
Client Synthesis for Aspect Oriented Web Services

Mehdi Ben Hmida1 and Serge Haddad2

1 LAMSADE, CNRS & Université Paris-Dauphine, France
mehdi.benhmida@lamsade.dauphine.fr

2 LSV, CNRS & ENS Cachan, France
serge.haddad@lsv.ens-cachan.fr

Abstract. Client synthesis for complex Web services is a critical and still open
topic as it will enable more flexibility in the deployment of such services. In
previous works, our team has developed a theoretical framework based on process
algebra that has led to algorithms and tools for the client interaction. Here, we
show how to generalise our approach for aspect oriented Web services.

1 Introduction

From elementary Web services to complex ones. Web services are self contained, self-
describing modular applications that can be published, located, and invoked across the
Web. They are based on a set of independent open platform standards to reach a high
level of acceptance. Web services framework is divided into three areas: communica-
tion protocol, service discovery and service description. The “Web Services Descrip-
tion Language” (WSDL) [26] provides a formal, computer-readable description of Web
services. Such a description specifies the software component interfaces listing the col-
lection of operations that are network accessible through standard XML messaging. It
includes all information that an application needs to invoke such as the message struc-
ture, the response structure and some binding information like the transport protocol,
the port address, etc.

However simple operation invocation is not sufficient for some kind of composite
services. They require in addition a long-running interaction derived by an explicit pro-
cess model. This kind of services may often be encountered in two cases. First when a
Web service is developed as an agent, it is composed by a set of accessible operations
and a process model which schedules the invocation to a correct use of the service.
Secondly, facing to the capability limits of Web services, composite services may be
obtained by aggregating existing Web services in order to create more sophisticated
services (and this in a recursive way).

In order to deal with the behavioural aspects of complex services, some industrial
and academic specifications languages have been introduced. Among them, “Business
Process Execution Language for Web Services” (BPEL4WS or more succinctly BPEL)
has been proposed by leading actors of industry (BEA, IBM, and Microsoft) and has
quickly become a standard [14].

The two facets of complex Web services. BPEL supports two different types of business
processes (see for instance [16], [17]):

C. Choppy and O. Sokolsky (Eds.): Monterey Workshop 2008, LNCS 6028, pp. 24–42, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Client Synthesis for Aspect Oriented Web Services 25

– Executable processes specify the exact details of business processes. They can be
executed by an orchestration engine.

– Abstract business protocols specify the public message exchange between the client
and the service. They do not include the internal details of process flows but are
required in order for the client to correctly interact with the service.

Given the description of an executable process, its associated interaction protocol is
obtained by an abstraction mechanism (which masks all the internal operations of the
service). However the issues raised by these two types of processes are very different.
A specification of an executable process is close to the definition of a program whereas
the specification of interaction protocol mainly raises an difficult problem: how to syn-
thetize a client which will correctly handle the interaction with the service.

The synthesis problem. Indeed by construction, the external behaviour of a service is
non deterministic due to its internal choices. It is then a priori unclear whether a client,
i.e. a deterministic program, can be designed to interact with it. Furthermore the specifi-
cation often includes timing constraints (e.g. implicit detection of the withdrawal of an
interaction by the client) implying that these timing constraints must also be taken into
account by the client. However since no semantics of the interaction process is given
for BPEL (not to be confused with the semantics of the service execution), this problem
could not be formally stated. In practice, the industrial products including predefined
clients assume a simple interaction protocol as proposed by WSDL (like for instance
a “query-answer” interaction). Thus it is clear that the synthesis problem is a critical
issue for the rapid deployment of composite services.

Adaptation and Web services. Aspect oriented programming (AOP) helps the program-
mer to isolate non functional software (like authentication and logging) from business
software. Using AOP eases the modification of implemented policies as it does not im-
pact the functional part. However in the context of JAVA, it requires either to change
the compiler, the loader or the virtual machine. AOP is also desirable for Web services
since they require a lot of non functional codes but the integration of AOP in a Web
service framework raises significant difficulties.

