
Games with bound guess actions

Thomas Colcombet ∗

Institut de Recherche en Informatique Fondamentale,
CNRS and Université Paris Diderot

thomas.colcombet@liafa.univ-paris-diderot.fr

Stefan Göller †

Laboratoire Spécification et Vérification,
ENS de Cachan & CNRS

goeller@lsv.fr

Abstract
We introduce games with (bound) guess actions. These are games
in which the players may be asked along the play to provide num-
bers that need to satisfy some bounding constraints. These are nat-
ural extensions of domination games occurring in the regular cost
function theory. In this paper we consider more specifically the case
where the constraints to be bounded are regular cost functions, and
the long term goal is an ω-regular winning condition. We show that
such games are decidable on finite arenas.

Categories and Subject Descriptors F.1.1 [Models of computa-
tion]: Computation by abstract devices

1. Introduction
The study of games with regular objectives, as well as their spe-
cialized variants (Streett, Rabin, Muller), play a key role in modern
automata theory and many model-checking techniques. The suc-
cess of this approach relies in the versatility of ω-regular languages.
These can be used to encode many intricate phenomena, and the
toolbox for solving related problems has been extensively devel-
oped. In particular, it gives immediate answers to almost any rea-
sonable question in this context.

In recent years, the focus of the community has been more and
more attracted to quantitative analysis. Indeed, it is desirable to
check if a system can achieve a task, but questions arise such as
“how much time does the task take” or “what is the quantity of
resources the task will consume”? Several models of games and
automata have been introduced for addressing such questions. The
approach here is in particular based on the theory of regular cost
functions.

Regular cost functions (Colcombet 2013b, 2011) offer a quan-
titative extension to regular languages, in which languages are re-
placed by functions from inputs (words, trees, . . .) to N ∪ {∞}. In
language theoretic terms, 0 can be understood as ‘in the language’,
while∞ stands for ‘outside the language’. The other values offer

∗ Supported by the European Research Council Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement 259454 (GALE).
† Supported by Labex Digicosme, Univ. Paris-Saclay, project VERI-
CONISS, and by the European Research Council Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement 259454 (GALE).

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax
+1 (212) 869-0481. Copyright 2016 held by Owner/Author. Publication Rights Licensed to ACM.

LICS ’16, July 05-08, 2016, New York, NY, USA
Copyright c© 2016 ACM 978-1-4503-4391-6/16/07. . . $15.00
DOI: http://dx.doi.org/10.1145/2933575.2934502

intermediates between these two extremal situations. For instance,
regular cost functions can be used to measure time or count events,
and indeed a rich panel of possibilities are offered for combining
such quantities. The automaton models used in this context are the
continuation of the ones used by Hashiguchi (Hashiguchi 1988),
Leung (Leung 1988), Simon (Simon 1994), Kirsten (Kirsten 2005),
as well as Bojańczyk and Colcombet (Bojańczyk and Colcombet
2009). Regular cost functions have the specificity that exact val-
ues do not really matter, and the functions are considered modulo
an equivalence relation ≈ that allows some distortion. In exchange
for this loss of precision, all the central results concerning regu-
lar languages over finite words and trees, as well as infinite words,
are recovered (equivalence between logic, algebra and automata, as
well as closure and decidability properties).

In this paper we extend the game theoretic framework in a
context in which quantitative resource analysis is possible. The
object we concretely handle are regular cost functions as well
as extensions of the games studied in their resolution, such as
domination games.

More precisely, the games that we consider, called games with
guess actions, are finite two player zero-sum games of infinite
duration, in which the winning condition involves a combination of
ω-regular objectives and quantitative objectives. At some moment
of such game, one of the players is required to provide a value
from N that she or he is to assign to some register (there are a
finite number of such registers). Such an action is called a “guess
action”. The intention is that the player promises that some quantity
(explicit in the winning condition) will never exceed this bound.
Both players are subject to such constraints, each of them owning
several registers. The registers can also be changed several times
(possibly an infinite number of times). The final winner is decided
based on a global ω-regular objective that can involve constraints of
the form “the promises related to register r were always fulfilled”
or “the promises related to register r are fulfilled infinitely often”.

We show how one can solve games with guess actions in which
the above-mentioned quantity is measured using regular cost func-
tions; we call such games regular games with guess actions.

Such kind of games arise naturally in verification. Imagine for
instance some game modeling a printer. The system is played by the
existential player, while the users/environment are/is simulated by
the universal player. This is still standard. The novelty here is that
it is possible using regular games with guess actions, as presented
here, to ask the user to declare the number of pages at the time
of the printing request, and then check that the system, knowing
this number of pages, can guarantee the job to be performed in a
bounded time. The essence of such games is the following: Both
players may be required to declare quantities (number of pages,
time), and then have to play in order to guarantee some measured
quantity (number of pages processed/number of time steps) to

remain within this limit. The versatility of the model gives rise to
much more complicated properties to be checked.

A novelty of this approach is that the objective that the players
aim at achieving are not strictly speaking “winning conditions” in
the usual sense, i.e., they are not only based on a set of accepting
plays. Indeed, virtually, the game is played on an arena in which the
values of registers can be chosen, hence the actual arena is infinite.
One (technical) difficulty of working in this framework is that one
has to solve a game on a given finite arena, though the actual game
that has to be solved is in fact played on an implicit infinite arena.

We solve regular games with guess actions by the following
reduction steps.

1. In a first step we solve a subclass of games with guess actions on
finite arenas in which the measures are given by the combinato-
rial core of regular cost functions, namely sequences of actions
of counters (that can be incremented or reset) and that are not
allowed to exceed the previosuly-assigned register value along
any play. We call this subclass counter-based games with guess
actions. When played on finite arenas we reduce such games to
ω-regular games.

2. In a second step, we introduce the more general class of regu-
lar games with guess actions in which the measures are given
by regular cost functions. We reduce these game to the counter-
based case. This is the sole step in which advanced technol-
ogy of regular cost functions is used by the use of history-
deterministic B-automata. We use the existence of such au-
tomata as a black box.

Related work
Of course, this work is related to a wide family of games with
quantitative objectives that appears in the literature. Not many of
these works is, to the knowledge of the authors, close to the present
work.

Phrased in our terminology (Fijalkow and Zimmermann 2012)
study counter-based games with guess actions, where there is only
one register whose value is only assigned in the beginning of the
play and only one counter.

Further related work involves domination games that are used in
the theory of regular cost functions for deciding the domination pre-
order for regular cost functions over trees (Colcombet and Löding
2010; Colcombet and Löding 2008; Colcombet 2013a). Such domi-
nation games can be understood as the games in this paper in which
there are only two registers, and these are successively guessed in
the first two rounds of the game, and then never changed anymore
along the play.

It happens that alternating guesses of the two players can be
understood as nested alternating quantifiers in a formula. In this
sense, the games we solve here also encompass the game that
should be used for solving magnitude monadic second-order logic
over finite trees (a work that has been done over words using
algebra (Colcombet 2013b) and that has not been extended to finite
trees so far).

Structure of the document
The main definitions are given in the preliminary section Sec-
tion 2. Section 3 introduces a particular class of winning condi-
tions, namely counter-based winning conditions in which the mea-
sure is given by counter actions of B-automata. We give a reduction
of counter-based games with guess actions on finite arenas to ω-
regular games in Section 4. We introduce regular cost functions in
Section 5 and reduce regular games with guess actions to counter-
based games with guess actions. We conclude in Section 6.

2. Preliminaries
2.1 Basic definitions
Let X be any non-empty set. For all k ∈ N we denote by X≤k

the set of all strings over X of length at most k. For each sequence
π = x0x1 · · · over X and each subset Y ⊆ X we denote by π|Y
the (finite or infinite) sequence y0y1 · · · , where for each i ≥ 0 we
have yi = xi if xi ∈ Y and yi = ε otherwise. Given a function
f : A → B and a ∈ A, b ∈ B, we denote by f [a 7→ b] the
mapping f [a 7→ b](x) = f(x) if x 6= a and f [a 7→ b](x) = b if
x = a.

For i, j ∈ N we denote by [i, j] the set {i, i+1, . . . , j}. For each
finite word w = a1 · · · an we denote by w[i, j] the infix ai · · · aj .
For each set (possibly infinite) X let B(X) denote the set of
infinitary boolean formulae over the set X . Similarly we define the
set of positive infinitary Boolean formulae by disallowing formulas
of the kind ¬ϕ. For each boolean formula ϕ, we denote by VAR(ϕ)
the set of variables that appear in ϕ.

