x)) = qi = σ(∂Σi

(⇓x′)) for all i ∈ J .
We have ⇓x = ∂(∪i∈J Σi)(⇓x) and ⇓x′ = ∂(∪i∈J Σi)(⇓x

′). Hence, using the definition of
asynchronous mappings, we deduce σ(⇓x) = σ(⇓x′) and since λ(x) = λ(x′) it follows
that σ(t) = σ(↓x) = σ(↓x′) = σ(t′) which proves the claim.

Claim 2. Let t = (V,≤, λ) ∈ Q be a ~Σ-pomset. Then, the mapping r : V →
⋃

i∈[n]Qi

defined by r(x) = σ(↓x) is the R−-run of A on t.
One only has to check that r(x) ∈ δλ(x),R−(x)(r(∂i(⇓ x))i∈R−(x)) for any x ∈ V . But

this follows directly from the definition of the transition functions of A.

Claim 3. R−F−(A,Q) = L.
Note first that t = ∂(∪

i∈F−(t)Σi)(t) for all t ∈ Q. Now assume that t ∈ R−F−(A).

Then for the unique run r of A on t, we have r(∂i(t))i∈F−(t) ∈ F and there exists t′ ∈ L
such that F−(t) = F−(t′) and σ(∂Σi

(t)) = σ(∂Σi
(t′)) for all i ∈ F−(t) = F−(t′). Since σ

is asynchronous, it follows that σ(t) = σ(t′). Therefore, t ∈ σ−1(σ(L)) = L which proves
one inclusion. The converse is trivial. ut

Note that, for trace languages, the converse of Proposition 4.3 is also true implying
that all alternative modes of ACAs are equivalent for traces. Indeed, it is easy to show
that a trace language accepted by an ACA is a recognizable trace language, whatever
mode is chosen for accepting runs. Moreover, if L is a recognizable trace language,
the existence of an asynchronous mapping which recognizes L was proven in [CMZ93].
Finally, by Proposition 4.3, from this asynchronous mapping one can easily get for each
mode an ACA which accepts L.

The equivalence between alternative definitions of accepting runs will be extended
to a more general class of pomsets in Section 5. Section 6 will deal with a class of
pomsets where the equivalence for nondeterministic ACAs remains true while it will not
hold for deterministic ACAs. In Section 7 we will show that even the equivalence for
nondeterministic ACAs does not hold for the class of all ~Σ-pomsets. In addition, in
the general setting of P(~Σ), the converse of Proposition 4.3 is false (cf. discussion after
Proposition 6.4).

4.3 From ACA to MSO

In this section, we will define monadic second order (MSO) formulas and their interpre-
tations over pomsets. We will then prove that for all ACAs A (deterministic or not),
there exists an MSO formula which defines the language accepted by A.

Let Σ be a finite alphabet. Formulas of the MSO language over Σ that we consider
involve first order variables x, y, z . . . for vertices and monadic second order variables
X, Y, Z, . . . for sets of vertices. They are built up from the atomic formulas λ(x) = a
for a ∈ Σ, x ≤ y, and x ∈ X by means of the boolean connectives ¬,∨,∧,→,↔
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and quantifiers ∃, ∀ (both for first order and for second order variables). If we use the
quantifiers ∃ and ∀ only for first-order variables, we obtain formulas of first-order logic.
Formulas without free variables are called sentences. For instance, the following formulas
are first order and monadic second order sentences respectively.

ϕ1 ::= ∃x(λ(x) = a ∧ ∀y(x ≤ y → ¬λ(y) = b))

ϕ2 ::= ∃X∃Y (∀x(x ∈ X ∨ x ∈ Y ) ∧ ∃x (x ∈ X) ∧ ∃y (y ∈ Y )

∧ ∀x∀y(x ∈ X ∧ y ∈ Y → ¬x ≤ y ∧ ¬y ≤ x))

The satisfaction relation |= between pomsets t = (V,≤, λ) and a sentence ϕ of the
monadic second order logic is defined canonically with the understanding that first order
variables range over the vertices of V and second order variables over subsets of V . The
set of pomsets which satisfy a sentence ϕ is denoted by L(ϕ). For instance, L(ϕ1) is the
set of pomsets which have a vertex labeled by a with no vertex labeled by b above and
L(ϕ2) is the set of non connected pomsets.

In order to make the formulas more readable, we will use several abbreviations which
can be easily translated in our MSO language. For instance, we will write

x < y for x ≤ y ∧ ¬y ≤ x

x −−< y for x < y ∧ ¬∃z(x < z ∧ z < y)

λ(x) ∈ A for
∨

a∈A

λ(x) = a

p ◦ λ(x) = p ◦ λ(y) for
∨

1≤i≤n

(λ(x) ∈ Σi ∧ λ(y) ∈ Σi)

X ∩ Y = ∅ for ¬∃x(x ∈ X ∧ x ∈ Y )

Note that the language defined by a formula can contain pomsets with auto-concur-
rency (concurrent vertices with the same label). We do not need to put restrictions on
the pomsets defined by a formula because all restrictions we need can be expressed by
MSO (or even first-order) formulas. For instance the set P(~Σ) of ~Σ-pomsets is defined
by the formula

ϕ~Σ ::= ∀x∀y(p ◦ λ(x) = p ◦ λ(y) → (x ≤ y ∨ y ≤ x))

and the set M(Σ, D) of traces over a dependence alphabet is defined by the formula

∀x∀y ([(λ(x), λ(y)) ∈ D → (x ≤ y ∨ y ≤ x)] ∧ [x −−< y → (λ(x), λ(y)) ∈ D])

where (λ(x), λ(y)) ∈ D stands for the formula
∨

(a,b)∈D(λ(x) = a ∧ λ(y) = b).
We are now ready to state

Theorem 4.4 Let A be a possibly nondeterministic ~Σ-ACA and let α, β ∈ {+,−}.

There exists an existential monadic second order sentence ϕ over ~Σ such that

L(ϕ) = RαFβ(A,P(~Σ)).

13



Proof. Let A = ((Qi)i∈[n], (δa,J)a∈Σ,J⊆[n], F ) be a ~Σ-ACA. We will construct an MSO

sentence which will be satisfied exactly by those ~Σ-pomsets accepted by A in the mode
R−F−. For the other modes, the proof is essentially the same: one only has to change the
formulas transition and accepted accordingly. Let k be the number of states in

⋃

i∈[n]Qi.

We may assume that
⋃

i∈[n]Qi = [k] = {1, . . . , k}. The following formula claims the

existence of an F−-successful R−-run of the automaton.

ψ ::= ∃X1 . . .∃Xk

(

partition(X1, . . . , Xk) ∧
(

∀x transition(x)
)

∧ accepted
)

We will now explain this formula and give the sub-formulas partition, transition and
accepted. An R−-run over a ~Σ-pomset t = (V,≤, λ) is coded by the MSO variables
X1, . . . , Xk. More precisely, Xi stands for the set of vertices mapped on the state i
by the R−-run. The formula partition(X1, . . . , Xk) makes sure that the MSO variables
X1, . . . , Xk describe a mapping from V to

⋃

i∈[n]Qi.

partition(X1, . . . , Xk) ::=



∀x
∨

i∈[k]

x ∈ Xi



 ∧

(

∧

1≤i<j≤k

Xi ∩Xj = ∅

)

Then, we have to claim that this labeling of vertices by states agrees with the transition
functions of the automaton.

transition(x) ::=
∨

q∈δa,J ((qi)i∈J )

(

λ(x) = a ∧ x ∈ Xq ∧ ∀y (y −−< x→ p ◦ λ(y) ∈ J)

∧
∧

i∈J

∃y (y −−< x ∧ p ◦ λ(y) = i ∧ y ∈ Xqi
)

)

where the disjunction ranges over all letters a ∈ Σ, states q ∈ Qp(a), subsets J ⊆ [n] and
tuples (qi)i∈J ∈

∏

i∈J Qi such that q ∈ δa,J ((qi)i∈J).
It remains to state that the R−-run reaches a final state of the automaton.

accepted ::=
∨

(fi)i∈J∈F

(

∀x
(

(¬∃y x < y) → p ◦ λ(x) ∈ J
)

∧
∧

i∈J

∃x
(

(¬∃y x < y) ∧ p ◦ λ(x) = i ∧ x ∈ Xfi
.
)

)

In fact, the formula ψ describes an F−-accepting R−-run of the automaton only for
~Σ-pomsets. Therefore, we need in addition the formula ϕ~Σ described above. Finally, the
theorem follows from

L(ϕ~Σ ∧ ψ) = R−F−(A).

ut

The converse of the theorem above does not hold as we will see by Theorem 7.3 and
Proposition 7.4.
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5 CROW-pomsets

In this section, we prove that the converse of Theorem 4.4 holds for the special subclass
of ~Σ-pomsets which satisfy the CROW axiom defined below.

Definition 5.1 A ~Σ-pomset t = (V,≤, λ) satisfies the Concurrent Read and Exclusive
Owner Write (CROW) axiom if for all x, y, z ∈ V ,

x −−< y, x < z and y ‖ z =⇒ p ◦ λ(x) 6= p ◦ λ(z).

The set of ~Σ-pomsets which satisfy the CROW axiom is denoted by CROW(~Σ).

A possible interpretation of this axiom is to think of the ACA as a Concurrent Read
and Exclusive Owner Write (CROW) machine. More precisely, we consider n processes
whose sets of actions are Σ1, . . . ,Σn respectively. Each process has a memory which can
be read by all actions but can be written by its own actions only (Owner Write). We allow
concurrent reads of memories but no concurrent writes. As mentioned in Section 2.1,
this restriction is already enforced by the very definition of ~Σ-pomsets. Without further
restrictions, two concurrent events may respectively read from and write to the same
location. This is the case when there exist two concurrent events y ‖ z such that z
writes in the memory of some process i (p ◦ λ(z) = i) and y reads the memory of this
process i (p◦λ(x) = i for some x −−< y). This is precisely the situation which is forbidden
by the CROW axiom.

Theorem 5.2 Let ϕ be an MSO sentence over ~Σ and let β ∈ {+,−}. There exists a

deterministic ~Σ-ACA A such that

L(ϕ) ∩ CROW(~Σ) = R−Fβ(A,CROW(~Σ)).