Previous contributions. In our previous works, we have addressed both service adapt-
ability and client interaction issues but separately.

First, we have specified what is an external behaviour, i.e. we have given an oper-
ational semantics to an abstract BPEL specification in terms of a time transition sys-
tem [10,11]. The semantics is obtained by a set of rules in a modular way. Given a
constructor of the language and the behaviour of some components, a rule specifies a
possible transition of a service built via this constructor applied on these components.
As previously discussed, the transition system is generally non deterministic. Then we
have defined a relation between two communicating systems which formalizes the con-
cept of a correct interaction. There are standard relations between dynamic systems like
the language equivalence and the bisimulation equivalence but none of them matches
our needs. Thus we have introduced the interaction relation which can be viewed as a
bisimulation relation modified in order to capture the nature of the events (i.e. the send-
ing of a message is an action whereas the reception is a reaction). Afterwards we have
focused on the synthesis of a client which is in an interaction relation with the transition

26 M. Ben Hmida and S. Haddad

system corresponding to the system. The client we look for must be implementable, in
other words it should be a deterministic automaton. It has appeared that some BPEL
specifications do not admit such a client i.e. they are inherently ambiguous. Thus the al-
gorithm we have developed either detects the ambiguity of the Web service or generates
a deterministic automaton satisfying the interaction relation. The core of this algorithm
is a kind of determinisation of the transition system of the service.

Independently we have proposed an Aspect Oriented Programming (AOP) [18] ap-
proach which aims to change elementary Web services at runtime [2,23].

Our contributions. Here, we extend these works by providing:

– A method to design, deploy and publish aspect-oriented and composite Web ser-
vices;

– A formal semantics for aspect-oriented Web services;
– An algorithm that generates a client (i.e. an automata) based on this semantics or

detect that the service is ambiguous. Observe that this generation takes into account
specification of aspects with the aim to dynamically create additional automata at
run time.

– A client interpreter able to handle interactions not fully specified in the published
Web service description. In particular, it simultaneously manages execution of sev-
eral automata with synchronization contrary to our previous approach that manages
a single automaton.

This paper is organized as follows. Section 2 details the approach for synthesis of client
for service without adaptation. Section 3 presents the generalisation to aspect oriented
web services. Section 4 discusses related work. Finally in section 5 we conclude and
give some perspectives to this work.

2 Client Synthesis for Web Services

In this section, we develop the principle of client synthesis for services without
adaptation.

2.1 A Formal Semantics for BPEL Abstract Processes

BPEL provides a set of operators describing in a modular way the observable behaviour
of an abstract process. As shown in [22], this kind of process description is close to the
process algebra paradigm illustrated for instance by CCS [20], CSP [13] and ACP [3].
However, time is explicitly present in some of the BPEL constructors and thus the stan-
dard process algebra semantics are inappropriate for the semantics of such a process. In
order to model time, we have chosen a discrete time semantics since on the one hand the
theory of dense time is more involved and on the other hand timing requirements in Web
services are simpler than in real-time systems. For sake of clarity, we have not formal-
ized more technical features of BPEL like the compensation handlers. Our semantics
associates a finite automaton with an abstract process.

Client Synthesis for Aspect Oriented Web Services 27

The alphabet of the automaton. The first step for the definition of a semantics consists
in specifying the action alphabet for a BPEL process. We have five kinds of actions:

– A time unit elapsing is denoted by χ.
– Silent actions, denoted by τ cannot be observed by the client. They correspond to

decisions taken by the server (evaluation of a condition for switch, while, etc.).
– Exceptions; the set of exception events is denoted by Ex.
– In order to control that the client correctly detects the end of the service, we intro-

duce
√

, the termination event. This action will also simplify the definition of the
operational semantics.