A substitution for ϕ to some set Y is a partial function s :
VAR(ϕ) → Y . We denote by ϕ[s] the infinitary boolean formula
over X ∪ Y obtained from ϕ by replacing each occurrence of a
variable x ∈ VAR(ϕ) by s(x). We sometimes also write x ← y
to denote the substitution s with the singleton domain {x} such
that s(x) = y. We view truth assignments of infinitary boolean
formulas ϕ as subsets of VAR(ϕ) and write Y |= ϕ, where Y ⊆
VAR(ϕ), if the truth assignment, where every variable from Y
is assigned to true and all others to false, satisfies ϕ. If ϕ is
positive, then ϕ denotes the dual formula of ϕ, i.e., the formula one
obtains by interchanging ∨ and ∧.

2.2 Standard arenas, plays, strategies and games
We begin our description with standard definitions of arenas, win-
ning conditions, games and strategies. The definition of guess ac-
tions, specific to this work, will be the subject of the following sec-
tion.

In any game in this paper, two antagonist players are confronted:
EVE (the existential player) and ADAM (the universal player).

An arena is a tuple A = (V,C, δ, v0), where V is a set of
vertices, C is a set of actions and δ : V → B+(C × V) where
δ(v) is either a non-empty disjunction or a non-empty conjunction
over C× V and v0 ∈ V is an initial vertex. By M = {(v, a, v′) ∈
V × C × V | (a, v′) ∈ VAR(δ(v))} we denote the set of moves
in A and by M(v) = {(v, a, v′) ∈ M | a ∈ C, v′ ∈ V }
the set of moves from v. In case δ(v) is a non-empty disjunction
(resp. conjunction) we also say that v is controlled by EVE (resp.
by ADAM).

A partial play in A of length k ≥ 0 is a sequence of moves of
the form

π = (v0, a1, v1)(v1, a2, v2) · · · (vk−1, ak, vk) ∈M∗ .

The output of the partial play, output(π) is a1 . . . ak. We define
last(π) = vk if π 6= ε and last(ε) = v0. A play is an infinite
sequence from Mω such that each of its finite prefixes is a partial
play in A. The function output(π) is naturally extended to plays.

An EVE-strategy inA is a set σ of partial plays with ε ∈ σ such
that for each π ∈ σ with last(π) = v we have {(c, v′) ∈ M(v) |
π(v, c, v′) ∈ σ} |= δ(v). We say that a play π is consistent with
an EVE-strategy σ if all finite prefixes of π belong to σ.

The dual of an arena A = (V,C, δ) is the arena A =
(V,C, δ, v0). An ADAM-strategy in A is an EVE-strategy in A.

A game is a pair G = (A,W), where A(G) = (V,C, δ, v0) is
an arena and W is a set of plays called the winning condition. A
play π is won by EVE if π ∈ W , otherwise it is won by ADAM.
An EVE-strategy (resp. ADAM-strategy) σ is winning if every play
that is consistent with σ is won by EVE (resp. ADAM). We say that

EVE (resp. ADAM) wins G if there exists an EVE-strategy (resp.
ADAM-strategy) that is winning. The dual game of G is the game
G = (A,W), whereW is the set of plays that are not inW . We say
G is ω-regular if C is a finite set and for some ω-regular language
T ⊆ Cω the winning condition W consists of all plays π with
output(π) ∈ T ; recall that T ⊆ Cω is ω-regular if T a finite union
of languages of the form U∗V ω for regular languages U, V ⊆ C∗.
Conventions. It will sometimes be more convenient to generalize
in the definition of an arena A = (V,C, δ, v0) the control function
δ such that each v ∈ V is mapped to a positive boolean combina-
tion of atoms of the form (a1 · · · an, w), where n ≥ 1, ai ∈ C
for each i ∈ [1, n] and w ∈ V : this is an implicit notation for the
introduction of fresh intermediate vertices w0, . . . , wn such that
w0 = v, wn = w and δ(wi−1) = (ai, wi) for each i ∈ [1, n].
As a consequence, partial plays from a vertex v0 can now be seen
sequences of the form

(v0, x1, v1)(v1, x2, v2) · · · (vk−1, xk, vk),

where x1, . . . , xk ∈ C+. A similar remark applies to partial plays,
plays, and strategies.

2.3 Arenas and games with guess actions and their semantics
We shall now introduce games where some moves are further
labeled with guess actions. When such guess actions are performed,
one of the players is required to choose the new value that a
register will take. In a second step, we will more precisely use these
registers for comparing them with certain quantities.

Let REG = REGEVE] REGADAM denote a finite set of registers
that is partitioned into the registers owned by Eve (REGEVE) and
the ones owned by Adam (REGADAM). Registers range over N.
Given a register r, we use the guess action letter [guess r] that
represents the request to the owner of r to provide a new value for
it (semantics defined below). The resulting alphabet GUESS[REG]
is {[guess r] | r ∈ REG}. When the ‘real game’ is played, the
guess actions will be turned into assignments to the registers. The
action of assigning a value n ∈ N to a register r is [r := n], and the
resulting alphabet ASSIGN[REG] is {[r := n] | r ∈ REG, n ∈ N}.

An arena with guess actions (over actions C and registers
REG) is a tuple A = (V,C,REG, δ, v0) such that (V,C]
GUESS[REG], δ, v0) is an arena. In other words, this is an exten-

sion of the notion of arena in which some moves may trigger guess
actions. When the set REG is empty this should be understood as a
normal arena. We define the semantics of arenas with guess actions
by turning them into larger arenas (typically infinite), in which the
guess actions are converted into assignments, by which the player
owning the guessed register assigns the respective register some
value from the non-negative integers.

Formally, given an arena with guess actions A = (V,C, δ, v0),
it induces an explicit arena defined as

EXP(A) = (V,C] ASSIGN[REG], δ′, v0) ,

where for all v ∈ V , δ′(v) = δ(v)[s] in which s is the substitution
with domain GUESS[REG]× V such that

s([guess r], w) =

{∨
n∈N([r := n], w) if r ∈ REGEVE,∧
n∈N([r := n], w) if r ∈ REGADAM.

Hence, an arena with guess actions is nothing but a compact way
to represent the arena (with infinitely many actions) EXP(A) over
C] ASSIGN[REG]. This means that a winning condition over this
alphabet can turn such an arena into a game.

We introduce now a specific form of such winning conditions.
It is parameterized by:

• For all r ∈ REG a map fr from C∗ to N called a measure. We
sometimes denote the tuple (fr)r∈REG by f .

• a set T ⊆ (C × {0, 1}REG)ω which is positive with respect
to the {0, 1}-components of EVE and negative with respect to
those of ADAM. Formally, we order C×{0, 1}REG by (a,b) v
(a′,b′) if br ≥ b′r for all r ∈ REGEVE, and b′r ≤ br for all
r ∈ REGADAM. The order v is extended componentwise to
(C× {0, 1}REG)ω by u = u0u1 . . . v v0v1 · · · = v if ui v vi
for all i ∈ N. Finally, T is defined to be positive if whenever
u ∈ T and u v v, then v ∈ T . The language T is called the
long term objective.

A game with guess actions is (A, (fr)r∈REG, T), in which A is
an arena with guess actions over C and REG, fr is a measure
function for all r ∈ REG, and T is a long term objective. The
semantics will be as above defined described by converting (f , T)
into an explicit version EXP(f , T). The idea is that the measure
functions are evaluated on the prefix of the run and its values will be
compared with the currently assigned value of the register, and the
resulting characteristic bit will enrich the play. The play obtained
enriched by all these bits will in turn then be compared with T for
deciding the winner of the game.

Let us now formally define EXP(f , T). Let us fix ourselves a
register r. For all words u ∈ (C] ASSIGN[REG])ω we define
valr(u) to be the value currently assigned to r after executing u:
valr(ε) is undefined, valr(ua) = n if a = [r := n] for some
n ∈ N and valr(ua) = valr(u) otherwise. We also define
cmpr(u) ∈ {0, 1} for all r ∈ REG to be 1 if fr(u|C) > valr(u)
and 0 otherwise. Given a finite word u over C] ASSIGN[REG], let
Cmp(u) be the word over C × {0, 1}REG defined by Cmp(ε) = ε,
Cmp(v[r := n]) = Cmp(v) for all registers r and all n ∈ N, and
finally Cmp(va) to be Cmp(v)(a, (cmpr(va))r∈REG) otherwise. This
is extended naturally to infinite sequences by limit passing. Note
that the result may be a finite word if the original infinite word
does only contain finitely many actions from C. Therefore we make
the following conventions on arenas with guess actions, whose
first point avoids the previously mentioned unwanted finiteness and
whose second point gurantees that in EXP(G) all registers have
been assigned a value (i.e valr is well-defined) for any partial
play π which contains least one move from V × C × V (i.e.
|output(π)|C ≥ 1).