In order to prove this theorem, one can use an induction on the structure of the
formula. Disjunction and existential quantification are easily dealt with when nondeter-
ministic ACAs are allowed. On the other hand, complement is easy for deterministic
ACAs. Whence the core of such an approach is the determinization of ACAs. For
this problem, starting from a nondeterministic ACA A, one can directly construct an
asynchronous mapping which accepts the language R−Fβ(A,CROW(~Σ)) and then use
Proposition 4.3. This construction is similar to that of [Mus96] and uses the asyn-
chronous time stamping ν of Cori, Métivier & Zielonka [CMZ93] but the proofs are more
involved. In particular, it is known that for traces the mapping ν is asynchronous by it-
self [CMZ93, DM95] but this is not the case for CROW-pomsets. Here we give a simpler
proof which uses Zielonka’s theorem. For this, we first map CROW-pomsets into traces
by simply changing the labeling.

Let Σ′ = Σ×P([n]) be a new set of labels and for all i ∈ [n], let Σ′
i = Σi ×P([n]) be

the associated new processes. By a slight abuse of notation, let p again be the mapping
that associates with any (a,M) ∈ Σ′ the process i with (a,M) ∈ Σ′

i. This is justified
since (a,M) ∈ Σ′

i iff a ∈ Σi, i.e. p(a,M) = p(a). Intuitively, the second component of
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a label in Σ′ stands for the read domain of the action. We define an embedding g from
P(~Σ) into P( ~Σ′) by g(V,≤, λ) = (V,≤, λ′) where for all x ∈ V , λ′(x) = (λ(x),R−(x)).
Note that g is well defined, since for all i ∈ [n], λ′−1(Σ′

i) = λ−1(Σi) is totally ordered.
Let D′ be the dependence relation defined on Σ′ by

D′ = {((a, A), (b, B)) | p(a) = p(b) ∨ p(a) ∈ B ∨ p(b) ∈ A}.

Hence, two actions are dependent if either they both write in the same process, or one
reads the process written by the other.

Proposition 5.3
CROW(~Σ) = g−1(M(Σ′, D′))

Proof. We first prove that CROW(~Σ) ⊆ g−1(M(Σ′, D′)). Let t = (V,≤, λ) be a

CROW-pomset from CROW(~Σ) and let g(t) = (V,≤, λ′). Let x, y ∈ V and assume
that x −−< y. Then, p ◦ λ(x) ∈ R−(y) and it follows that (λ′(x), λ′(y)) ∈ D′. Now, let
y, z ∈ V and assume that (λ′(y), λ′(z)) ∈ D′. If p ◦ λ(y) = p ◦ λ(z) then y 6‖ z since t is

a ~Σ-pomset. If p ◦ λ(y) 6= p ◦ λ(z), we have for instance p ◦ λ(z) ∈ R−(y). Hence, there
exists x ∈ V such that x −−< y and p ◦ λ(x) = p ◦ λ(z). Therefore, x and z must be
ordered. Since x < z and y ‖ z would contradict the CROW-axiom, it follows z ≤ x,
whence z < y. Therefore, g(t) ∈ M(Σ′, D′).

Conversely, let t = (V,≤, λ) ∈ g−1(M(Σ′, D′)) and let g(t) = (V,≤, λ′). Let x, y, z ∈
V be such that x −−< y, x < z and y ‖ z. By definition, p ◦ λ(x) ∈ R−(y) and
(λ′(y), λ′(z)) /∈ D′. Therefore, p ◦ λ(z) /∈ R−(y) and it follows that p ◦ λ(x) 6= p ◦ λ(z).

ut

Proposition 5.4 Let ϕ be an MSO sentence over Σ. There exists an MSO sentence ϕ′

over Σ′ such that

L(ϕ) ∩ CROW(~Σ) = g−1(L(ϕ′) ∩ M(Σ′, D′))

Proof. Let ϕ′ be the MSO sentence over Σ′ obtained from ϕ by substituting for atomic
formulas of the form λ(x) = a the disjunction

∨

J⊆[n] λ
′(x) = (a, J):

ϕ′ = ϕ





∨

J⊆[n]

λ′(x) = (a, J)

/

λ(x) = a



 .

Let t = (V,≤, λ) ∈ L(ϕ) ∩ CROW(~Σ). We have g(t) = (V,≤, λ′) ∈ M(Σ′, D′) by
Proposition 5.3 and it remains to show that g(t) |= ϕ′. This is clear since λ(x) = a if
and only if λ′(x) = (a, J) for some J ⊆ [n]. The converse can be shown similarly. ut

Proposition 5.5 Let A′ be a (deterministic) ~Σ′-ACA and β ∈ {+,−}. There exists a

(deterministic) ~Σ-ACA A such that R−Fβ(A,P(~Σ)) = g−1(R−Fβ(A′,P( ~Σ′))).
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Proof. Let A′ = ((Qi)i∈[n], (δ
′
a′,J)a′∈Σ′,J⊆[n], F ) be a ~Σ′-ACA. For all a ∈ Σ and J ⊆ [n],

let δa,J = δ′(a,J),J . We claim that the automaton A = ((Qi)i∈[n], (δa,J)a∈Σ,J⊆[n], F ) is the

required ~Σ-ACA. Note that if A′ is deterministic then so is A.
We first show that in order to accept a pomset in g(P(~Σ)) the ACA A′ only uses

transition functions of the form δ′(a,J),J . Indeed, let t = (V,≤, λ) ∈ P(~Σ) and let g(t) =

(V,≤, λ′). Then R−(x) = p ◦ λ′({y ∈ V | y −−< x}) = p ◦ λ({y ∈ V | y −−< x}) for all
x ∈ V . Therefore, in a run of A′ on g(t) the transition functions used are of the form
δ′λ′(x),R−(x) = δ′(λ(x),R−(x)),R−(x) = δλ(x),R−(x).

It follows that a mapping r : V →
⋃

i∈[n]Qi is an Fβ-successful R−-run of A′ on g(t)

if and only if it is an Fβ-successful R−-run of A on t, that is,

t ∈ R−Fβ(A,P(~Σ)) ⇐⇒ g(t) ∈ R−Fβ(A′,P( ~Σ′)) ⇐⇒ t ∈ g−1(R−Fβ(A′,P( ~Σ′))).

The proposition follows. ut

Proof of Theorem 5.2 Let ϕ be an MSO sentence over Σ. By Proposition 5.4, there
exists an MSO sentence ϕ′ over Σ′ such that

L(ϕ) ∩ CROW(~Σ) = g−1(L(ϕ′) ∩ M(Σ′, D′)).

The language L(ϕ′) ∩ M(Σ′, D′) is a recognizable trace language [Tho90]. Hence by
[CMZ93], there exists an asynchronous mapping σ from M(Σ′, D′) into a finite set which

recognizes L(ϕ′)∩M(Σ′, D′). By Proposition 4.3, there exists a deterministic ~Σ′-ACA A′

such that R−Fβ(A′,M(Σ′, D′)) = L(ϕ′) ∩ M(Σ′, D′). It follows by Proposition 5.5 that

there exists a deterministic ~Σ-ACA A such that R−Fβ(A,P(~Σ)) = g−1(R−Fβ(A′,P( ~Σ′))).
Finally, applying Proposition 5.3 we obtain

R−Fβ(A,CROW(~Σ)) = R−Fβ(A,P(~Σ)) ∩ CROW(~Σ)

= g−1(R−Fβ(A′,P( ~Σ′))) ∩ g−1(M(Σ′, D′))

= g−1(R−Fβ(A′,M(Σ′, D′)))

= g−1(L(ϕ′) ∩ M(Σ′, D′))

= L(ϕ) ∩ CROW(~Σ).

ut

Note that the idea of the proof above can be summarized as follows: First, we
constructed a suitable dependence alphabet (Σ′, D′) and a mapping g : CROW(~Σ) →
M(Σ′, D′). This mapping g is just a relabeling that can be computed by a deterministic
~Σ-ACA. In the trace monoid M(Σ′, D′), the image of CROW(~Σ) under the mapping g
is definable in MSO and therefore recognizable. Furthermore, the image of the language
L(ϕ) ∩ CROW(~Σ) ⊆ M(Σ′, D′) is definable by ϕ′. Hence, there exists a ~Σ′-ACA that
accepts this image. Combining this automaton with the automaton that computes the
mapping g, we obtain the desired ~Σ-ACA that accepts L(ϕ)∩CROW(~Σ). In the following
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section on k-pomsets, we will follow a similar line of proof with the only difference that
the mapping g (i.e. its substitute) cannot be computed deterministically.

As a corollary of Theorems 4.4 and 5.2 we obtain that (existential) MSO sentences,

nondeterministic ~Σ-ACAs in the reading mode R− and deterministic ~Σ-ACAs in the
reading mode R− have the same expressive power for CROW(~Σ)-pomsets.

Theorem 5.6 Let L ⊆ CROW(~Σ) and β ∈ {+,−}. The following are equivalent:

1. L is definable by a monadic second order sentence,

2. L is definable by an existential monadic second order sentence,

3. there exists a nondeterministic ~Σ-ACA A such that L = R−Fβ(A,CROW(~Σ)),

4. there exists a deterministic ~Σ-ACA A such that L = R−Fβ(A,CROW(~Σ)).

In the remainder of this section, we prove an analogous result for the mode R+Fβ.
We do this by constructing a deterministic ACA A′ from a deterministic ACA A such
that R−Fβ(A,CROW(~Σ)) = R+Fβ(A′,CROW(~Σ)). Then Theorem 4.4 together with
Theorem 5.6 gives the desired result. The main task of this construction is to provide
an ACA with the ability to distinguish immediate predecessors among all predecessors
in an R+-run. We show that this is possible in the next proposition using the following
lemma.

Lemma 5.7 ([CMZ93]) For any trace monoid M, there exists a finite set S and an
asynchronous mapping τ : M → S such that τ(t) uniquely determines the labels of the
maximal elements of t, i.e. the set λ(max(t)), for each trace t ∈ M.

Note that the mere mapping t 7→ λ(max(t)) is not asynchronous but it is easy to
obtain an asynchronous mapping τ satisfying the condition of the lemma above by using
the asynchronous time stamping introduced in [CMZ93].

Notation. Let t = (V,≤, λ) be a ~Σ-pomset. Then t′ := (V,≤, λ × R−) is a trace in
M(Σ′, D′) with g(t) = t′. We write (t,R−) as an abbreviation for g(t) = (V,≤, λ×R−). In
addition, let (↓x,R−) denote (↓x,≤ ∩(↓x×↓x), (λ×R−) �↓x) and similarly for (⇓x,R−)
whenever x ∈ V .