– Sending and receiving messages: the set of types of messages will be denoted by
M . The emission is denoted by !m and the reception is denoted by ?m. We also
set !M = {!m |m ∈ M} and ?M = {?m |m ∈ M} and the wildcard ∗ may be
substituted for ! or ?.

Actions different from time elapsing can be classified as immediate (τ,
√

and excep-
tions) or delayed (emissions and receptions). The first kind of actions are performed in
null time (w.r.t. the time scale) and thus in our semantics have priority over the other
actions including time elapsing.

The states of the automaton. Each state will be associated with a BPEL process ob-
tained by successive transformations from the initial process. Two states have different
associated processes. At the beginning of the construction, there is a single state (the
initial one) corresponding to this process. Each time an edge is defined, a new process is
computed and if this process does not label an existing state then such a state is created.
Due to the semantic rules given in the next subsection, it can be proved that the number
of derived processes is finite (and thus the number of states is also finite).

The transitions of the automaton. The transitions starting from a state are obtained
by a top-down analysis of the process expression labelling this state. This analysis is
usually defined with the help of operational semantic rules. The definition of a semantic
rule [opx] for a generic process P = opx(P1, P2, . . .) includes the following parts:

– a boolean expression over some potential transitions of selected components of P :
Bexp({Po(i)

αi−→ P ′
o(i)});

– this condition is enforced by a second condition on the occurring labels denoted by
guard({αi}).

– If the two conditions are fulfilled then a state transition for P is possible where
the label Lexp({αi}) is an expression depending on the labels of subprocesses
transition and

– the new process is an expression Nexp(P, {P ′
o(i)}) depending on the original pro-

cess and the new subprocesses.

So, a generic rule, presented with the usual style has the following structure:

[opx] :
Bexp({Po(i)

αi−→ P ′
o(i)})

P
Lexp({αi})−→ Nexp(P, {P ′

o(i)})
where guard({αi})

28 M. Ben Hmida and S. Haddad

For sake of readability, we do not follow the (verbose) XML syntax of a BPEL
process. Instead we have chosen a simplified syntax close to the one used for process
algebra whose meaning should be immediate for who knows BPEL. As usual, we begin
the definition of rules by giving the ones corresponding to the basic processes of BPEL.
These basic processes are empty, ?o[m], !o[m] and throw[e].
The empty process empty can only terminate (the notation 0 is the null process).

empty
√
−−−→ 0

The ?o[m] and !o[m] processes. The process ?o[m] (which corresponds to the input op-
eration of WSDL) consists in receiving a message of type m. The process !o[m] (which
corresponds to the notification operation of WSDL) consists in sending a message of
type m. We only consider these two types of WSDL operations. The two other types
can be built with the sequence constructor (see below). Since these actions are not im-
mediate, time can elapse. This leads to the two rules below.

∗o[m]
χ−−→ ∗o[m] ∗ o[m] ∗m−−−−→ empty with ∗ ∈ {?, !}

The throw process. The process throw[e] raises an exception e which must be catched
in some scope process.

throw[e] e−−→ 0

We also introduce an auxiliary process time that represents time elapsing (not present
in the BPEL definition).

time
χ−−→ time

The sequence process (;). The process P ; Q executes the process P then the pro-
cess Q. Since the operator “;” is associative, we safely restrict the number of operands
to two processes. The sequence process acts as its first subprocess while this process
does not indicate its termination. In the latter case, the sequence process acts as the
second process can do.

P
a−−→ P ′

P ; Q
a−−→ P ′ ; Q

where a �= √

P
√
−−−→ and Q

a−−→ Q′

P ; Q
a−−→ Q′

Remark. The set of rules will imply that if there is an action a �= √ such that P
a−−→

P ′, then P
√
−−−→ cannot occur.