Conventions. Without loss of generality we make the following as-
sumptions on any arena with guess actionsA = (V,C,REG, δ, v0):

• There is no play π in the arena (V,C ∪ GUESS[REG], δ, v0) in
which output(π)|C is finite.
• For all partial plays π in the arena (V,C ∪ GUESS[REG], δ, v0)

with |output(π)|C| ≥ 1 we have |output(π)|[guess r] ≥ 1 for
all r ∈ REG.

We can finally define the winning condition EXP(f , T) as:

EXP(f , T) = {u ∈ (C] ASSIGN[REG])ω | Cmp(u) ∈ T} .

Hence, given any game with guess actions G = (A, f , T), one
can turn it into the game EXP(G) = (EXP(A), EXP(f , T)). We
define the winner of a game with guess action G to be the winner
of EXP(G).

In this paper, we consider a specific form of such games, namely
regular games with guess actions: these are games with guess
actions in which measures are regular cost functions (to be defined
in Section 5.1), and the long term objective is ω-regular.

The dual of an arena with guess action A is A obtained by (1)
exchanging conjunctions and disjunctions like when computing the
dual of an arena (2) swapping the owner of registers. The dual of
game with guess action G = (A, f , T) is G = (A, f , T) and it is
readily seen that EXP(G) = EXP(G).

3. Counter-based winning conditions
Let us consider a fixed set of counters Γ (whose elements are typ-
ically denoted by γ) that can take values ranging over N (these
counters should not be confused with registers). The counter al-
phabet C = ACtΓ is the disjoint union of the alphabets ACtγ for
γ ∈ Γ, in which ACtγ = {εγ , rγ , icγ} for all counters γ in Γ.
The letter rγ is called a reset of counter γ, while icγ is an in-
crement of counter γ. This is formalized through the map countγ
from words to integers that tracks the value of a counter γ along a
sequence of actions. Formally, countγ(ε) = countγ(u rγ) = 0,
countγ(u icγ) = countγ(u) + 1, and countγ(u a) = countγ(u)
otherwise.

We define now the function costΓ : ACt∗Γ → N as the maximal
value assumed by any counter at any moment:

costΓ(w) = max
γ∈Γ, u prefix ofw

countγ(u).

We define now what counter-based games with guess actions
are; they are given as (A, (costΓr)r∈REG, T), in particular C =
ACtΓ. These games form a special case of regular games with guess
actions, and are special in two ways. First the measures are of the
form (costΓr)r∈REG where Γr is a finite set of counters attached
to each register r ∈ REG. Second, it is required that T is ω-
regular and also of a special form: as soon as a counter exceeds the
value of the corresponding register, then the owner of the register
immediately loses. This second point is made formal by requiring
that for all u = (a0,b

0)(a1,b
1) . . . ,

• T is ω-regular,
• if the least i such that bi 6= 0 exists, and bir = 1 for some
r ∈ REGADAM, then u ∈ T , and
• if the least i such that bi 6= 0 exists, and bir = 1 for some
r ∈ REGEVE, then u 6∈ T .

Note that the two last two above items may be ‘conflicting’ in case
the vector bi is such that bir = 1 for both some r ∈ REGADAM and
some r ∈ REGEVE, hence the last two items might not necessarily
be exclusive in general. In fact, this situation cannot occur. Indeed,
each counter is associated to a single register, and only one counter
can be modified at a time by an actions in ACtΓ.

4. On finite arenas: From counter-based games
with guess actions to ω-regular games

For the rest of this section, we fix a finite game with guess actions
with a counter-based winning condition G = (A, (costΓr)r∈REG, T),
i.e. A = (V,C,REG, δ, v0) is an arena with guess actions over C
and REG for some finite set of vertices V . We will translate G into
an ω-regular game Imp(G) such that EVE wins EXP(G) if, and
only if, EVE wins Imp(G) (Theorem 4.2). In Section 4.1 we for-
mally define the game Imp(G). Finite-memory strategies, whose
existence ω-regular games enjoy, are recalled in Section 4.2. In
Section 4.3 we translate winning strategies in Imp(G) to winning
strategies in EXP(G). Finally, we prove Theorem 4.2 in Section 4.4.
Notational convention. Recall that the functions costΓr map
words from ACtΓr to N. However, given a play (resp. partial play)
π it turns out to be more convenient to write costΓr (π) instead of
costΓr (output(π)|Γr). Without risk of confusion, similar remarks
apply to other functions that we would like to apply to plays (resp.
partial plays) rather than to a restriction of their output.

4.1 Definition of Imp(G)

The ω-regular game Imp(G) is defined as

Imp(G) = (Imp(A),W ((costΓr)r∈REG, T)),

where

• Imp(A) = (V,C ∪ GUESS[REG], δ, v0), i.e. the symbols
GUESS[REG] appear as additional usual action symbols.

For defining W ((costΓr)r∈REG, T) we assign to all plays π in
Imp(G) the set of exceeding registers EXCEEDREG(π), formally
defined to be the set of registers r ∈ REG such that

• letter [guess r] appears only finitely often in output(π) and
• there exists some γ ∈ Γr such that

icγ appears infinitely often in output(π) and

rγ appears finitely often in output(π).

The winning condition W =def W ((costΓr)r∈REG, T) consists of
all plays π in Imp(G) that satisfy at least one of the following two
properties, either

• EXCEEDREG(π) 6= ∅ and there exists some register r ∈
EXCEEDREG(π) ∩ REGADAM such that in output(π) the

last occurrence of [guess r] is before the last occurrence of
[guess r′] for all r′ ∈ EXCEEDREG(π) \ {r}, or

• EXCEEDREG(π) = ∅ and output(π)|C ⊗ {0}REG is in
EXP((costΓr)r∈REG, T), where for any word u ∈ Cω we de-
note by u⊗{0}REG the unique word from (C×{0}REG)ω whose
projection onto C yields u.

It is easy to verify that W is indeed ω-regular. The proof of the
following lemma follows easily from the definition of Imp(G).

Lemma 4.1. Imp(G) = Imp(G).

For the rest of this section we concern ourselves with the proof
of the following theorem.

Theorem 4.1. If EVE wins Imp(G), then EVE wins EXP(G).

Our main theorem of this section is a consequence of Theorem
4.2 and Lemma 4.1.

Theorem 4.2. EVE wins Imp(G) if, and only if, EVE wins EXP(G).

Proof. Since ω-regular games are determined (i.e. every ω-regular
game is won by some player) it suffices to prove that if ADAM wins
Imp(G), then ADAM wins EXP(G):

ADAM wins Imp(G) =⇒ EVE wins Imp(G)
Lemma 4.1

=⇒ EVE wins Imp(G)
Theorem 4.1

=⇒ EVE wins EXP(G)

=⇒ EVE wins EXP(G)

=⇒ ADAM wins EXP(G)

In order to prove Theorem 4.1, we need to introduce finite-
memory strategies in the ω-regular game Imp(G).

4.2 Finite memory strategies
Recall Imp(A) = (V,C ∪ GUESS[REG], δ, v0). Let M denote the
set of moves of Imp(A).

A strategy σ for Imp(G) is called finite-memory if there is a
tuple (Z, z0, ξ, `), where

• Z is a finite set (called the memory) and z0 ∈ Z,
• ξ : V × Z → 2M assigns to all pairs of vertices and memory

elements a set of moves,
• ` : Z ×M → Z is a function that updates the memory that

is inductively extended to finite sequences over M as follows:
`(z, ε) = z and `(z, πm) = `(`(z, π),m) for all π ∈ M∗,
m ∈M and z ∈ Z, and

• ξ(last(π), `(z0, π)) = {m ∈ M | πm ∈ σ}, hence in partic-
ular ξ(last(π), `(z0, π)) |= δ(last(π)) for all partial plays π in
Imp(G).