Proposition 5.8 There exists a deterministic ~Σ-ACA A′′ = ((Q′′)i∈[n], (δ
′′
a,J)a∈Σ,J⊆[n], F

′′)

(note that all processes have the same set Q′′ of local states) and a mapping η : Q′′ → 2[n]

such that

(i) R+Fβ(A′′,CROW(~Σ)) = CROW(~Σ).

(ii) Let t = (V,≤, λ) be a CROW-pomset and let r be the R+-run of A′′ on t. Then
η ◦ r = R−, that is, R−(x) = η(r(x)) for all x ∈ V .
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Proof. Let τ : M(Σ′, D′) → S be the asynchronous mapping given by Lemma 5.7.
The common local state space of the ACA A′′ is given by Q′′ = 2[n] × S. For a ∈ Σi,
let δ′′a,∅ = {(∅, τ(a, ∅))}. Now let ∅ 6= J ⊆ [n], (Mj , sj) ∈ Q′′ for j ∈ J and a ∈ Σi.
Then δ′′a,J ((Mj, sj)j∈J) consists of all pairs (M, s) ∈ Q′′ such that there exists a trace
t ∈ M(Σ′, D′) with

(1) J = p(t), τ∂j(t) = sj for j ∈ J ,

(2) M = p(max(t)), and s = τ(t · (a,M)).

Finally, all tuples of local states are accepting.
First we show that the transition functions are indeed deterministic: So let (Mj , sj) ∈

Q′′ for j ∈ J ⊆ [n], and a ∈ Σi. Let t, t′ ∈ M(Σ′, D′) be traces such that J = p(t) = p(t′)
and sj = τ∂j(t) = τ∂j(t

′) for any j ∈ p(t). Clearly, t =
∨

j∈p(t) ∂j(t) and similarly for

t′. Since τ is an asynchronous mapping, τ(t) = τ(t′) follows from τ∂j(t) = τ∂j(t
′) for

j ∈ p(t) = p(t′). Then p ◦ max(t) = p ◦ max(t′) =: M by the choice of the asynchronous
mapping τ . Now let y ∈ max(t). Then p(y) ∈ M implying that λ′(y) and (a,M) are
dependent. Since this holds for all y ∈ max(t), the trace t · (a,M) is prime. Similarly,
the trace t′ · (a,M) is prime. Since, as we saw above, τ(t) = τ(t′), the asynchronicity
of τ implies τ(t · (a,M)) = τ(t′ · (a,M)) =: s. Thus, we showed that (M, s) is the only
element of δ′′a,J((Mj , sj)j∈J), i.e. the automaton A′′ is deterministic.

To show the first statement of Proposition 5.8, it is sufficient to prove that any
CROW-pomset allows a run of the ACA A′′. Therefore, let t = (V,≤, λ) ∈ CROW(~Σ).
Define r : V → 2[n] × S by r(x) := (R−(x), τ(↓x,R−)). Let x ∈ V , r(x) = (M, s) and
r∂j(⇓x) = (Mj , sj) for j ∈ R+(x). We have to show that

(M, s) ∈ δ′′λ(x),R+(x)((Mj , sj)j∈R+(x)).

Then t := (⇓x,R−) is a trace from M(Σ′, D′) with R+(x) = p(⇓x) = p(t) and sj =
τ∂j(⇓x,R

−) = τ(∂j(⇓x),R
−) for all j ∈ R+(x). Thus, (1) holds. Clearly, M = R−(x) =

p ◦max(⇓x) = p ◦max(t) and s = τ(↓x,R−) = τ((⇓x,R−) · (λ(x),M)) which proves (2).
Thus, r is indeed an R+-run of A′′ on t.

Since A′′ is deterministic, r is the only possible run of A′′ on t. Defining η to be the
first projection from Q′′ to 2[n], the second statement is obvious. ut

Now we can easily construct an ACA that simulates an R−-run of a given ACA
in the mode R+ as follows: Let A = ((Qi)i∈[n], (δa,J)a∈Σ,J⊆[n], F ) be a ~Σ-ACA and let

A′′ = ((Q′′)i∈[n], (δ
′′
a,J)a∈Σ,J⊆[n], F

′′) be the ~Σ-ACA from Proposition 5.8. Then define
Q′

i := Qi×Q
′′ and F ′ := {(qj , q

′′
j )j∈J | (qj)j∈J ∈ F}. For a ∈ Σ, J ⊆ [n] and (qj , q

′′
j ) ∈ Q′

j

for j ∈ J , let δ′a,J((qj, q
′′
j )j∈J) consist of all tuples (q, q′′) with q′′ ∈ δ′′a,J((q′′j )j∈J) and

q ∈ δa,η(q′′)((qj)j∈η(q′′)). Note that, since A′′ is deterministic, A′ is deterministic whenever
A is.

Now let t = (V,≤, λ) be a CROW-pomset and let r′ be an Fβ-successful R+-run of
A′ on t. Then, by Proposition 5.8 (ii), π1 ◦ r

′ is an R−-run of A on t. By the definition
of the accepting states of A′, it is Fβ-successful. Hence R+Fβ(A′) ⊆ R−Fβ(A). To show
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the other inclusion, let r be an Fβ-successful R−-run of A on t. By Proposition 5.8 (i),
there is an R+-run r′′ of A′′ on t. Let r′ = r × r′′. We show that this is an R+-run of
A′ on t. Let x ∈ V . By Proposition 5.8 (ii), R−(x) = η(r′′(x)). Since r is an R−-run of
A, we get that r(x) ∈ δa,η(r′′(x))(r∂j(⇓x)j∈η(r′′(x))). Hence r × r′′ is an R+-run on t that
is Fβ-successful since the second component does not influence the acceptance. Thus
R+Fβ(A′) = R−Fβ(A). Hence, using Theorems 4.4 and 5.6 we get

Theorem 5.9 Let L ⊆ CROW(~Σ) and α, β ∈ {+,−}. The following are equivalent:

1. L is definable by a monadic second order sentence,

2. L is definable by an existential monadic second order sentence,

3. there exists a nondeterministic ~Σ-ACA A such that L = RαFβ(A,CROW(~Σ)),

4. there exists a deterministic ~Σ-ACA A such that L = RαFβ(A,CROW(~Σ)).

5. L is recognized by an asynchronous mapping.

6 k-pomsets

Let t = (V,≤, λ) be a ~Σ-pomset. Furthermore, let k be a positive integer and C` ⊆ V
for 1 ≤ ` ≤ k. We call the tuple (C1, C2, . . . , Ck) a k-chain covering of t if

1. C` is a chain for ` = 1, 2, . . . , k,

2. V =
⋃

`∈[k]C` and

3. for any x, y ∈ V with x −−< y there exists ` ∈ [k] with x, y ∈ C`.

The ~Σ-pomset t is a k-pomset if it has a k-chain covering. Let Pk denote the set of all
k-pomsets over ~Σ.

Remark 6.1 Let t = (V,≤, λ) ∈ CROW(~Σ). For i, j ∈ [n] and i 6= j define Ci,j :=
λ−1(Σi) ∪ {y ∈ λ−1(Σj) | ∃x ∈ λ−1(Σi) : x −−< y}. Then the set {Ci,j | i, j ∈ [n], i 6= j}
satisfies properties 2 and 3 given above. Furthermore, Ci,j is a chain since t is a CROW-

pomset. Thus, CROW(~Σ) ⊆ Pn(n−1).

6.1 Separating the deterministic classes for k-pomsets

Example 6.2 Let n = 3, k = 2, Σ1 = {a}, Σ2 = {b} and Σ3 = {c}. Furthermore, let
L be the set of all k-pomsets (V,≤, λ) over (Σ1,Σ2,Σ3) such that λ−1(a) is even, λ−1(b)
and λ−1(c) are nonempty and no a-labeled element dominates some b- or c-labeled one.
Then L is in dRαF+(Pk), but not in dRαF−(Pk) for α ∈ {+,−}.
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Proof. Let Q1 = {0, 1} and Q2 = Q3 = {0}. Furthermore, we define transition
functions as follows:

δa,J((qi)i∈J) =











∅ 2 ∈ J or 3 ∈ J

{(q1 + 1) mod 2} J = {1}

{1} J = ∅

and δb,J((qi)i∈J) = δc,J((qi)i∈J) = {0} for any J and qi. With F = {(0, 0, 0)}, we get a

deterministic ~Σ-ACA A = ((Qi)i∈[3], (δd,J), F ) such that R−F+(A,Pk) = R+F+(A,Pk) =
L witnessing L ∈ dRαF+(Pk).

a1 a2 a2m a2m+1
a2m+2

b1

c1The k-pomset tm

a1 a2 a2i a2i+1

a2i+2

a2j+1

b1

c1The k-pomset t

Figure 1: cf. Proof of Example 6.2

Suppose, A is a deterministic ~Σ-ACA such that L = RαF−(A,Pk) for α = + or
α = −. Furthermore, let ` = |Q2 × Q3| + 1. To derive a contradiction, let tm (for

m ∈ N) denote the ~Σ-pomset depicted in Figure 1. The labeling is defined canonically
by λ(ai) = a, λ(b1) = b and λ(c1) = c. Since tm ∈ L, there is an F−-successful Rα-run rm

of A on tm. Since ` is larger than the number of tuples from Q2×Q3, there are i < j ≤ `
such that ri(b1) = rj(b1) and ri(c1) = rj(c1).

Now consider the ~Σ-pomset t = (V,≤, λ) on Figure 1 that does not belong to L.
The labeling on t is defined canonically. Let r : V → Q1 ∪ Q2 ∪ Q3 be the restric-

tion of rj, i.e. r = rj �V . Since A is deterministic, we get r � {a1, a2, . . . , a2i+2} =
ri � {a1, a2, . . . , a2i+2}, in particular r(a2i+2) = ri(a2i+2). Thus, r is an Rα-run of
A on t. Since F−(t) = {2, 3} = F−(tj), the run r is F−-successful contradicting
L = RαF−(A,Pk). ut
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Example 6.3 Let n = k = 2, Σ1 = {a} and Σ2 = {b}. Furthermore, let L consist of
all k-pomsets (V,≤, λ) over (Σ1,Σ2) that have a largest element x such that λ(x) = b.
Then L is in dRαF−(Pk), but not in dRαF+(Pk) for any α ∈ {+,−}.