The switch process. The process switch[{Pi}i∈I] chooses to behave as one process
among the set {Pi}. Each branch of its execution is guarded by an internal condition.
Conditions are evaluated w.r.t. the order of their appearance in the description. However
since the client has no way to predict the choice of the service, this order is irrelevant.
The main consequence is that from the point of view of the client, this choice is non
deterministic. The switch process becomes one of its subprocesses in a silent way. Let

Client Synthesis for Aspect Oriented Web Services 29

us note that we have implicitly supposed that at least one condition is fulfilled. In the
other case, it is enough to add the process empty as one of the subprocesses.

∀ i ∈ I switch[{Pi}i∈I]
τ−−→ Pi

The while process. The process while[P] iterates an inner process as long as an in-
ternal condition is satisfied. Like switch, while evaluates in a silent way its condition.
Thus we have two rules depending on this internal evaluation.

while[P] τ−−→ P ; while[P]

while[P] τ−−→ empty

The flow process. The process flow[{Pi}i∈I}] simultaneously activates a set of pro-
cesses {Pi}. For the moment considering that the synchronization primitives of BPEL
are internal ones we have not yet implemented this synchronization. Thus this paral-
lel execution is similar to a “fork-join” in the sense that the combined process ends
its interaction when all subprocesses have completed their execution. Subprocesses of
a flow process act independently except for one action: they simultaneously indicate
their termination. In the latter case, the flow process becomes the null process. Further-
more internal actions are considered as immediate and consequently the occurrence of
such an action in a subprocess prevents the occurrence of a delayed action (sending or
reception of a message) in another subprocess.

• Individual actions:

1.

∀j ∈ I
Pj

a−−→ P ′

flow[{Pi}i∈I]
a−−→ flow[{Pi}i∈I\{j} ∪ {P ′}] where a ∈ Ex ∪ {τ}

2.

∀m ∈M ∀j ∈ I
Pj

∗m−−−−→ P ′ ∧ ∀ i ∈ I ∀ a ∈ Ex ∪ {τ}, ¬Pi
a−−→

flow[{Pi}i∈I]
∗m−−−−→ flow[{Pi}i∈I\{j} ∪ {P ′}]

• Time elapsing: all processes must either let time elapse or terminate.

∀J �= ∅ J ⊆ I
∀i ∈ J Pi

χ−−→ P ′
i ∧ ∀i ∈ I \ J Pi

√
−−−→

flow[{Pi}i∈I]
χ−−→ flow[{P ′

i}i∈J ∪ {Pi}i∈I\J]

• Termination:

∀ i ∈ I Pi

√
−−−→

flow[{Pi}i∈I]
√
−−−→ 0

30 M. Ben Hmida and S. Haddad

The scope process scope(P, Ed) with

Ed def
= [{(mi, Pi) | i ∈ I}, (d, Q), {(ej, Rj) | j ∈ J}]

may evolve due to P evolution, reception of a message mi, expiration of the timeout
with duration d or occurrence of an exception ej . We note MI = {mi | i ∈ I} and
EJ = {ej | j ∈ J}.
• P actions: The termination exits the scope whereas another action does not.

P
√
−−−→

scope(P, Ed)
√
−−−→ 0

P
a−−→ P ′

scope(P, Ed) a−−→ scope(P ′, Ed)
where a /∈ Ex ∪MI ∪ {√, χ}

• Receiving a message mi:

∀ i ∈ I
∀ a ∈ Ex ∪ {τ,√}, ¬P a−−→
scope(P, Ed) ?mi−−−−→ Pi

• Exception handling: which depends whether the raised exception is catched in this
scope.

∀ j ∈ J
P

ej−−−→
scope(P, Ed) τ−−→ Rj

∀ e ∈ Ex \ EJ
P

e−−→
scope(P, Ed) e−−→ 0

If an exception e is never catched at any level then the process is an erroneous one which
can straightforwardly checked by examining whether an exception labels an transition
of the automaton.