Theorem 4.3. (Gurevich and Harrington 1982) The winner of any
ω-regular game has a winning finite-memory strategy.

Thus, we can assume that if EVE has a winning strategy in
Imp(G) she has a winning finite-memory strategy. The following
Lemma will be particularly useful and follows immediately from
the definition of finite-memory strategies.

Lemma 4.2. Let σ be a finite-memory strategy witnessed by the
tuple (Z, z0, ξ, `), let π = (v0, a1, v1)(v1, a2, v2) · · · be a play
that is consistent with σ and assume there exist 0 ≤ i < j such
that vi = vj and `(z0, π[1, i]) = `(z0, π[1, j]). Then the play

π[1, i](π[i+ 1, j])ω

is also consistent with σ.

4.3 From a winning EVE-strategy σ in Imp(G) to a winning
EVE-strategy TRANS(σ) in EXP(G)

Let us fix an arbitrary winning strategy σ for EVE in Imp(G). By
Theorem 4.3 we may assume that σ is finite-memory, given by the
tuple (Z, z0, ξ, `), say.

First, let us define the following function SIMPLY from moves
in EXP(A) to moves in Imp(A) that acts as the identity on moves
labeled by C and makes moves with an action from ASSIGN[REG]
“implicit” by replacing it with the move with action corresponding
symbol in GUESS[REG]. Formally we define

SIMPLY(m) =

(v, [guess r], v′) if m = (v, [r := n], v′)

∈ V × ASSIGN[REG]× V
m otherwise.

The function SIMPLY is naturally extended to a morphism from
plays (resp. partial plays) in EXP(A) to plays (resp. partial plays)
in Imp(A). The following fact follows immediately from definition
of SIMPLY.

Fact 4.1. The following holds for all plays (resp. partial plays) π
in EXP(A):

(i) SIMPLY(π) is a play (resp. partial play) in Imp(A) and
(ii) output(π) and output(SIMPLY(π)) are the same words if we

replace in output(π) letters of the form [r := n] by [guess r].

Note that for every play (resp. partial play) π in EXP(G) there
is a corresponding play (resp. partial play) in Imp(G), namely
SIMPLY(π). Conversely, note that for every play π in Imp(A) there
is a set of (resp. partial) plays in EXP(G) that corresponds to π,
nameley SIMPLY−1(π).

Furthermore, one can easily prove that SIMPLY−1(σ) is in-
deed an EVE-strategy in EXP(A), immediately by the definition
of Imp(G) and of SIMPLY. However, SIMPLY−1(σ) is not neces-
sarily a winning strategy since SIMPLY−1(σ) contains (possibly
often) the assignment [r := n] for all possible values n ∈ N
for all r ∈ REGEVE, possibly also assignments that are not suffi-
ciently large in order to satisfy the counter-based winning condition
EXP((costΓr)r∈REG, T).

Therefore, in order to define a winning strategy for EVE in
EXP(G) we must assign to EVE-registers sufficiently large values
such that she does not eventually violate the counter-based winning
condition. To provide EVE with a sufficiently large such bound we
prove the existence of a functionR that assigns to every partial play
π in EXP(A) a sufficiently large value R(π) ∈ N. The choice of
R involves a Ramsey-like argument that we make explicit later in
the proof and not already when defining the strategy in EXP(G) we
claim to be winning for EVE.

To this end we define a function TRANS that assigns to ev-
ery partial play π in Imp(G) a set of partial plays TRANS(π) in
EXP(G). We define TRANS inductively as follows,

• TRANS(ε) = {ε} and
• TRANS(πm) = TRANS(π) ·Xm, where

Xm =

{(v, a, v′)} if a ∈ C
{(v, [r := n], v′) | n ∈ N} if a = [guess r]

for some r ∈ REGADAM

{(v, [r := R(π)], v′)} if a = [guess r]

for some r ∈ REGEVE

for all πm ∈ σ with m = (v, a, v′) ∈M .

The following lemma is a simple consequence of the definition of
EXP(A), of SIMPLY and of TRANS.

Lemma 4.3. We have σ = SIMPLY(TRANS(σ)) and hence
TRANS(σ) is an EVE-strategy in EXP(A).

4.4 The strategy TRANS(σ) is winning.
Towards a contradiction let us assume that TRANS(σ) is not a
winning strategy for EVE in the game EXP(G). Hence there exists
a play π 6∈ EXP(A) that is compatible with TRANS(π) that is
winning for ADAM. We make a case distinction.

Case A: Cmp(π) ∈ (C×{0}REG)ω i.e. that none of the players ever
exceeds any of its measures along the play π.

We first claim that EXCEEDREG(SIMPLY(π)) = ∅. By contra-
diction assume some r ∈ EXCEEDREG(SIMPLY(π)). Then

(1) letter [guess r] appears only finitely often in the sequence
output(SIMPLY(π)) and

(2) there exists some counter γ ∈ Γr such that

(a) icγ appears infinitely often in output(SIMPLY(π)) and

(b) rγ appears only finitely often in output(SIMPLY(π)).

Firstly, by Point (ii) of Fact 4.1 the same properties (1) and
(2) hold for output(π). This implies that for every m ∈ N
there exists a finite prefix πm of π such that costΓr (πm) ≥ m,
immediately from definition of costΓr . Secondly, since we have
that output(SIMPLY(π)) contains only finitely many occurrences
of [guess r] it follows that output(π) contains only finitely many
occurrences of letters from {[r := n] | n ∈ N} by Point (ii) of
Fact 4.1. Taking these former two properties together we conclude
Cmp(π) 6∈ (C×{0}REG)ω , contradicting our assumption Cmp(π) ∈
(C× {0}REG)ω .

Hence we have shown that EXCEEDREG(SIMPLY(π)) =
∅. Since π is consistent with TRANS(σ) recall that the play
SIMPLY(π) is consistent with σ by Lemma 4.3. By our assump-
tion σ is winning. Hence due to EXCEEDREG(SIMPLY(π)) = ∅
we must have that output(SIMPLY(π))|C ⊗ {0}REG is in the set
EXP((costΓr)r∈REG, T) by definition of W . Hence

Cmp(π)
Assumption

= output(π)|C ⊗ {0}REG

Fact 4.1,(ii)
= output(SIMPLY(π))|C ⊗ {0}REG

and therefore Cmp(π) ∈ EXP((costΓr)r∈REG, T) implying that π is
a play in EXP(G) that is won by EVE, a contradiction.

Case B: Cmp(π) 6∈ (C×{0}REG)ω , i.e. there is at least one moment
along the play π in which some player exceeds one of his/her
measures.
Since by assumption π is won by ADAM the first such an exceed

must involve the measure of a register of EVE. Hence there must
exist a finite prefix

π[1, k] = (v0, a1, v1) · · · (vk−1, ak, vk)

of π such that

B1 Cmp(π[1, k − 1]) ∈ (C× {0}REG)∗ and

B2 Cmp(π[1, k]) ∈ (C×{0}REG)∗(ak, (br)r∈REG), where we have
br0 = 1 for some r0 ∈ REGEVE.

Point B2 implies that there exists a last moment h ∈ [1, k] in which
the register r0 was assigned some value by EVE that is strictly less
than costΓr0 (π[1, k]). Formally there exists some h ∈ [1, k] such
that

B3 ah = [r0 := n0], with n0 < costΓr0 (π[1, k]) and n0 =
R(π[1, h]), and

B4 ai 6= [r0 := N] for all N ∈ N and all i ∈ [h+ 1, k].

We make the value R(π[1, h]) explicit in the proof later. For
simplicity, let π̂ be a shortcut for SIMPLY(π). In particular,

π̂[1, k] = (v0, â1, v1) · · · (vk−1, âk, vk),

(vi−1, âi, vi) = SIMPLY(vi−1, ai, vi) for all i ∈ [1, k]. Recall
that the EVE-strategy σ is finite-memory witnessed by the tuple
(Z, z0, ξ, `). Moreover, let

zi = `(z0, π̂[1, i])

for each i ∈ [1, k] be the memory information that is assigned to all
the prefixes of π̂[1, k]. We recall that if there exist h < i < j < k
with vi = vj and zi = zj , then

π̂[1, i](π̂[i+ 1, j])ω

is a play that is consistent with σ by Lemma 4.2.
To establish the desired contradiction to the assumption that the

strategy TRANS(σ) is winning for ADAM we show that we could
have defined the value n0 = R(π[1, h]) so large that there are
indices h < i0 < j0 < k such that π̂[1, i0](π̂[i0 + 1, j0])ω is
actually a play in Imp(G) that is compatible with σ that is actually
winning for ADAM, hence contradicting our assumption that σ is
a winning strategy. More precisely, we shall prove the following
claim.