Proof. Clearly, there is a deterministic ~Σ-ACA that allows an Rα-run on any ~Σ-pomset.
Let F consist of all tuples (qi)i∈J of local states with J = {2}. Then this ~Σ-ACA A
accepts L in the mode RαF−, i.e. RαF−(A,Pk) = L witnessing L ∈ dRαF−(Pk).

We want to show that there is no deterministic ~Σ-ACA A such that RαF+(A,Pk) = L.

By contradiction, assume A is such a ~Σ-ACA. Let ` = |Q1|+2 and consider the k-pomset
t = (V,≤, λ) with V = {ai | i = 1, 2, . . . , `} ∪ {b1}, a1 < a2 · · · < a` < b1 and with the
canonical labeling λ. Then t ∈ L. Hence there is an F+-successful Rα-run r of A on
t. Since ` > |Q1| + 1, there are i < j < ` such that r(ai) = r(aj). Now consider the
k-pomsets t1 and t2 with V1 = V2 = {a` | ` = 1, 2, . . . , j} ∪ {b1} and the canonical
labeling. The order relations are defined by a1 <1 a2 <1 a3 · · · <1 aj <1 b1 (i.e. t1 is a
linear ordering with maximal element b1) and a1 <2 a2 <2 a3 · · · <2 aj and ai <2 b1 (i.e.
in t2, the a-labeled elements are linearly ordered, but the maximal element b1 covers ai).
Since t1 ∈ L, there is an F+-successful Rα-run r1 of A on t1. Since A is deterministic,
we have r1(a`) = r(a`) for ` ≤ j. This implies r1(ai) = r1(aj) since the equality holds
for the run r. Hence r1 is an Rα-run on t2, too. This implies that r1 is an F+-successful
Rα-run on t2, contradicting L = RαF+(A,Pk). ut

The two examples above can be generalized to prove the following

Proposition 6.4 Let n, k ≥ 3. Then the classes dR+F+(Pk), dR−F+(Pk), dR+F−(Pk),

and dR−F−(Pk) are pairwise incomparable. Consequently, also the classes dR+F+(P(~Σ)),

dR−F+(P(~Σ)), dR+F−(P(~Σ)), and dR−F−(P(~Σ)) are pairwise incomparable.

Proof. The incomparability of the classes from {dR+F+(Pk), dR−F+(Pk)} and those
from {dR+F−(Pk), dR−F−(Pk)} is witnessed by the two examples above. A language
that is deterministically acceptable in the mode R+Fβ, but not in the mode R−Fβ is
easily obtained from the language in Example 6.2 as follows: L consists of all k-pomsets
such that any b-labeled element dominates an even number of a-labeled elements. This
language is in dR+Fβ(Pk) for β ∈ {+,−}. To show that it is not in dR−Fβ(Pk), one adds
an additional maximal b-labeled element b2 to the k-pomsets tm and t (Figure 2). Then,
the reading domain of this additional element in mode R− is precisely the acceptance
domain of the original pomset on accepting mode F−. Therefore, the proof goes through
as before.

Similarly, one can adopt the idea from Example 6.3 to obtain a language that is
in dR−Fβ(Pk) but not in dR+Fβ(Pk). A bit more precisely, let L denote the set of 2-
pomsets over the alphabet ({a}, {b}, {c}) with a largest element that is labeled by c and
covers a b-labeled vertex. Then, one considers a pair of pomsets that is obtained from
the pair considered in the proof of Example 6.3 by adjoining a largest c-labeled vertex.

To show that the classes dRαFβ(P(~Σ)) are mutually incomparable, let α, β, α′, β ′ ∈

{+,−} with dRαFβ(P(~Σ)) ⊆ dRα′

Fβ′

(P(~Σ)). Now let A be a deterministic ~Σ-ACA.
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By our assumption dRαFβ(P(~Σ)) ⊆ dRα′

Fβ′

(P(~Σ)), there is a deterministic ~Σ-ACA

A′ such that RαFβ(A,P(~Σ)) = Rα′

Fβ′

(A′,P(~Σ)). Hence in particular RαFβ(A,Pk) =

RαFβ(A,P(~Σ))∩Pk = Rα′

Fβ′

(A′,P(~Σ))∩Pk = Rα′

Fβ′

(A′,Pk) and therefore α = α′ and
β = β ′ by what we showed above. ut

a1 a2 a2m a2m+1
a2m+2

b1 b2

c1The k-pomset tm

a1 a2 a2i a2i+1

a2i+2

a2j+1

b1 b2

c1The k-pomset t

Figure 2: cf. Proof of Proposition 6.4

Note that the set of k-pomsets forms a prefix closed class of ~Σ-pomsets. Hence
Proposition 4.3 can be applied. Therefore, any language of k-pomsets recognizable by
an asynchronous mapping is in the intersection of all classes dRαFβ(Pk). Since these
classes are incomparable, the languages recognizable by an asynchronous mapping form
a proper subclass of each of them. Hence we showed that the converse of Proposition 4.3
does not hold.

6.2 The mode R−

Due to Proposition 6.4, the expressive power of deterministic asynchronous cellular au-
tomata does not capture that of monadic second order logic on k-pomsets. It is the aim
of the remaining section to show that, on the other side, nondeterministic asynchronous
cellular automata do the job. More precisely, we saw that the reading and the accepting
mode of deterministic automata influence the expressive power relative to the class of k-
pomsets. Here, we will see that this is not the case for nondeterministic automata. This
subsection deals with the proof that nondeterministic automata in the mode R− have
the same expressive power as monadic second order logic. In the following subsection
we will simulate an R−-automaton by an R+-ACA.
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Definition 6.5 Let t = (V,≤, λ) be a ~Σ-pomset, k ∈ N and Λ : V → (2[k] \ {∅}). The
function Λ is a k-chain mapping if

1. for all minimal vertices x, y ∈ V , if x 6= y then Λ(x) ∩ Λ(y) = ∅,

2. for all non minimal vertices x ∈ V and ` ∈ Λ(x), there exists y ∈ V with y −−< x
and ` ∈ Λ(y).

3. for all non maximal vertices x ∈ V and ` ∈ Λ(x), there exists at most one y ∈ V
with x −−< y and ` ∈ Λ(y).

4. For all x, y ∈ V , if x −−< y then Λ(x) ∩ Λ(y) 6= ∅.

The following lemma relates k-chain mappings and k-chain coverings thereby justi-
fying the name k-chain mapping.

Lemma 6.6 Let t = (V,≤, λ) be a ~Σ-pomset. Then t ∈ Pk iff there exists a k-chain
mapping. In particular, if Λ is a k-chain mapping of t and ` ∈ [k], then the set Λ−1(`) =
{x ∈ V | ` ∈ Λ(x)} is a chain.

Proof. Let t ∈ Pk. Then there exists a k-chain covering (C`)`∈[k] of t. We may assume
that each of the chains C` is a maximal chain. Now define Λ(x) := {` ∈ [k] | x ∈ C`}.
Then Λ : V → (2[k]\{∅}) since V =

⋃

`∈[k]C`. Since C` is a chain for each ` ∈ [k], any two
different minimal elements of t belong to disjoint sets of chains. Hence the first property
is satisfied. Now let x ∈ V be non minimal and ` ∈ Λ(x). Since the chain C` is maximal,
there exists y ∈ V with y −−< x and ` ∈ Λ(y). Thus, the second requirement is satisfied.
Since the upper neighbors of x are mutually incomparable, the third clause holds as well.
If x −−< y, then there exists ` ∈ [k] such that x, y ∈ C`. Hence ` ∈ Λ(x) ∩ Λ(y) proving
the last statement.

Conversely, let t be a ~Σ-pomset and let Λ be a k-chain mapping. For ` ∈ [k], define
C` := {x ∈ V | ` ∈ Λ(x)}. Since Λ(x) 6= ∅ for all x ∈ V , we get V =

⋃

`∈[k]C`. By the

last property for Λ, for any x −−< y there exists ` ∈ [k] with x, y ∈ C`. It remains to
show that C` is a chain for any `: Let x, y ∈ C`. By the second property of Λ, there exist
chains x0 −−< x1 · · · −−< xa = x and y0 −−< y1 · · · −−< yb = y with x0, y0 minimal in t,
and xi, yj ∈ C` for 0 ≤ i ≤ a, 0 ≤ j ≤ b, a ≤ b, say. By the first property of Λ, x0 = y0.
Let 0 ≤ i < a such that xi = yi. This element is covered by xi+1 and by yi+1. By the
third property of Λ, xi+1, yi+1 ∈ C` implies xi+1 = yi+1. This shows that x ≤ y. ut

Next we show that Pk ∈ R−F−(P(~Σ)) by the construction of a recognizing automaton
A−

k . This ACA will be used later to relabel k-pomsets into traces.
Let part(k, n) denote the set of partial functions g from [k] to [n] with dom(g) 6= ∅.

For a partial function f ∈ part(k, n), we first define an ACA A−
k (f) whose local states are

partial functions in part(k, n). Intuitively, a node x of some k-pomset t will be labeled
by the partial function g in some run of A−

k (f) if dom(g) is the set of (maximal) chains
going through x and for all ` ∈ dom(g), g(`) is the next process for the chain `. The
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partial mapping f is in some sense the initial state of the automaton A−
k (f): f(`) = i

iff the chain ` starts in process i. As we will see, runs of this automaton correspond to
k-chain mappings.

More precisely, the ACA A−
k (f) is defined as follows: The set of local states (common

for all processes) is Q = part(k, n). For a ∈ Σi, let δa,∅ consist of all partial functions
g ∈ Q with dom(g) = f−1(i). For ∅ 6= J ⊆ [n] and gj ∈ Q for j ∈ J , we let δa,J((gj)j∈J)
be the set of all partial functions g ∈ Q such that

1. ∀j ∈ J , ∃` ∈ dom(g) such that gj(`) = i and

2. ∀` ∈ dom(g), ∃j ∈ J such that gj(`) = i.

Finally, all tuples of states are accepting. Let A−
k denote the disjoint union of the

automata A−
k (f) for all partial functions f ∈ part(k, n). Note that not all runs of A−

k

are successful, only those that lie completely inside A−
k (f) for some f ∈ part(k, n) are.

This can be easily checked with either acceptance condition Fβ with β ∈ {+,−}.