• Time elapsing

∀ d > 0
P

χ−−→ P ′

scope(P, Ed)
χ−−→ scope(P ′, Ed−1)

• Time out
P

χ−−→
scope(P, E1) χ−−→ Q

The pick process can be viewed as a particular case of the scope process:

pick(Ed) ≡ scope(time, Ed)

Client Synthesis for Aspect Oriented Web Services 31

2.2 Interaction Relation

We first informally state what should be a correct interaction between two automata.
As for the bisimulation relation, we require a relation between pairs of states of the two
systems. Obviously the pair consisting of the initial states should belong to this relation.

Furthermore, the states of a pair should have a coherent view of the next interaction
steps to occur. At first, this implies that the relation must take into account the mutually
observable steps. Thus we introduce the observable transition relation of an automaton

by s
a⇒ s′ iff s

τ∗aτ∗→ s′, s
ε⇒ s′ iff s

τ∗→ s′.
Once it is done, we could require (like for bisimulation) that if a state s of the pair

(s, s′) may evolve by an observable transition of its automaton to some new state s1, s′

should have a similar observable transition leading to a state s′1 which would compose
with s1, a new pair of consistent views.

However we need to be careful. First, if an automaton sends a message the other
one must be able to receive the message. So it is necessary to introduce the notion of
complementary actions ?m =!m, !m =?m and ∀a /∈ {!m}m∈M ∪ {?m}m∈M a = a
and to require that the synchronized evolution is obtained via complementary actions.

But this requirement is too strong as it does not capture the different nature of the
sending and reception of a message. A sending is an action whereas a reception is a
reaction and will not spontaneously occur. Therefore a more appropriate relation will
first require that if, in s belonging to the pair (s, s′), an automaton may receive a message
m, then there is a third state s′′ of the other automaton indistinguishable from s′ w.r.t.
the observable transitions which can send m and second that in s′ the other automaton
can send a message (not necessarily m). The first condition expresses that the former
automaton is not overspecified and the second one that it will not wait indefinitely for
a message.

These considerations yield the following formal definition.

Definition 1 (Interaction relation). Let A1 = (S, s01, A,→1) and A2 = (S, s02,
A,→2) be two automata. Then A1 and A2 correctly interact iff ∃ ∼ ⊆ S1 × S2 such
that:

– s01 ∼ s02

– ∀s1, s2 such that s1 ∼ s2

• Let a /∈ {?m |m ∈M} then

∗ if ∃ s1
a==⇒1 s′1, then ∃ s2

a==⇒2 s′2 with s′1 ∼ s′2
∗ if ∃ s2

a==⇒2 s′2 then ∃ s1
a==⇒1 s′1 with s′1 ∼ s′2

• Let m ∈M ; if s1
?m===⇒1 s′1 then

∗ ∃ s−2
w===⇒2 s2, ∃ s−2

w===⇒2 s+
2 , ∃ s+

2
!m===⇒2 s′2 with s1 ∼ s+

2 and
s′1 ∼ s′2 where w is a word

∗ ∃ s2
!m′

====⇒2 s′2
• Let m ∈M ; if s2

?m===⇒2 s′2 then

∗ ∃ s−1
w===⇒1 s1, ∃ s−1

w===⇒1 s+
1 , ∃ s+

1
!m===⇒1 s′1 with s+

1 ∼ s2 and
s′1 ∼ s′2 where w is a word

∗ ∃ s1
!m′

====⇒1 s′1

32 M. Ben Hmida and S. Haddad

Fig. 1. An example of two interacting systems

We illustrate the interaction relation in figure 1. The left automaton corresponds to
the BPEL service switch[!o[a], !o[b]], i.e. a service that internally decides to send mes-
sage a or b. The right automaton represents a possible client that waits either for an a or
b before terminating. The curved lines denote the relation between states. Observe the
importance of the definition: the initial state of the left automaton is related with three
states, on that can (observably) send both a and b and the two other ones that can only
send either a or b. However for the client these states are not “distinguishable” and so
this initial state is allowed to wait for an a or a b.