Claim (F). There exist two indices h < i0 < j0 < k such that

C1 vi0 = vj0 and zi0 = zj0 , thus

ρ=def π̂[1, i0](π̂[i0 + 1, j0])ω

is consistent with σ,

C2 r0 ∈ EXCEEDREG(ρ), and

C3 for all r ∈ EXCEEDREG(ρ)∩REGADAM we have that [guess r]
appears in output(ρ) after position h.

Before proving the above claim, let us show that it indeed contra-
dicts our assumption that σ is a winning strategy. By C1 we have
that ρ is a play that is consistent with σ. By C2 it follows that
EXCEEDREG(ρ) 6= ∅. Condition C3 implies ρ 6∈W , contradicting
that σ is indeed a winning strategy.

Thus it remains to prove Claim (F). Let us give some intuition
why Claim (F) holds once we have chosen n0 = R(π[1, h])
sufficiently large. Clearly, the larger we have chosen n0 the bigger
k has to be, since it is at position k at which costΓr0 (π[1, k])
exceeds the value n0 of register r0 assigned at position h. This
means that output(π[1, k]) and still output(π[h+1, k−1]) must
contain a huge number of occurrences of some letter icγ0 , where
γ0 ∈ Γr0 . Moreover, in the long word output(π[h + 1, k − 1])
every register r ∈ REGADAM and every counter γ ∈ Γr either has

the property that (i) rγ appears very frequently, or (ii) rγ appears
rarely, but then there cannot be any long rγ-free infix π[i, j] in
which icγ appears often unless r is guessed a new value in the
meanwhile, meaning that some action [x := n] has to appear
in output(π[h + 1, j]) or equivalently [guess r] has to appear
in output(π̂[h + 1, j]), for otherwise the measure costΓr would
have already exceeded the current value of register r earlier than at
position k, thus contradicting B1. We will prove this combinatorial
intuition by applying Ramsey’s Theorem.
Counters summaries. Recall that ACtγ = {εγ , rγ , icγ} and
Γ =

⋃
{Γr | r ∈ REG}. For defining R we color every non-

empty infix π[i, j] of π̂[h+1, k] by an information that summarizes
by one symbol from ACtγ the sequence of counter actions seen
in output(π[i, j])|Actγ for each counter γ ∈ Γ. This information
should summarize what the “dominating” counter action is when
assuming that π̂[1, i](π̂[i+ 1, j])ω is a play compatible with σ. For
instance if output(π[i+1, j])|Actγ = icγεγicγ , then its summary
would just be icγ ; if output(π[i, j])|Actγ contains at least one rγ ,
then its summary would be rγ ; and if output(π[i, j])|Actγ contains
no occurrence of icγ nor of rγ , its summary would just be εγ . Let
us make this intuition formal.

For all γ ∈ Γ, let Mγ = (ACtγ ,�γ , εγ) denote the unique finite
commutative monoid in which all elements are idempotents and
where icγ �γ rγ = rγ �γ icγ = rγ . Let hγ : (Act∗γ , ·, ε)→ Mγ

denote the unique monoid morphism that satisfies hγ(a) = a for
all a ∈ ACtγ . The following lemma follows immediately from
definition of Mγ .

Lemma 4.4. Let γ ∈ Γ and let u ∈ ACt∗γ . Then

hγ(u) =

rγ if, and only if, |u|rγ ≥ 1,

icγ if, and only if, |u|rγ = 0 and |u|icγ ≥ 1, and
εγ if, and only if, |u|rγ = |u|icγ = 0

In fact, we will color certain infixes of π̂[h + 1, k − 1] with
some element from the larger monoid M = (

∏
γ∈Γ Mγ ,�, ε),

where ε = (εγ)γ∈Γ and � is defined componentwise. We define
the monoid morphism hM : (ACt∗Γ, ·, ε) → M as hM(u) =
(hγ(u|ACtγ))γ∈Γ.

Still, before finally defining the function R we need to recall (a
special case of) Ramsey’s Theorem that we state in terms of our
purposes.

Theorem 4.4 (Ramsey’s Theorem). Let n ≥ 1 and let D be a finite
set (of colors). There exists a natural number RD(n) such that for
all sets I with |I| ≥ RD(n) and all colorings χ :

(
I
2

)
→ D of two-

element subsets of I there exists a subset J ⊆ I and some color
d ∈ D such that |J | = n and χ

(
J
2

)
= {d}.

We are now ready to define our function R. For every partial
play ψ we define (recall that valr(ψ) denotes the current value of
register r after playing ψ)

R(ψ) = |ψ|+ 2 + (|V |+ 1) · (|Z|+ 1)

·RM(max{valr(ψ) | r ∈ REG}+ 1) .

Thus, by B3 we have

n0 = h+ 2 + (|V |+ 1) · (|Z|+ 1)

·RM(max{valr(π[1, h]) | r ∈ REG}+ 1).

Let us prepare the proof of Claim (F). Recall that by B3 we
have ah = [r0 := n0] with n0 < costΓr0 (π[1, k]). It follows from
the definition of costΓr0 that there exists some γ0 ∈ Γr0 and some
1 ≤ m′ ≤ n′ ≤ k such that

• |output(π[m′, n′])|rγ0
= 0 and

• |output(π[m′, n′])|icγ0
= costΓr0 (π[1, k]) > n0.

Thus, there exists some some h < m < n < k such that

B5 |output(π[m,n])|rγ0
= 0 and

B6 |output(π[m,n])|icγ0
> n0 − (h+ 2).

Let O = {j ∈ [m,n] | aj = icγ0} and thus

|O| > n0 − (h+ 2)

= (|V |+ 1) · (|Z|+ 1)

·RM(max{valr(π[1, h]) | r ∈ REG}+ 1).

By the pigeonhole principle there exists some subset I ⊆ O, some
v ∈ V , and some z ∈ Z such that

B7 vi = v and zi = z for all i ∈ I and

B8 |I| > RM(max{valr(π[1, h]) | r ∈ REG}+ 1).

Let χ :
(
I
2

)
→ M denote the coloring where

χ{i, j} = hM(π[i, j]) for all i, j ∈ I with i < j.

By Ramsey’s Theorem there exists a subset J ⊆ I and some
m ∈ M such that

B9 χ
(
J
2

)
= {m}, i.e. hM(π[i, j]) = m for all i, j ∈ J s.t. i < j,

B10 |J | = max{valr(π[1, h]) | r ∈ REG}+ 1.

We are now ready to prove to prove Claim (F). We choose i0 =
min J and j0 = max J and note that we have h < i0 < j0 < k.

We define

ρ = π̂[1, i0](π̂[i0 + 1, j0])ω .

Let us show that conditions C1, C2 and C3 are all satisfied.
Condition C1 is obviously fullfilled by B7 since i0, j0 ∈ J ⊆ I .
Let us next establish condition C2 by showing that r0 ∈

EXCEEDREG(ρ). Since ai 6= [r0 := N] for all N ∈ N and for all
i ∈ [h+ 1, k] by B4, it follows that output(π̂[h+ 1, k]) does not
contain any occurrence of [guess r0] by Point (ii) of Fact 4.1, in
particular [guess r0] appears only finitely often in output(ρ). We
have |output(π[m,n])|rγ0

= 0 by B5 and thus

|output(π̂[m,n])|rγ0

Fact 4.1,(ii)
= |output(π[m,n])|rγ0

= 0

and hence

|output(π̂[i0 + 1, j0])|rγ0
= 0

since J ⊆ I ⊆ [m,n]. It follows that output(ρ) contains only
finitely many occurrences of rγ0 . Similarly one shows from B6
that output(ρ) contains infinitely many occurrences of icγ0 . This
shows r0 ∈ EXCEEDREG(ρ) and hence we have established (C2).