The following lemma shows that the k-chain mappings Λ on a ~Σ-pomset t coincide
precisely with the mappings dom ◦ r : V → P([k]) where r is an Fβ-successful R−-run of
the automaton A−

k constructed above.

Lemma 6.7 For k ∈ N, β ∈ {+,−} and t = (V,≤, λ) ∈ P(~Σ), we have:

1. for any Fβ-successful R−-run r of A−
k on t, the mapping dom ◦ r : V → 2[k] \ {∅}

is a k-chain mapping.

2. For any k-chain mapping Λ on t, there exists an Fβ-successful R−-run r of A−
k on

t such that Λ = dom ◦ r.

Proof. 1. Let r : V → part(k, n) be an Fβ-successful R−-run of A−
k on t and let

Λ = dom ◦ r. There exists a partial function f ∈ part(k, n) such that r is an R−-
run of A−

k (f). Now let x, y ∈ V be minimal and different. Then r(x) ∈ δλ(x),∅, and
therefore dom ◦ r(x) = f−1(p(x)). Similarly, dom ◦ r(y) = f−1(p(y)). Since x and y are
incomparable, p(x) 6= p(y). Hence Λ(x) and Λ(y) are disjoint. Thus we showed the first
condition of Definition 6.5.

Now, let x ∈ V be non minimal. For all j ∈ R−(x), let xj ∈ V be such that xj −−< x
and p(xj) = j. Let also gj = r(xj) and g = r(x). From g ∈ δλ(x),R−(x)((gj)j∈R−(x)) we
deduce

1. ∀j ∈ R−(x), ∃` ∈ dom(g) ∩ dom(gj) = Λ(x) ∩ Λ(xj) showing Definition 6.5 (4),

2. ∀` ∈ Λ(x) = dom(g), ∃j ∈ R−(x) with ` ∈ dom(gj) = Λ(xj) and gj(`) = p(x),
showing Definition 6.5 (2).

Finally, let x ∈ V be non maximal. The third condition in Definition 6.5 is a direct
consequence of the following claim: For all x, y ∈ V , if x −−< y and ` ∈ Λ(x) ∩ Λ(y)
then p(y) = r(x)(`). To prove this claim, let x, y ∈ V be such that x −−< y and let
` ∈ Λ(x) ∩ Λ(y). By Definition 6.5 (2) and (4) shown above, we find
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• y0 −−< y1 · · · −−< yi = y with y0 minimal and r(yq)(`) = p(yq+1) for all 0 ≤ q < i,

• x0 −−< x1 · · · −−< xj = x with x0 minimal and r(xq)(`) = p(xq+1) for all 0 ≤ q < j.

Now, we show by induction that xq = yq for all 0 ≤ q ≤ min(i, j). Indeed, ` ∈
dom(r(x0))∩dom(r(y0)) = Λ(x0)∩Λ(y0). Hence x0 = y0 by the first point shown above.
Now assume that xq = yq for some 0 ≤ q < min(i, j). We have p(xq+1) = r(xq)(`) =
r(yq)(`) = p(yq+1). Since xq −−< xq+1 and yq −−< yq+1 it follows that xq+1 = yq+1.
Finally, using xj = x −−< y = yi, we deduce that j = i− 1 and we obtain r(x)(`) = p(y).

2. Assume now that Λ is a k-chain mapping. We will construct an Fβ-successful
R−-run r of A−

k such that dom ◦ r = Λ. Let x ∈ V . Indeed, the domain of the partial
function r(x) ∈ part(k, n) will be Λ(x). Now, for all ` ∈ dom(r(x)) = Λ(x), there exists
at most one y ∈ V such that x −−< y and ` ∈ Λ(y) (Definition 6.5 (3)). If such a y exists
then we set r(x)(`) = p(y) and otherwise we set r(x)(`) = 1 (in this last case, we could
give any value since it will never be used).

Let f ∈ part(k, n) be the partial function defined by ` ∈ dom(f) iff there exists a
minimal vertex x ∈ V with ` ∈ Λ(x) and in this case we set f(`) = p(x). Note that f is
well-defined thanks to Definition 6.5 (1).

We will show that indeed r is a run of A−
k (f). Clearly, if x ∈ V is minimal then we

have dom(r(x)) = Λ(x) = f−1(p(x)) as required by the initial transitions of A−
k (f).

Now, let x ∈ V be non minimal. For all j ∈ R−(x), let xj −−< x be such that
p(xj) = j. We will show that r(x) ∈ δλ(x),R−(x)(r(xj)j∈R−(x)). First, for all j ∈ R−(x), by
Definition 6.5 (4), there exists ` ∈ Λ(x)∩Λ(xj) = dom(r(x))∩dom(r(xj)). By definition
of r(xj), it follows that r(xj)(`) = p(x). Second, for ` ∈ dom(r(x)) = Λ(x), there exists
j ∈ R−(x) with ` ∈ Λ(xj) = dom(r(xj)) (Definition 6.5 (2)). By definition of r(xj), it
follows that r(xj)(`) = p(x). Thus we have shown that r is an R−-run of A−

k (f) which
concludes the proof. ut

Corollary 6.8 For k ∈ N and β ∈ {+,−}, we have R−Fβ(A−
k ) = Pk.

Proof. This is immediate by the lemma above and by Lemma 6.6. ut

We now define a trace alphabet (Γ, D) as follows: For i ∈ [n] let Γi := Σi×(2[k] \{∅})
and Γ =

⋃

i∈[k] Γi. The dependence relation D is defined by D = {((a,M), (b, N)) |

M ∩N 6= ∅}. This binary relation on Γ is obviously reflexive (since we excluded ∅ from
the possible second components) and symmetric. Thus (Γ, D) is indeed a dependence
alphabet. Let M(Γ, D) denote the trace monoid over (Γ, D). For a trace (V,≤, λΓ) from
M(Γ, D) let Π(V,≤, λ) = (V,≤, π1 ◦ λΓ), i.e. the mapping Π just forgets the second
component of the labeling λΓ. Furthermore, let the set M′ consist of all traces (V,≤, λΓ)
from M(Γ, D) such that for all x, y ∈ V , x ‖ y implies p(x) 6= p(y). This set is easily
definable by a sentence of the monadic second order logic over the alphabet Γ.

Lemma 6.9 With the definitions above, we have M′ = Π−1(Pk). If Λ is a k-chain
mapping of the k-pomset t = (V,≤, λ), then (V,≤, λ× Λ) ∈ M′.
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Proof. Let t = (V,≤, λΓ) ∈ M′ and λ := π1 ◦ λΓ. For x, y ∈ V with p(x) = p(y), x and

y are comparable with respect to ≤ by the definition of M′. Thus, Π(t) is in P(~Σ). Let
C` = {x ∈ V | ` ∈ π2 ◦ λΓ(x)} for ` ∈ [k]. For x, y ∈ C` thus π2 ◦ λΓ(x) ∩ π2 ◦ λΓ(y) 6= ∅,
i.e. (λΓ(x), λΓ(y)) ∈ D. Hence x and y are comparable proving that C` is a chain in
t and therefore in Π(t). Now suppose x, y ∈ V with x −−< y Then, since t is a trace,
(λΓ(x), λΓ(y)) ∈ D. Hence there exists ` ∈ [k] such that ` ∈ π2 ◦ λΓ(x) ∩ π2 ◦ λΓ(y), i.e.
x, y ∈ C`. Thus, we showed that (C`)`∈[k] is a covering as required, i.e. that Π(t) ∈ Pk.

Conversely, let t = (V,≤, λ) ∈ Pk and let Λ be a k-chain mapping over t. We will
show that t′ = (V,≤, λ×Λ) ∈ M′. Let x, y ∈ V . If x −−< y, there is ` ∈ Λ(x)∩Λ(y) and
therefore (λ(x),Λ(x)) and (λ(y),Λ(y)) are dependent. If x ‖ y, we have Λ(x)∩Λ(y) = ∅
since the sets {z ∈ V | ` ∈ Λ(z)} are chains by Lemma 6.6. Hence in this case (λ(x),Λ(x))
and (λ(y),Λ(y)) are independent. Thus we showed (V,≤, λ×Λ) ∈ M(Γ, D). If x, y ∈ V

with p(x) = p(y), we get that x and y are comparable since t is a ~Σ-pomset. Hence
(V,≤, λ× Λ) ∈ M′. ut

Lemma 6.10 Let ϕ be a sentence of the monadic second order logic over the alphabet
Σ and β ∈ {+,−}. Then there exists a deterministic ~Γ-ACA Aϕ such that

R−Fβ(Aϕ,M(Γ, D)) = Π−1(L(ϕ) ∩ Pk).

Proof. The sentence ϕ contains atomic formulas of the form λ(x) = a for a ∈ Σ.
Replace any occurrence of such a formula by

∨

∅6=M⊆[k] λΓ(x) = (a,M). The result
is denoted by ψ. Note that ψ is a sentence of the monadic second order logic over
the alphabet Γ. Now let s ∈ M′. Then it is easily seen that s |= ψ iff Π(s) |= ϕ.
Furthermore, there is a monadic second order sentence ξ over the alphabet Γ such that
L(ξ) = M′. Thus, we have L(ψ∧ ξ) = Π−1(L(ϕ)∩Pk). By [Tho90, CMZ93], there exists
an asynchronous mapping from M(Γ, D) to some finite set recognizing L(ψ ∧ ξ). Using

Proposition 4.3, we obtain the required deterministic ~Γ-ACA Aϕ. ut

Corollary 6.11 Let ϕ be a sentence of the monadic second order logic over the alphabet
Σ and β ∈ {+,−}. Then there exists a ~Σ-ACA A such that R−Fβ(A,Pk) = L(ϕ) ∩ Pk.