2.3 Client Automaton Synthesis

We are now in position to present the client synthesis algorithm. Since the client must
be implementable, we require it to be deterministic. This consideration leads to choose
as model for our client a deterministic automaton which is in interaction relation with
the automaton of the BPEL process.

Before developing it, we emphasize that there exist BPEL process which do not
admit clients. For instance, process switch[?o[m], ?o[m′]] internally chooses to receive
either a message m or m′ and thus no deterministic automaton can correctly interact
with it since it would imply that, in its initial state, the client should send either m or
m′ while the server would wait the other message. Observe the difference with process
switch[!o[m], !o[m′]] where a client can be easily designed: it just waits for either m or
m′ (see figure 1). We say that a process is ambiguous if it does not admit a deterministic
automaton which is in interaction relation with it.

Here we give an abstract view of the algorithm. A detailed description of the algo-
rithm is given in [10]. The general principle of our algorithm is similar to a determini-
sation procedure: a state of the TA client will correspond to a subset of states of the TA
of the service.

More precisely, each potential state s of the automaton client is associated with a
subset of states S2(s) of the TA service which are related to s via the interaction relation.
During the construction, there is a stack of client states to be processed. At the beginning
of the algorithm, the stack contains an initial client state s01 such that S(s01) = {s02},
s02 being the initial state of the service. It stops either when the stack is empty (i.e. the
client has been built) or when it has detected the ambiguity of the service.

First, we compute the ε-closure by τ -transitions. If this subset (call it S′) of service
states is already associated with a state s′ of the client, then the transition of the client

Client Synthesis for Aspect Oriented Web Services 33

which has generated the subset is redirected to s′. Otherwise, one creates a new client
state and we go on. We check the interaction relation for transitions. If it is not fulfilled
then we stop the construction. We give below an algorithmic description of a step of
the algorithm.

unstack (s, S′)
S′ ← ε−closure(S′)
If S′ has already be analysed and paired with s′ Then

one redirects the arc entering s toward s′ and one deletes s
Else

For every a s.t. subset Sa of a-successors of S′ is non empty do
If a /∈ {!m}m∈M and ∃t ∈ S′ ¬t a=⇒ Then ambiguity

Else If a ∈ {!m}m∈M and ∃t ∈ S′ ∀m′ ¬t !m′
=⇒ Then ambiguity

Else create sa; add s
a−→ sa; stack (sa, Sa)

2.4 Client Interpreter

We have implemented a client interpreter based on the previous theoretical develop-
ments. The interpreter downloads the BPEL description of the service. Then it gener-
ates the automaton according to the algorithm and it “executes” this automaton (see
figure 2). More precisely:

– It maintains the current state of the automaton.
– It opens (or let open) one input window per enabled action !m; this means that the

user can choose the type of message it wants to send and to enter the corresponding
data. It closes the windows that correspond to messages now disabled.

– It arms a time-out of one time unit.
– It changes the current state,
• either on reception of a message with opening an output window,
• either on validation of an input window with sending of the message,
• or on triggering of time-out.

Fig. 2. Generic client interpreter

34 M. Ben Hmida and S. Haddad

3 Aspect Oriented Programming and Web Services

3.1 Principles of AOP

AOP is a concept that enables the modularization of crosscutting concerns into sin-
gle units called aspects, which are modular units of crosscutting implementation [18].
Crosscutting concerns are requirements that cannot be localized to an individual soft-
ware component and that impact many components. In aspect-speak, these requirements
cut across several components. Aspect-oriented languages [19,15,1,21] are based on
three paradigms:

1. Joinpoints: They denote the locations in the program that are affected by a particular
crosscutting concern.

2. Pointcuts: They specify a collection of conditional joinpoints.
3. Advices: They are codes that are executed before, after or around a joinpoint.