Finally let us prove condition (C3). For the sake of contrad-
tion assume there exists some register r1 ∈ EXCEEDREG(ρ) ∩
REGADAM such that [guess r1] does not appear in output(ρ) af-

ter position h. Since r1 ∈ EXCEEDREG(ρ) there exists a counter
γ1 ∈ Γr1 such that icγ1 appears infinitely often in output(ρ) but
rγ1 appears only finitely often in output(ρ). Hence

|output(π̂[i0 + 1, j0])|icγ1
≥ 1 and

|output(π̂[i0 + 1, j0])|rγ1
= 0

by definition of ρ and therefore

|output(π[i0 + 1, j0])|icγ1
≥ 1 and

|output(π[i0 + 1, j0])|rγ1
= 0

by Point (ii) of Fact 4.1. Since ai0 = icγ0 it follows

|output(π[i0, j0])|icγ1
≥ 1 and

|output(π[i0, j0])|rγ1
= 0 .

Therefore for all i, j ∈ J we have

mγ1

B9
= hγ1(π[i, j])

i0,j0∈J= hγ1(π[i0, j0])
Lemma 4.4

= icγ1 .

Hence,

B11

|output(π[i0, j0])|icγ1

≥ |J |
B10
= max{valr(π[1, h]) | r ∈ REG}+ 1

and

B12 output(π[i0, j0])rγ1
= 0.

But then we obtain the following lower bound on costΓγ1
(π[1, j0]):

costΓγ1
(π[1, j0])

≥ costΓγ1
(π[i0, j0])

B11,B12
≥ max{valr(π[1, h]) | r ∈ REG}+ 1

But since by assumption [guess r1] does not appear in output(ρ)
after position h, we conclude by Point (ii) of Fact 4.1 that for
all N ∈ N the assignment [r1 := N] does not appear in
output(π[h, k]) and therefore

valr1(π[1, j0]) = valr1(π[1, h]).

Altogether we obtain

valr1(π[1, j0]) = valr1(π[1, h])

≤ max{valr(π[1, h]) | r ∈ REG}
< costΓr1 (π[1, j0]).

Hence cmpr1(π[1, j0]) = 1 and therefore we have that Cmp(π[1, j0])
is not in (C× {0}REG)∗, contradicting B1.

5. Reduction to the counter-based case
We have seen above how to solve counter-based games with guess
actions. In this section, we show how to reduce regular games with
guess actions to the action-based case.

5.1 Regular cost functions
It is finally time to introduce more formally what cost functions
are. In this paper, we assume the measure functions used in the
game to be defined in terms of regular cost functions. Exactly as
a regular language can be defined by several means (automata,
monoids, monadic second-order logic, regular expressions, . . .),
regular cost functions can be defined in numerous equivalent ways
(B-automata, S-automata, stabilisation monoids, cost monadic
second-order logic, B-expressions, . . .). As far as the complex-
ity of the decision procedures is not concerned, all this formalisms
are equivalent.

Le us briefly describe cost monadic second-order logic, which
is the most concise among these formalisms (see (Colcombet
2013b)). We assume the reader familiar with monadic second-order
logic (see for instance (Thomas 1997)). In cost monadic second-
order logic, the full syntax of monadic second-order logic is avail-
able, and is augmented with the construct |X| ≤ n, in which X is
a monadic variable and n is a unique non-negative integer variable.
This construct has furthermore to appear positively in the formula
(i.e. below an even number of negations). The semantics is as ex-
pected. For instance, the formula ∀X.(|X| ≤ n→ ∀x ∈ X.a(x))
is a formula that holds on a given word u and for a given n if and
only if |u|a ≤ n. The semantics of a formula is in fact to compute,

for each input u, the least n such that the formula holds. Hence, the
above formula computes the number of occurrences of the letter a
in the input word. Examples of this logic over graphs shows that it
can for instance express quantities like ‘the diameter of the graph’.

The specificity of cost functions is to only consider the functions
up to the following equivalence: f, g : A∗ → N ∪ {∞} are ≈-
equivalent if for all sets X ⊆ N ∪ {∞}, f is bounded over X
if and only if g is bounded over X . Indeed, a cost functions is an
equivalence class for ≈. An equivalent way for defining the ≈-
equivalence relation is as follows. A correction function is a map
α : N → N strictly increasing, extended with α(∞) = ∞. Given
two maps f, g : A∗, f 4α g if f ≤ α ◦ g, and f ≈α g is f 4α g
and g 4α f . It happens that f ≈ g if and only if f ≈α g for some
α (see for instance (Colcombet 2013b)).

In fact, the winner of a game with guess actions does not change
if we replace the measures by ≈-equvalent one. We will not estab-
lish this point (this is not very complicated), but rather prove that
the winner is decidable for measures that are regular cost functions,
and these are defined up to ≈.

5.2 History-deterministic B-automata
It happens that the actions introduced in the above section are ex-
actly the one used in the automata model used for recognizing reg-
ular cost functions, namely B-automata. We shall introduce them
now, paying a specific attention to a semantically restricted form
of such automata, namely history-deterministic B-automata. These
are specially designed for behaving well in the alternating context
of games.

Formally, a B-automaton A = (Q,A, q0, F,Γ,∆) has a fi-
nite set of states, an alphabet A, an initial state1 q0, a set of
accepting states F , a finite set of counters Γ, and a transi-
tion relation ∆ ⊆ Q × A × ACtΓ × Q. A run of A over a
word u = a1 . . . an ∈ A∗ is a sequence of the form ρ =
(p0, a1, h1, p1)(p1, a2, h2, p2) . . . (pn−1, an, hn, pn) ∈ ∆∗ such
that p0 = q0. It is accepting if furthermore pn ∈ F . Its cost is
cost(ρ) = costΓ(h1 . . . hn). Given such a B-automaton, is com-
putes a function:

[[A]] : A∗ → N ∪ {∞}
u 7→ inf{cost(ρ) | ρ accepting run of A over u} .

A regular cost function is an equivalence class under
A translation strategy is a family (τn)n∈N of maps τn : Q ×

A→ ∆ that have the property that for all n ∈ N:

• τn(u) is a run of A for all u ∈ A∗, in which τn has been
extended into a map τn : A∗ → ∆∗ by τn(ε) = q0, and
τn(ua) = τn(τn(u), a),
• for all words u ∈ A∗, cost(τn(u)) ≤ n.

A B-automaton is history-deterministic for the map f : A∗ →
N ∪ {∞} if there exist a translation strategy τ and a correction
function α such that for all words u ∈ A∗:
• α([[A]](u)) ≥ f(u), i.e. all accepting runs ρ ofA for u are such

that α(cost(ρ)) ≥ f(u), and
• if [[A]]A(u) ≤ n then τm(u) ends in an accepting state for all
m ≥ α(n).

An B-automaton is history-deterministic if is is history-deterministic
for the map [[A]]. In short, the meaning of this definition is that,
though the B-automaton is not deterministic, there is a determinis-
tic way (namely the translation strategy) to construct of run (first
condition) which yields the correct result up to a ≈.

1 Usually there is a set of initial states, but it is convenient in this paper,
for history-deterministic B-automata to restrict to one. The models are
equivalent.

Theorem 5.1. Given a f in a regular cost function, there exists
effectively an history-determinisitic B-automaton for f .

5.3 Reduction to the counter-based case
The goal of this section is to show how a regular game with
guess actions can be turned into a counter-based one. We fix
a regular game with guess actions G = (A, f , T) with A =
(V,C,REG, δ, v0). For all registers r ∈ REG, fr belongs to
a regular cost function. This means that there is an history-
deterministic B-automaton Ar = (Qr,C, ir, Fr,Γr,∆r) for fr .
Hence, there exists a correction function α a translation strategy
τr such that for all input words u ∈ C∗, α([[A]]) ≥ f(u) and
cost(τmr (u)) ≤ α(f(u)) for all m ≥ α(n). Our objective is to
construct a new game G† that has same winner, and is counter-
based.