Proof. By Lemma 6.10 there exists a ~Γ-ACA Aϕ = ((Qϕ
i )i∈[n], (δ

ϕ

(a,M),J), F ϕ) such that

R−Fβ(Aϕ,M(Γ, D)) = Π−1(L(ϕ) ∩ Pk). Furthermore, let A−
k = ((Qi)i∈[n], (δa,J), F ) be

the ACA constructed above. Now we describe a ~Σ-ACA A′ = ((Q′
i)i∈[n], (δ

′
a,J), F ′) over

the alphabet ~Σ as follows: Q′
i = Qi×Q

ϕ
i and a tuple (gi, qi)i∈J belongs to F ′ iff (gi)i∈J ∈ F

and (qi)i∈J ∈ F ϕ. To define the transition functions, let δ′a,J((gi, qi)i∈J) be the set of all
pairs (g, q) satisfying g ∈ δa,J((gi)i∈J) and q ∈ δϕ

(a,M),J((qi)i∈J) with M = dom(g). Note

that a run of the ~Σ-ACA A′ “contains” a run of A−
k . This run “relabels” the k-pomset

t in consideration into some trace s ∈ Π−1(t) (see Lemmas 6.7 and 6.9). The trace s is
in fact the actual input of the automaton Aϕ. Therefore, the k-pomset t is accepted by
A′ iff s ∈ Π−1(t) is accepted by Aϕ, that is, iff t ∈ L(ϕ). ut
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6.3 The mode R+

In this section, we construct a ~Σ-ACA A+
k that will recognize the set Pk of k-pomsets in

the mode R+F−. Then we use this automaton to simulate in the mode R+ the behavior
of an ACA that works in the mode R−. To achieve this, we proceed similarly to the
construction of A−

k by first fixing a partial function f ∈ part(k, n). The additional
difficulty comes from the fact that in the R+-mode one cannot distinguish immediate
predecessors among all predecessors (cf. Examples 7.2 and 7.1). For this reason, we will
use some fixed asynchronous mapping τ : M(Γ, D) → S given by Lemma 5.7 where
(Γ, D) is defined as in Section 6.2. Note that τ allows to determine the labels of the
maximal elements of a trace in M(Γ, D).

Notation. Let t = (V,≤, λ) be a ~Σ-pomset and Λ : V → 2[k] \ {∅}. Then we write
(t,Λ) as an abbreviation for (V,≤, λ×Λ). In addition, let (↓x,Λ) denote the restriction
of (V,≤, λ × Λ) to ↓x, i.e. (↓x,≤ ∩(↓x × ↓x), (λ × Λ) �↓x) and similarly for (⇓x,Λ)
whenever x ∈ V .

Given a partial mapping f ∈ part(k, n), the local state space (common for all pro-
cesses) of the automaton A+

k (f) will be Q = part(k, n) × S where S is the image set of

the asynchronous mapping τ . Let t = (V,≤, λ) be a ~Σ-pomset and let r : V → Q be a
mapping. We will define the automaton in such a way that r is an R+-run of A+

k (f) iff

1. π1 ◦ r is an R−-run of A−
k (f), and

2. π2 ◦ r(x) = τ(↓x, dom ◦ π1 ◦ r) for all x ∈ V .

The construction of a run r will proceed as follows. Let x ∈ V and assume that r is
already defined on ⇓x and satisfies the two conditions above. Let Λ = dom◦π1 ◦r be the
associated k-chain mapping of ⇓x (cf. Lemma 6.7(1)). Since τ is an asynchronous map-
ping, we can first compute τ(⇓x,Λ) using the second components (π2 ◦ r(∂j⇓x))j∈R+(x)

and we deduce R−(x) using the property of τ . Then we compute the first component of
the next state r(x) = (g, s) according to A−

k (f): g ∈ δλ(x),R−(x)((π1 ◦ r(∂j⇓x))j∈R−(x)).
Now we know the full (trace) label of the vertex x : λΓ(x) = (λ(x), dom(g)) and we can
compute the second component of the next state: s = τ(↓x,Λ).

The formal construction of the automaton and the proof that it works as intended
will be somewhat technical but the reader should already be convinced that indeed it is
possible to construct such an automaton.

We first define an automaton A+
k (f) for any partial mapping f ∈ part(k, n). In

this automaton, each tuple of local states is accepting. Then the automaton A+
k is

the disjoint union of the automata A+
k (f) for f ∈ part(k, n). Given a partial mapping

f ∈ part(k, n), the local state space (common for all processes) of the automaton A+
k (f)

is Q = part(k, n) × S. For a ∈ Σi, we let

δa,∅ = {(g, τ(a, dom(g))) | dom(g) = f−1(i)}.

Now, let ∅ 6= J ⊆ [n] and (gj , sj) ∈ Q for all j ∈ J and let a ∈ Σi. Assume that there
exists a trace t ∈ M′ such that
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(1) J = p(t), and

(2) for all j ∈ J , τ(∂jt) = sj and π2 ◦ λΓ ◦ max(∂jt) = dom(gj).

Then, δa,J((gj, sj)j∈J) consists of all (g, s) such that

(3) ∀j ∈ p ◦ max(t), ∃` ∈ dom(g) such that gj(`) = i,

(4) ∀` ∈ dom(g), ∃j ∈ p ◦ max(t) such that gj(`) = i, and

(5) s = τ(t · (a, dom(g))).

We first show that this definition does not depend on the choice of a trace t ∈ M′

satisfying (1) and (2).

Lemma 6.12 Let t, t′ ∈ M′ be two traces satisfying (1) and (2). Then p ◦ max(t) =
p ◦ max(t′).
Let N ⊆ [k] be such that ∀j ∈ p ◦ max(t), ∃` ∈ N with gj(`) = i. Then t · (a,N) and
t′ · (a,N) are prime traces and τ(t · (a,N)) = τ(t′ · (a,N)).

Proof. Clearly, t =
∨

j∈p(t) ∂j(t) and similarly for t′. Since τ is an asynchronous map-

ping, τ(t) = τ(t′) follows from τ∂j(t) = sj = τ∂j(t
′) for j ∈ p(t) = J = p(t′). By

the choice of τ (Lemma 5.7), this implies λΓ ◦ max(t) = λΓ ◦ max(t′). In particular,
p ◦ max(t) = p ◦ max(t′).

Let j ∈ p ◦max(t). We have dom(gj)∩N 6= ∅. Since dom(gj) = π2 ◦λΓ ◦max(∂jt), it
follows that (a,N) and λΓ ◦max(∂jt) are dependent. Therefore t · (a,N) is a prime trace.
Similarly, t′ · (a,N) is prime. Since τ(t) = τ(t′) and τ is an asynchronous mapping, we
deduce that τ(t · (a,N)) = τ(t′ · (a,N)). ut

We will now prove that A+
k (f) satisfies the required property.

Lemma 6.13 Let t = (V,≤, λ) be a ~Σ-pomset and let f ∈ part(k, n). Then, a mapping
r : V → Q is an R+-run of A+

k (f) iff

(a) π1 ◦ r is an R−-run of A−
k (f), and

(b) for all x ∈ V , π2 ◦ r(x) = τ(↓x, dom ◦ π1 ◦ r).

Proof. Throughout this proof, let δ−a,J denote the transition mappings of the ACA A−
k .

Assume first that r is an R+-run of A+
k (f) and let Λ = dom◦π1◦r. We show by induction

on x ∈ V that

(i) π1 ◦ r is an R−-run of A−
k (f) on ↓x, and

(ii) π2 ◦ r(x) = τ(↓x,Λ).
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First, let x ∈ min(t). Then r(x) = (g, τ(λ(x), dom(g))) for some g ∈ part(k, n) with
dom(g) = f−1(p(x)). Thus, (i) holds for x since π1 ◦ r(x) = g with dom(g) = f−1(p(x)).
The set ↓x consists of the point x, only, and (λ × Λ)(x) = (λ(x), dom(g)). Hence
τ(↓x,Λ) = τ(λ(x), dom(g)), i.e. (ii) holds.

Assume now that x ∈ V is non minimal and that (i),(ii) hold for all y < x. Let
t′ = (⇓x,Λ). We will show that t′ is a trace in M′ satisfying conditions (1),(2) given
before Lemma 6.12. To simplify the notation, let (g, s) = r(x) and for all j ∈ R+(x), let
xj be the maximal vertex of ∂j⇓x and let (gj, sj) = r(xj). By the induction hypothesis,
π1 ◦ r is an R−-run of A−

k (f) on ↓xj , hence also on ⇓x. Using Lemmas 6.7 and 6.9 we
deduce that t′ ∈ M′. By definition, R+(x) = p(⇓x) = p(t′) and t′ satisfies (1). Now,
for all j ∈ R+(x), we have ∂j(t

′) = (↓xj ,Λ). Hence, using the induction hypothesis, we
get sj = π2 ◦ r(xj) = τ(↓xj ,Λ) = τ(∂j(t

′)). Moreover, π2 ◦ λΓ ◦ max(∂jt
′) = Λ(xj) =

dom ◦ π1 ◦ r(xj) = dom(gj). Hence, t′ satisfies (2) as well.
Now, (g, s) ∈ δλ(x),R+(x)((gj, sj)j∈R+(x)) and therefore, conditions (3),(4),(5) hold.

Since R−(x) = p◦max(t′), from (3),(4) we deduce that g ∈ δ−
λ(x),R−(x)((gj)j∈R−(x)), i.e. (i)

holds. Finally, (5) implies that π2 ◦ r(x) = s = τ(t′ · (λ(x), dom(g))) = τ(↓x,Λ) and
therefore (ii). This concludes the first direction of the proof, i.e. that for any R+-run (a)
and (b) hold.

Conversely, assume that the mapping r : V → Q satisfies (a) and (b) and let Λ =
dom ◦ π1 ◦ r. By Lemmas 6.7 and 6.9, Λ is a k-chain mapping over t and (t,Λ) is a trace
in M′.

Let x ∈ V be minimal and let (g, s) = r(x). Since π1 ◦ r is an R−-run of A−
k (f) we

have dom(g) = dom◦π1 ◦ r(x) = f−1(p(x)). Using (b) we get s = τ(λ(x), dom(g)) which
shows that (g, s) ∈ δλ(x),∅.

Now, let x ∈ V be non minimal and let t′ = (⇓x,Λ) ∈ M′. To simplify the notation,
let (g, s) = r(x) and for all j ∈ R+(x), let xj be the maximal vertex of ∂j⇓x and let
(gj, sj) = r(xj). By definition, R+(x) = p(⇓x) = p(t′) and t′ satisfies (1). Now, for all
j ∈ R+(x), we have τ(∂j(t

′)) = τ(↓xj ,Λ) = π2 ◦ r(xj) = sj and π2 ◦ λΓ ◦ max(∂jt
′) =

Λ(xj) = dom ◦ π1 ◦ r(xj) = dom(gj). Hence, t′ satisfies (2) as well. Moreover, since
R−(x) = p◦max(t′) and g ∈ δ−

λ(x),R−(x)((gj)j∈R−(x)), we deduce that (3),(4) hold. Finally,

using (b) we obtain s = π2 ◦ r(x) = τ(↓x,Λ) = τ(t′ · (λ(x), dom(g))). Therefore, (g, s) ∈
δλ(x),R+(x)((gj, sj)j∈R+(x)). ut

Corollary 6.14 For k ∈ N and β ∈ {+,−}, R+Fβ(A+
k ) = Pk.