For instance the logging functionality is often scattered horizontally across object hier-
archies and has nothing to do with the core functions of the objects it is scattered across.
The same is true for other types of code, such as security, exception handling, and trans-
parent persistency. This scattered and unrelated code is known as crosscutting code and
is the reason for AOP’s existence. Using AOP, we can insert the logging code into the
classes that need it with a tool called a weaver. This way, objects can focus on their core
responsibilities. The figure 3 shows the weaving process. The weaver is in charge for
taking the code specified in a traditional (base) programming language, and the addi-
tional code specified in an aspect language, and merging the two together. The weaver
has the task to process aspects and component code in order to generate the specified
behaviour. The weaver inserts the aspects in the specified joinpoint transversally. The
weaving can occur at compile time (modifying the compiler), load time (modifying the
class loader) or runtime (modifying the interpreter).

3.2 Adapting BPEL Processes

Several researches [4,5,25] consider AOP as an answer to improve WS flexibility. In
our previous approach, we developed an AOP-based tool named Aspect Service Weaver
(ASW) [2,23]. The ASW intercepts the SOAP messages between a client and an ele-
mentary WS, then it verifies during the interaction whether there is a newly introduced
behaviour (advice service). We use the AOP weaving time to add the new behaviour
(before, around or after an activity execution). The advices services are elementary WSs
whose references are registered in a file called “aspect services file descriptor”. The
pointcut language is based on XPath [27]. XPath queries are applied on the service de-
scription (WSDL) to select the set of methods on which the advice services are inserted.

We extend this approach to BPEL processes. We apply the AOP concepts to a BPEL
process in order to automatically generate an extended BPEL process without modi-
fying the BPEL engine. This process contains the base BPEL process and the advice
services. We apply the AOP concepts on BPEL processes in the following way:

Client Synthesis for Aspect Oriented Web Services 35

Fig. 3. The weaving process

1. A joinpoint is a simple or structured BPEL activity.

2. The pointcuts are specified on the BPEL document by using XPath.

3. The advice services are BPEL processes implementing the additional behaviour.

We also add to the generated process, a replying activity before each inserted advice
service (see figure 4). This activity sends to the client a message called execute. This
message informs the client about the execution of an additional behaviour. It encapsu-
lates two kinds of information: the identifier of the advice service and its corresponding
interaction protocol. This message is necessary since this additional behaviour can re-
quire new information exchange involving messages not expected by the client and
leading to execution failures. At the level of client implementation, the developer has
to handle this type of message: it must extract the interaction protocol of the advice
service and integrate it in its behaviour. This part is detailed later.

Fig. 4. The extended executable BPEL process

36 M. Ben Hmida and S. Haddad

Fig. 5. The extended BPEL generator

3.3 Extended BPEL Generator

These previous concepts are concretized through the architecture of our tool named
extended BPEL generator. The tool contains the following components (see figure 5):

1. The BPEL weaver
2. The aspect services file descriptor
3. The service advice repository (or the pattern repository) which contains the ser-

vices advices present in the system.
4. The deployment module which deploys the extended BPEL process on a standard

BPEL engine.

The BPEL weaver takes as input the base BPEL process and the aspect services
file descriptor. Then, it performs transformations on the base BPEL process syntactic
tree. It inserts the actions of sending execute messages and the advices services at the
selected joinpoints depending on the kind of the advice service. The figure 6 shows the
transformations made on the base process

receive(ResReq); switch({reply(ResResp)reply(error)})
which receives a ResReq message then replies by a ResResp or error message de-
pending on a condition (the switch process). In the case of an around service advice
(figure 6.d), the specified joinpoint is replaced by the advice service and the execute
message replying activity, because we consider that the advice service can encapsulate
the joinpoint. In the figure, a triangle represents an advice service and Q its correspond-
ing interaction protocol.

3.4 The Extended Interaction Protocol

The extended executable BPEL process interaction protocol is described by an extended
abstract BPEL process which integrates the sending of execute messages. The extended

Client Synthesis for Aspect Oriented Web Services 37

Fig. 6. Syntactic transformations on the base executable BPEL process

interaction protocol is generated from the base BPEL process and the aspect service file
descriptor based on the defined pointcuts and the type of advices (before, after or around).