Ideas about the construction. The essential idea behind this re-
duction is to execute during the play at the same time the origi-
nal game G and the history-deterministic B-automatonAr for each
register r, its non-determinism being controlled by the owner of
the register. The tuple of states obtained in this way is denoted
p ∈

∏
r∈REG Qr . By looking whether these states are accepting

or not, vectors of bits indexed by REG are produced at each step.
These bits decorate the play, producing a word in C × {0, 1}REG.
The winner is decided by testing whether this word in C×{0, 1}REG

belongs to the long term objective T .
This first description works well, but it is not sufficient. In fact,

it would be perfect if all the registers would be guessed at the be-
ginning of the game. The problem is that an assignment to a reg-
ister makes the run of the Ar automata constructed so far irrele-
vant. Indeed proving the correctness of the above construction in-
volves ‘executing’ a winning strategy for Eve in EXP(G†) ‘fight-
ing’ against the translation strategies τr for the registers owned by
Adam. However, if one inspects the definition of a translation strat-
egy, it is parameterized by a bound n, and assigning a new value
to the register amounts to change this bound in the middle of the
run. This would be meaningless. To circumvent this problem, the
game also maintains a set of reachable states for each Ar (denoted
R,R′ in what follows). A state is drawn from it whenever a regis-
ter is assigned a value (once more chosen by the register owner).
Virtually these sets R,R′ account for possible runs of Ar , but for
which we do not not have any idea of the counter values seen so
far. We use these pieces of run as prefixes before beginning to fol-
low the translation strategy when an assignment is met. Since we
do not control counter values along these pieces of run, the tech-
nique introduces some uncertainness. We resolve this problem in
the correctness proof: by changing the register values chosen by
Eve during each assignment. These changed register values allow
to ‘absorb’ this uncertainness.

The construction. Let us make these ideas more concrete. Let Q
be the disjoint union of the Qr sets, ∆ be the disjoint union of the
∆r sets, and Γ be the disjoint union of the Γr sets. Let us also fix
ourselves an order on the registers r1, . . . , r|REG|.

To simplify the description of G†, we extend the syntax of the
move map expressions with the construction ‘a;φ’ with a an action,
and φ a subformula. This is a shorthand for denoting a move (a, v)

to a fresh vertex v, with δ(v) = φ. This notation can be used
recursively.

We construct the new game with guess actions G† as follows:

G† = (A′, (costΓr)r∈REG, T
′)

with A′ = (V ′,C′,REG, δ′, v′0) ,

V ′ = V × {0, 1}Q ×
∏
r∈REG

Qr ,

v′0 = (v0,
⋃
r∈REG

Ir, (ir)r∈REG) ,

C′ = (C× {0, 1}REG)] ACtΓ ,

and the move map δ′ is defined as follows. For all (v,R,p) ∈ V ′,
δ′(v,R,p) = δ(v)[η] in which η is the substitution defined for all
a ∈ C and all v′ ∈ V as η(a, v′) = tr|REG|(p) with :

t0(p) = ((a,b), (v′, {q′ ∈ Q | q ∈ R, (q, a, ∗, q′) ∈ ∆},p))

(1)

ti(p) =
∨

(pri ,a,h,p
′)∈∆ri

h; (ti−1(p[r ← p′]))

if ri ∈ REGEVE (2)

ti(p) =
∧

(pri ,a,h,p
′)∈∆ri

h; (ti−1(p[r ← p′]))

if ri ∈ REGADAM (3)

where br = 0 if pr ∈ Fr , 1 otherwise, and

η([guess r], v′) =
∨

p′∈R∩Qr

([guess r], (v′, R,p[r ← p′]))

for all r ∈ REGEVE (4)

η([guess r], v′) =
∧

p′∈R∩Qr

([guess r], (v′, R,p[r ← p′]))

for all r ∈ REGADAM. (5)

Hence, Eq. 1 copies the actions of the original arenaA, and updates
the set of reachable states R. Eq. 2 and 3 give control of the B-
automaton Ar to the owner of the register r. Finally Eq. 4 and 5
copy the guess actions, and give the right to the owner of the
guessed register to jump to another (reachable) state of the B-
automaton Ar .

Finally, one defines T ′ = {u ∈ (C′)ω | u|(C×{0,1}REG) ∈ T}.
Note in particular in this construction that the bits occurring in
(C×{0, 1}REG) are not the ones associated to the counters Γ but are
obtained by testing whether the states of p are final. The bit issued
from the costΓr functions are implicitly dealt with by the definition
of a counter-based winning condition.

The goal in the remaining of this section is to prove the correct-
ness of the construction, as stated as follows.

Lemma 5.1. G is determined, and G† has the same winner.

For proving this statement, we will begin with some considera-
tions and definitions concerning the structure of the game G†, that
will lead to the main part of the proof, which consists in transform-
ing a winning strategy for Eve in EXP(G†) into a winning strategy
for Eve in EXP(G) (Lemma 5.3). We will finally appeal to sym-
metry considerations for obtaining the same result for strategies for
Adam. The result then immediately follows.
Definitions and first remarks concerning the structure of G†.
In order to be able to state the properties of the construction, it is
convenient to define a certain number of projections of plays in
EXP(G†). Recall first that the set of actions labelling this game

belong to C′ = (C×{0, 1}REG)] ACtΓ to which have to be added
the assignment actions from ASSIGN[REG]. Thus, given a (partial)
play ψ in the game EXP(A′), it is natural to consider:

• Its projection on C, written projC(ψ) ∈ Cω (or ∗), on
C × {0, 1}REG, written projC×{0,1}REG (ψ), on ACtΓr denoted
projACtΓr

(ψ) or on C′ denoted projC′(ψ).

• Its projection proj∆r
(ψ) to ∆ω

r (or ∗), which can be recon-
structed from the structure of the game (formally, when r = ri,
the move (p, r, h, p′) ∈ ∆r in definitions 2 and 3). Note that,
though it is a sequence of transitions, it is not in general a run
of the B-automaton Ar , since when [guess r] is encountered,
the state may jump to another one.
• lgtr(ψ) which is the length of the longest prefix of ψ that ends

with an assignment of r.

Note that all these projections yield infinite words when applied to
infinite words.

Lemma 5.2. For all partial plays ψ in EXP(A′) and all register
r ∈ REG ending in last(ψ) = (v,R,p), a state q ∈ Qr belongs to
R if and only if there is a run of Ar over projC(ψ) starting in an
initial state and ending in q, and pr ∈ R.

Furthermore, let ψψ′ be a partial play in EXP(A′) that starts
in (v,R,p) and ends in (v′, R′,p′), and such that ψ′ contains no
assignment of register r, then proj∆r

(ψ) is a run of Ar from pr
to p′r over projC(ψ).

Translation of strategies. We are entering now the heart of the
proof. Our goal is now to establish the following.

Lemma 5.3. If Eve wins G†, she also wins G.

Thus, let us fix a winning strategy σ′ for Eve in EXP(G†). We
aim at constructing a winning strategy σ for Eve in EXP(G).

The principle of the construction of the strategy σ is essentially
to ‘project’ σ′ on EXP(A). However, for this to be meaningful,
we need to explain what to do with the choices of Adam that did
not exist in EXP(A). The way we describe this translation is as a
partially defined map ρ from partial plays of EXP(A′) to partial
plays of EXP(A). This partial map ρ is defined by induction on the
length of the input partial play, in such a way that the image under
ρ of σ′ is a winning strategy in EXP(G).

At the same time we define ρ, we establish a certain number of
(induction) properties that we list now. Let ψ be some partial play
in σ′ such that ρ(ψ) is defined and that ends in a vertex of the form
(v,R,p), we shall prove that:

P1 If v is owned by Eve, then ψ is prefix of ψ′ ∈ σ′ such that
ρ(ψ′) is defined, and ρ(ψ′) = ρ(ψ)m for some move from v
in EXP(A); if v is owned by Adam, and m is some move from
v in EXP(A), there exists ψ′ ∈ σ′ such that ρ(ψ′) is defined,
and ρ(ψ′) = ρ(ψ)m.

P2 If ρ(ψ) is a strict prefix of ρ(ψ′), then ψ is a prefix of ψ′.
Furthermore, projC(ψ) = projC(ρ(ψ)).

P3 α(valr(ψ) + lgtr(ψ)) = valr(ρ(ψ)) for all r ∈ REGEVE,

P4 valr(ψ) + lgtr(ψ) = α(valr(ρ(ψ))) for all r ∈ REGADAM,

P5 if ρ(ψ) is defined, costΓr (projACtΓr
(ψ)) ≤ valr(ψ) for all

registers r ∈ REGADAM,

P6 for all registers r ∈ REGADAM and all partial plays ψψ′ ∈
σ′ such that ψ′ does not contain an assignment to r then
τnr (projC(ψψ′)) = τnr (projC(ψ))proj∆r

(ψ′) where n is
valr(ψ)− lgtr(ψ), and

P7 projC×{0,1}REG (ψ) v Cmp(ρ(ψ)).