Proof. Let r be an Fβ-successful R+-run of A+
k on the ~Σ-pomset t. Then there exists

f ∈ part(k, n) such that r is an R+-run of A+
k (f). By Lemma 6.13(a), π1 ◦r is an R−-run

of A−
k (f). Since any R−-run of A−

k (f) is accepting, we get t ∈ Pk by Corollary 6.8.
Conversely, let t = (V,≤, λ) ∈ Pk be a k-pomset. By Corollary 6.8, there exists f ∈

part(k, n) and an R−-run r− of A−
k (f) over t. By Lemma 6.7, the mapping Λ = dom◦r−

is a k-chain mapping over t. Now, Lemma 6.9 shows that t′ = (t,Λ) ∈ M′ is a trace.
Finally, the mapping r : V → Q defined by r(x) = (r−(x), τ(↓x,Λ)) satisfies conditions
(a),(b) of Lemma 6.13 and is thus an Fβ-successful R+-run of A+

k (f). ut
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A very important feature of the automaton A+
k (f) is that it allows us to compute the

restricted read domain R−. More precisely, let ∅ 6= J ⊆ [n] and let (gj, sj) ∈ Q for j ∈ J .
We define M((gj, sj)j∈J) = p ◦max(t) if there exists a trace t ∈ M′ satisfying (1),(2). By
Lemma 6.12, this is well-defined. Now, if r is an R+-run of A+

k (f) on t = (V,≤, λ) then
for all x ∈ V , we have R−(x) = M((r(∂j⇓x))j∈R+(x)). Indeed, with Λ = dom ◦ π1 ◦ r we
have seen in the proof of Lemma 6.13 that t′ = (⇓x,Λ) is a trace in M′ satisfying (1),(2).
By Lemma 5.7, one can then compute R−(x) = p ◦ max(t′) from the second component
of the run (π2 ◦ r(∂j⇓x))j∈R+(x) = (τ(∂j⇓x,Λ))j∈R+(x) which proves our statement.

This will be used to prove the following proposition.

Proposition 6.15 Let B− be a ~Σ-ACA, k ∈ N and β ∈ {+,−}. There exists a ~Σ-ACA
B+ such that R+Fβ(B+,Pk) = R−Fβ(B−,Pk).

Proof. The automaton B+ is meant to simulate an R−-run of B− by an R+-run. There-
fore, the construction again uses the ACA A+

k since as we have seen above, it allows
to infer R−(x) from an R+-run of A+

k . So let B− = ((Q−
i )i∈[n], (δ

−
a,J)a∈Σ,J⊆[n], F

′) and

A+
k = ((Q)i∈[n], (δa,J)a∈Σ,J⊆[n], F ). The local state spaces of B+ are given by Q+

i = Q−
i ×Q

for i ∈ [n]. The transitions are defined by (p′, q′) ∈ δ+
a,J((pj, qj)j∈J) iff

q′ ∈ δa,J((qj)j∈J), and

p′ ∈ δ−a,M((pj)j∈M) with M = M((qj)j∈J).

Finally, a tuple ((pj, qj)j∈J) is accepting (i.e. in F ′′) iff ((pj)j∈J) ∈ F ′ and ((qj)j∈J) ∈ F .
We will prove that R+Fβ(B+,Pk) = R−Fβ(B−,Pk). Let t = (V,≤, λ) be a k-pomset.

Let r+ : V →
⋃

i∈[n]Q
+
i be an Fβ-successful R+-run of B+ on t. Then, π2 ◦ r

+ is an

R+-run of A+
k (f) on t for some f ∈ part(k, n). Using the remark above, we deduce that

R−(x) = M(π2 ◦ r
+(∂j(⇓x))j∈R+(x)) for x ∈ V . Thus, π1 ◦ r

+ is an R−-run of B−. Since
r+ is Fβ-successful, so is π1 ◦ r

+. Hence we showed the inclusion “⊆”.
Conversely, let r− : V →

⋃

i∈[n]Q
−
i be an Fβ-successful R−-run of B− on t. By

Corollary 6.14, there exists an R+-run r of A+
k (f) on t for some f ∈ part(k, n). Let

r+ = r− × r. For x ∈ V we get immediately

π2 ◦ r
+(x) ∈ δλ(x),R+(x)(π2 ◦ r

+(∂j(⇓x))j∈R+(x))

since π2 ◦ r+ = r is an R+-run of A+
k (f). Using again the remark above, we obtain

R−(x) = M(π2 ◦ r+(∂j(⇓x))j∈R+(x)). Thus r+ is an R+-run of B+ on t. Since r− is
Fβ-successful, so is r+. ut

Theorem 6.16 Let k ∈ N, β ∈ {+,−} and L ⊆ Pk. Then the following are equivalent:

1. L is definable in the monadic second order logic over the alphabet Σ.

2. L is definable in the existential monadic second order logic over the alphabet Σ.

3. L ∈ R−Fβ(Pk).

4. L ∈ R+Fβ(Pk).
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Proof. By Corollary 6.11, the implication “1⇒3” is immediate. The implication
“3⇒4” is Proposition 6.15 and implication “2⇒1” is trivial. To show the remaining
implication “4⇒2”, let L be accepted in the mode R+Fβ relative to Pk. Using Corol-
lary 6.14, one obtains that L can be accepted in the mode R+Fβ relative to all ~Σ-pomsets.
Hence, by Theorem 4.4, L can be defined in MSO. ut

Theorem 6.17 Let αi, βi ∈ {+,−} for i = 1, 2. Let Σ1,Σ2, . . . ,Σn be mutually disjoint

alphabets and k ∈ N. There exists an algorithm that given two ~Σ-ACAs A1 and A2

decides whether Rα1Fβ1(A1,Pk) = Rα2Fβ2(A2,Pk).

Proof. Using Theorem 4.4, one can effectively construct two MSO-sentences ϕ1 and
ϕ2 such that RαiFβi(Ai,P(~Σ)) = L(ϕi). Since Pk is definable in MSO, we can assume
RαiFβi(Ai,Pk) = L(ϕi). In the proof of Lemma 6.10, we constructed an MSO sentence ψi

over Γ from ϕi such that Π−1(L(ϕi) ∩ Pk) = L(ψi) ∩ M(Γ, D), Hence, we can effectively

construct formulas ψi of MSO over ~Γ from Ai such that RαiFβi(Ai,Pk) = Π(L(ψi) ∩
M(Γ, D)). Hence Rα1Fβ1(A1,Pk) = Rα2Fβ2(A2,Pk) iff L(ψ1) ∩ M(Γ, D) = L(ψ2) ∩
M(Γ, D), and the equality of MSO-defined trace languages is decidable by [Tho90]. ut

7 ACAs on general pomsets - negative results

7.1 Separation of the nondeterministic classes

By Theorem 5.9 it is possible to simulate one reading mode by the other as long as
we are interested in CROW-pomsets, only. There, we can even make a deterministic
simulation. By Theorem 6.16, the simulation is still possible for k-pomsets. But there,
one cannot simulate each deterministic ACA by another deterministic automaton in the
other reading mode. Next, we will show that the simulation becomes impossible if we
consider the class of all ~Σ-pomsets, i.e. we will show that R+Fβ(P(~Σ)) and R−Fβ(P(~Σ))
are incomparable for any β ∈ {+,−}. At the end of this section, we will describe the

complete inclusion structure of the classes (d)RαFβ(P(~Σ)).

Example 7.1 Let n = 3, Σ1 = {a}, Σ2 = {b} and Σ3 = {c}. Let L consist of all
~Σ-pomsets t = (V,≤, λ) where no c-labeled element covers an a-labeled one. Then L is

in dR−Fβ(P(~Σ)), but not in R+Fβ(P(~Σ)) for any β ∈ {+,−}.

Proof. By Example 3.2, L ∈ dR−Fβ(P(~Σ)).

We show L /∈ R+Fβ(P(~Σ)) by contradiction: Assume A is a ~Σ-ACA with L =

R+Fβ(A,P(~Σ)). Now let k = |Q2| · |Q3|+3 and consider the ~Σ-pomset t = (V,≤, λ) with
V = {a`, b`, c` | ` = 1, 2, . . . , k}, a` ≤ am, {a`, b`} ≤ bm and {a`, b`, c`} ≤ cm iff ` ≤ m
and no further comparabilities (cf. Figure 3). The labeling λ is defined canonically.
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bk−2
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c1
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c3
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ai−2

ai−1
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aj+2

bi−2

bi−1

bi

bj+1

bj+2

ci−2

ci−1

cj

cj+1

cj+2

The ~Σ-pomset t The ~Σ-pomset t′

Figure 3: cf. Proof of Example 7.1

Since t is in L, there is an Fβ-successful R+-run r of A on t. Since k > |Q2| · |Q3|+2,
there are 1 < i < j < k such that r(bi) = r(bj) and r(ci−1) = r(cj−1). We erase the

vertices bi+1, . . . , bj, ci, . . . , cj−1 from t obtaining the ~Σ-pomset t′ (cf. Figure 3).
Note that t′ is not in L since cj covers aj . Let r′ = r � V ′. We show that r′

is an R+-run on t: Recall that the read domain of any element x ∈ V ′ is R+(x) =
{∂i(⇓x) | i = 1, 2, 3}. This set differs in t and in t′ for x = bj+1 and for x = cj, only.
Thus, for x /∈ {bj+1, cj}, we have r′(x) ∈ δλ(x),R+(x)(r

′(∂i(⇓ x)i∈R+(x)). But this holds for
x ∈ {bj+1, cj} also since r(bi) = r(bj) and r(ci−1) = r(cj−1). Thus, r′ is an R+-run of A

on t′. Since the two ~Σ-pomsets coincide on their top layer, it is Fβ-successful, implying
t′ ∈ R+Fβ(A,P(~Σ)). But this contradicts our assumption L = R+Fβ(A,P(~Σ)). ut

Example 7.2 Let n = 4, Σ1 = {a}, Σ2 = {b}, Σ3 = {c} and Σ4 = {d}. Let L consist

of all ~Σ-pomsets t = (V,≤, λ) such that any x ∈ V with λ(x) = d dominates an even

number of a-labeled elements. Then L is in dR+Fβ(P(~Σ)), but not in R−Fβ(P(~Σ)) for
any sign β.
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Proof. In Example 3.3 we showed that there is a deterministic ~Σ-ACA A that allows
an R+-run on a pomset t iff t ∈ L. Thus, when all tuples of local states in this automaton
are accepting, we get L ∈ dR+Fβ(P(~Σ)).

It remains to show that L is not in R−Fβ(P(~Σ)). By contradiction, assume A is a
~Σ-ACA such that R−Fβ(A,P(~Σ)) = L for β = + or β = −. Let k = |Q2| · |Q4| + 3 and

consider the ~Σ-pomset t = (V,≤, λ) (cf. Figure 4) with V = {a` | ` = 1, 2, . . . , 2k} ∪
{b`, c`, d` | ` = 1, 2, . . . , k} and the natural labeling λ. The nontrivial part of the order
relation ≤ is defined by

b`, c` ≤ dm iff ` ≤ m

a` ≤ bm, dm iff ` ≤ 2m and

a` ≤ cm iff ` ≤ 2m− 1.

The ~Σ-pomset t The ~Σ-pomset t’
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cj+2
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Figure 4: cf. Proof of Example 7.2.

Note that t is in L since d` dominates 2` elements labeled by a for any `. Hence there is
an Fβ-successful R−-run r of A on t. Since k > |Q2|·|Q4|+2, there are 1 < i < j < k such

that r(bi) = r(bj) and r(di−1) = r(dj−1). We define a second ~Σ-pomset t′ = (V ′,≤′, λ′)
from t by erasing the elements b` and d`−1 for ` = i+ 1, i+ 2, . . . , j (cf. Figure 4).

More formally, V ′ = V \ {b`, d`−1 | ` = i+ 1, i+ 2, . . . , j} and λ′ is the restriction of
λ to V ′. The nontrivial part of the order relation ≤′ is defined as follows (where ` and
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MSO definable languages in P(~Σ)

dR+F+(P(~Σ))

R+F+(P(~Σ))=R+F−(P(~Σ))

dR+F−(P(~Σ)) dR−F−(P(~Σ))

R−F+(P(~Σ))=R−F−(P(~Σ))

dR−F+(P(~Σ))

languages in P(~Σ) recognizable by an asynchronous mapping

Figure 5: The inclusion structure in P(~Σ) for n ≥ 4

m range over all suitable values).

b`, c` ≤
′ dm iff ` ≤ m

a` ≤
′ bm, dm iff ` ≤ 2m and

a` ≤
′ cm iff ` ≤ 2m− 1.

Note that a` ≤′ dm iff there is some k with a` ≤′ bk ≤′ dm or a` ≤′ ck ≤′ dm. In
particular a2j ‖ dj since bj does not belong to V ′. Hence dj dominates the a-labeled
elements a1, . . . , a2j−1 in t′, i.e. an odd number, only. Hence t′ is not in L.

Finally, since r(bi) = r(bj) and r(di−1) = r(dj−1) one can easily check that r′ := r �

V ′ : V ′ →
⋃

i∈[4]Qi is an Fβ-successful R−-run of A on t′. Since t and t′ coincide on their

top layer, it is an Fβ-successful R−-run on t′ since r is one on t. Thus, t′ ∈ R−Fβ(A,P(~Σ))

contradicting R−Fβ(A,P(~Σ)) = L since t′ is not in L. ut

Theorem 7.3 In Figure 5 and 6, arrows denote proper inclusions, and no further in-
clusions hold.

Proof. We start with the classes in P(~Σ): We first explain why the inclusions hold.
By Theorem 4.4, the class at the top of MSO-definable languages subsumes all classes
(d)RαFβ(P(~Σ)). The equalities RαF−(P(~Σ)) = RαF+(P(~Σ)) are proven in Theorem 4.1.

The inclusions dRαFβ(P(~Σ)) ⊆ RαFβ(P(~Σ)) are trivial and the inclusions of the least
class in all deterministic classes is Proposition 4.3.
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MSO definable languages in Pk

=R+F+(Pk)=R+F−(Pk)=R−F+(Pk)=R−F−(Pk)

dR+F+(Pk) dR+F−(Pk) dR−F−(Pk)dR−F+(Pk)

languages in Pk recognizable by an asynchronous mapping

Figure 6: The inclusion structure in Pk for n ≥ 3 and k ≥ 2

Then, we show that the inclusions are proper. By Examples 7.1 and 7.2, the classes
R+F−(P(~Σ)) and R−F−(P(~Σ)) are incomparable. Hence they are proper subclasses of the
class of MSO-definable languages. Similarly, by Proposition 6.4, the deterministic classes
dRαF+(P(~Σ)) and dRαF−(P(~Σ)) are incomparable. Hence they are proper subclasses of

RαF−(P(~Σ)) and the least class is properly contained in each of them.
Finally, it remains to show that no further inclusions hold. We have already seen

that the deterministic classes are incomparable (Proposition 6.4). It remains to prove

that dRαFβ(P(~Σ)) is not contained in RγFβ(P(~Σ)) for α 6= γ. But this follows from
Example 7.2 and 7.1.

Now we deal with the classes in Pk: The inclusions from above are inherited. In
addition, any definable language in Pk can be accepted by an ACA by Theorem 6.16. By
Proposition 6.4, the deterministic classes dRαFβ(Pk) and dRα′

Fβ′

(Pk) are incomparable.
Hence they are proper subclasses of the top class and the least class is properly contained
in each of them. ut

Recall that for CROW-pomsets (as well as for traces), all the classes in the pictures
above coincide.

7.2 RαFβ(P(~Σ)) is not closed under complement

Let L consist of all pomsets (V,≤, λ) over ({a}, {b}) such that any a-labeled vertex
in V is covered by a b-labeled one. We prove that this set is not recognizable. This
language seems to be a typical example of a language that is definable in MSO but not
recognizable. The reason is that the condition that is posed requires something in the
future of each vertex. But the automata work “bottom-up” on the pomset and have
no knowledge of the future. On the other hand, we show that the complement of L is
recognizable thereby showing that the set of recognizable languages is not closed under
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complement. This gives another proof of the fact that not every nondeterministic ACA
can be transformed into an equivalent deterministic one.

Proposition 7.4 Let α, β ∈ {+,−}. Then L is not contained in RαFβ(P(~Σ)).

Proof. By contradiction, let A be a ~Σ-ACA such that RαFβ(A,P(~Σ)) = L, let Q1 be
the set of local states of the first process of A and let m = |Q1| + 2.

Now consider the ~Σ-pomset t = (V,≤, λ) defined as follows (cf. Figure 7 for the case
m = 8): The set V equals {ai, bi | i = 1, 2, . . . , m} with the natural labeling and the
partial order relation is defined by ai ≤ aj, ai ≤ bj , bi ≤ bj iff i ≤ j.

The ~Σ-pomset t:

a1 a2 a3 a4 a5 a6 a7 a8

b1 b2 b3 b4 b5 b6 b7 b8

The ~Σ-pomset t′:

a1 a2 a3 a′4 a′5 a′6 a′7 a4 a5 a6 a7 a8

b1 b2 b3 b4 b5 b6 b7 b8

Figure 7: cf. Proof of Proposition 7.4.

Note that t ∈ L. Hence there exists an Fβ-successful Rα-run r of A on t. Since
m− 1 > |Q1|, there exist i < j ≤ m− 1 such that r(ai) = r(aj).

Secondly, consider the ~Σ-pomset t′ = (V ′,≤, λ′) obtained from t by the insertion of
a chain of length j− i between ai and ai+1 labeled by a. More formally, we define: V ′ =
V ∪ {a′i+1, a

′
i+2, . . . , a

′
j}, λ

′ � V = λ and λ′(a′k) = a for all suitable k. Furthermore, the
only additional comparabilities are those induced by ai < a′i+1 < a′i+2 < · · · < a′j < ai+1

(cf. Figure 7 for i = 3 and j = 7). Let r′ : V ′ →
⋃n

i=1Qi be defined by r′ � V = r and
r′(a′k) = r(ak) for all suitable k. Then one can easily check that r′ is an Fβ-successful
Rα-run on t′, i.e. t′ ∈ RαFβ(A) contradicting the assumption RαFβ(A) = L. ut

Note that the language L is definable in first order logic. Hence the proposition above
implies that RαFβ(P(~Σ)) does not contain all first-order definable languages.

Theorem 7.5 For n ≥ 2, the set RαFβ(~Σ) is not closed under complement.

Proof. Note that Lco consists of all ({a}, {b})-pomsets containing an a-labeled element

that is not covered by a b-labeled one. We construct a ~Σ-ACA that recognizes the
language. Let Q1 = {0, 1, 2} and Q2 = {0, 2}. Initially, the processes will use the state 0
to label vertices. At some point the first process will have to guess the a-labeled vertex
which is not covered by a b-labeled one. To do so, it marks this vertex by the state 1.
If the second process reads the state 1 then the run cannot proceed and will thus be
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rejected. Otherwise the processes label by 2 the vertices which dominate the guessed
vertex labeled by 1 and the run will be accepted.

More formally, the transition functions are defined by:

δa,J((qj)j∈J) =

{

{0, 1} if qj = 0 for all j ∈ J ,

{2} otherwise

δb,J((qj)j∈J) =











{0} if qj = 0 for all j ∈ J ,

∅ if 1 ∈ J and q1 = 1,

{2} otherwise.

Note that only the first process of A is nondeterministic. Finally, the set of accepting
tuples is F = {(qj)j∈J | qj 6= 0 for some j ∈ J} so that it is ensured that the guess

occurred once. One can check that RαFβ(A,P(~Σ)) = Lco for any α, β ∈ {+,−}. Since,

by Proposition 7.4 L is not in RαFβ(P(~Σ)), the theorem follows. ut
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tique Théorique et Applications, 21:99–135, 1987.

[Zie89] W. Zielonka. Safe executions of recognizable trace languages by asynchronous
automata. In A.R. Meyer et al., editor, Logical Foundations of Computer
Science, Lecture Notes in Comp. Science vol. 363, pages 278–289, 1989.

39