Before proceeding, let us show that, assuming P1, P2, P5 and P7,
we can prove Lemma 5.3. The property P1 implies directly that σ =
ρ(σ′) is indeed a strategy for Eve in EXP(A). We have to prove it
winning. Consider a play φ consistent with σ. By P2, there is a
play ψ consistent with σ′ such that ρ(ψ) = φ (at the limit). Since
σ′ is winning for Eve, projC′(ψ) belongs to EXP(cost, T ′). There
are two cases: (1) either Eve wins because one of Adam’s counter
has exceeded its value, i.e. costΓr (projACtΓr

(ψ)) > valr(ψ) for
some r ∈ REGADAM, but this is not possible, since this contradicts
P5, or (2) projC′(ψ) ∈ T ′, or equivalently projC×{0,1}REG (ψ) ∈
T ; but, since by P7 projC×{0,1}REG (ψ) v Cmp(ρ(ψ)) = Cmp(φ),
it follows that Cmp(φ) ∈ T , which means that φ is winning for Eve.
Hence σ is winning, and Lemma 5.3 is proved.

Let us finally describe the ρ mapping. We establish at the same
time the above invariants P1-P7. For readability, we concentrate on
the meaningful parts of the proofs. In particular, we leave to the
reader the verification of P1 and P2, and we do not mention along
the construction the properties that are immediately preserved.

Let us fix ourselves ψ ∈ σ′.
Case 1: m was produced in Eq. 1. Then m is of the form
((v, ∗, ∗), (a,b), (v′, ∗, ∗)) with a ∈ C, b ∈ {0, 1}REG. In this
case, η(ψm) = η(ψ)(v, a, v′). The only property that is touched
is P7, and more precisely what we have to prove is that the vec-
tor of bits b is correct. Formally, we have to prove that (a) for all
r ∈ REGEVE, if br = 0 then fr(projC(ψ)) ≤ valr(ρ(ψ)) and (b)
for all r ∈ REGADAM, if br = 1 then fr(projC(ψ)) > valr(ρ(ψ)).

For (a), by definition, br = 0 means pr ∈ Fr . It follows, by
Lemma 5.2, that there is an accepting run of Ar over projC(ψ).
Furthermore, this run has maximal cost lgtr(ψ) up to the last
time an assignment of r has been performed, and coincides with
proj∆r

(ψ) from that point on, which means that it has cost at
most valr(ψ) from that point on. Hence, this run witnesses that
[[projC(ψ)]] ≤ valr(ψ)+lgtr(ψ). It follows, by assumption, that
f(projC(ψ)) ≤ α(valr(ψ) + lgtr(ψ)), which in turn, by P3,
is at most valr(ρ(ψ)). It follows the expected fr(projC(ψ)) ≤
valr(ρ(ψ)).

For (b), by definition, br = 1 means that pr 6∈ Fr . But by
P6, pr is the last state of the of Ar over projC(ψ) when followig
the translation strategy τnr for n = valr(ψ). By the definition of
history-determinism, since this state is not accepting, and by P4
n ≥ α(valr(ρ(ψ))), we obtain fr(projC(ψ)) > valr(ρ(ψ)).

This settles the first case.

Case 2: m was produced in Eq. 2. Then m is of the form
((v, ∗, ∗), h, (v′, ∗, ∗)) with h ∈ ACtr for some r ∈ REGEVE.
We set η(ψm) = η(ψ). Nothing special has to be proved in this
case.

Case 3: m was produced in Eq. 3. Then m is of the form
((v, ∗, p), h, (v′, ∗, p′)) with h ∈ ACtr for some r ∈ REGADAM.
In this case, because the control is given to Adam, there is one
such move for all possible transitions of Ar . In fact here, we
want only to follow that transition offered by the translation strat-
egy for Ar . Hence, if (pr, a, h, p

′
r) = τ

val(r)−lgtr(ψ)
r (pr), then

ρ(ψm) = ρ(ψ), and is undefined otherwise. It is easy to check that
the property P6 is maintained in this case for register r.

Case 4: m was produced in Eq. 4. Then m is of the form
((v, ∗, p), [r := n], (v′, ∗, p′)) with r ∈ REGEVE and n ∈ N.
In this case, one sets ρ(ψm) = ρ(ψ)(v, [r := n′], v′) where n′

is set to be α(valr(ψ) + lgtr(ψ)). In this case, one has to check
that property P3 is preserved. And this is obvious.

Case 5: m was produced in Eq. 5. Then m is of the form
((v,R,p), [r := n], (v′, R′,p′)) with r ∈ REGADAM and n ∈ N.
Then ρ(ψm) is defined to be ρ(ψ)(v, [r := k], v′) for some k ∈ N
if and only if

• n = α(k)− lgtr(ψ), and

• p′ = p[r ← q] for q the last state of the run τα(k)
r (projC(ψ)).

It is easy to check that in this case P4 and P6 are preserved.
The duality argument We have seen Lemma 5.3, which states
that a winning strategy for Eve in EXP(G†) can be turned into a
winning strategy for Eve in EXP(G). As we did before, we use a
symmetry argument for the Adam counterpart. It is sufficient to
note that syntactically,

G† = G† .

It follows that if Adam wins G†, by definition he wins EXP(G†).
Hence, Eve wins EXP(G†) = EXP(G†) = EXP(G†). Thus, by
Lemma 5.3, Eve wins EXP(G) = EXP(G). Hence Adam wins
EXP(G). Since furthermore EXP(G†) is determined by Martin’s de-
terminacy theorem, it follows that G is determined. This completes
the proof of Lemma 5.1.

6. Conclusion
In this paper, we have introduced games with guess actions as a nat-
ural way to model behaviors involving infinite quantities in finite
games. We show that for non-trivial cases of such games, namely
regular games with guess actions, the winner can be decided. A nat-
ural continuation of this work is to study the case of similar games
played on pushdown arenas. In fact, the main obstacle in such a
generalization is of a technical nature: it is extremely complicated
with the classical tools to write proofs on these models. That is why
we believe that the next step should be the development of a ‘game
oriented’ mathematical framework in which most of the arguments
involved in this work would be natural.

References
M. Bojańczyk and T. Colcombet. Bounds in ω-regularity. Logical Methods

in Compter Science, page 54, 2009.
T. Colcombet. Safra-like constructions for regular cost functions over finite

words. Unpublished, 2011.
T. Colcombet. Cost functions with several orders of magnitudes and the use

of relative internal set theory. In LICS 2013, page 123, 2013a.
T. Colcombet. Regular cost functions, part I: logic and algebra over words.

Logical Methods in Compter Science, page 47, 2013b.
T. Colcombet and C. Löding. The nesting-depth of disjunctive µ-calculus

for tree languages and the limitedness problem. In CSL 2008, volume
5213, pages 416–430, 2008.

T. Colcombet and C. Löding. Regular cost functions over finite trees. In
LICS 2010, pages 70–79. IEEE Computer Society, 2010.

N. Fijalkow and M. Zimmermann. Cost-parity and cost-streett games. In
FSTTCS 2012, volume 18 of LIPIcs, pages 124–135. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2012.

Y. Gurevich and L. Harrington. Trees, automata, and games. In STOC 1982,
pages 60–65. ACM, 1982.

K. Hashiguchi. Relative star height, star height and finite automata with
distance functions. In Formal Properties of Finite Automata and Appli-
cations, volume 386, pages 74–88, 1988.

D. Kirsten. Distance desert automata and the star height problem. RAIRO -
Theor. Inf. Appl., 3(39):455–509, 2005.

H. Leung. On the topological structure of a finitely generated semigroup of
matrices. Semigroup Forum, 37:273–287, 1988.

I. Simon. On semigroups of matrices over the tropical semiring. RAIRO -
Theor. Inf. Appl., 28(3-4):277–294, 1994.

W. Thomas. Languages, automata and logic. In Handbook of Formal
Languages, volume 3, chapter 7, pages 389–455. Springer, 1997.

	Introduction
	Preliminaries
	Basic definitions
	Standard arenas, plays, [strategy for Eve]strategies and games
	[arenas with guess actions]Arenas and games with guess actions and their semantics

	Counter-based winning conditions
	On finite arenas: From counter-based games with guess actions to -regular games
	Definition of [c translate]Imp(G)
	Finite memory strategies
	From a winning Eve-strategy in [c translate]Imp(G) to a winning Eve-strategy [backtrans]Trans() in Exp(G)
	The strategy [backtrans]Trans() is winning.

	Reduction to the counter-based case
	Regular cost functions
	History-deterministic B-automata
	Reduction to the counter-based case

	Conclusion