The generation process performs transformations on the base abstract BPEL pro-
cess syntactic tree. It inserts the action of sending execute messages in the selected
joinpoints depending on the kind of the advice service (figure 7). The execute messages
contain only the identifier of the advice service id. The interaction protocol correspond-
ing to that id is sent to the client at runtime. In this way, the advice service can be

Fig. 7. Transformations on the syntactic BPEL process tree

38 M. Ben Hmida and S. Haddad

changed at any time without requiring a new publication. Since we have chosen to let
unchanged the BPEL engine, the weaver acts at deployment time.

3.5 The New Operational Rules

In order to take into account the special nature of the message execute we modify the
operational rules related to messages.

∀m ∈M ∗ o[m]
χ−−→ ∗o[m] with ∗ ∈ {?, !}

∀m ∈M \ {execute} ∗ o[m] ∗m−−−−→ empty with ∗ ∈ {?, !}

!o[m]
!execute(id)−−−−−−−−→WaitAdvice(id) (1)

WaitAdvice(id)
id.

√
−−−→ empty (2)

The two first rules are similar to those presented in subsection 2.1. In the case of
sending an execute message, the automaton evolves to an intermediary state named
WaitAdvice(id) (rule 1). WaitAdvice(id) waits for the termination of the advice
service identified by id. When advice service id terminates, WaitAdvice(id) state ex-
ecutes id.

√
and becomes empty process (rule 2). In words, these two rules mimic the

synchronisation corresponding to a procedure call.

3.6 The Dynamic Client Interpreter

In order to communicate with change-prone BPEL processes, we extend the previous
client interpreter. The new client has to achieve the following tasks:

1. When the client receives an execute(id) message, it has to extract the advice ser-
vice interaction protocol (identified by id) and generates its corresponding server
and client automaton.

2. It simultaneously executes the client automaton of the main process and its advice
clients automata.

3. It makes synchronisation between the main client TA and the advices clients TA on
the termination of service advices execution.

Furthermore, the generation module of the dynamic client interpreter also integrates
new operational rules for sending and receiving in order to handle the execute(id)
messages.

3.7 Execution Scenario

Let us consider the abstract BPEL process defined before. If we want to dynamically add
an authentication process before the switch process, the extended abstract BPEL process
has to integrate a sending execute(id) message process before the switch process.

?o[ResReq]; !execute(id); switch(!o[ResResp], !o[error])

Client Synthesis for Aspect Oriented Web Services 39

Fig. 8. Adaptable service and client automata

At execution time, the dynamic client interpreter downloads the extended abstract
BPEL specification. Then, it generates the corresponding service automaton based on
the operational rules previously defined. Afterwards, based on the service automaton
and the interaction relation, our client generates the client automaton and begins its
interpretation. Figure 3.7 shows the generation process.

When the client receives an execute(id, Q) message, it extracts the abstract BPEL
advice service process from the message. In our example, the advice service is an au-
thentication process which abstract BPEL specification is:

!o[authDataRequest] ; ?o[authDataResp]

This process sends an authentication data request to the client asking for authentica-
tion data, receives these data then performs some actions to authenticate the user not
represented here for simplicity. The client generates the corresponding advice client au-
tomaton, associates with the received id and begins its execution (see figure 9 (left part)
where states in grey represents the current execution step).

When the advice client id terminates, the client synchronises the two automata: it
deletes the advice client, performs the id.

√
action and continues the execution of the

main client automaton (see figure 9 (right part)).

4 Related Work

Formal specification and verification of Web services. Some proposals have recently
emerged to formally describe WSs, most of them are grounded on transition system

40 M. Ben Hmida and S. Haddad

Fig. 9. Reception of an execute(id,Q) message (left) and the termination of an advice service
(right)

models (Labelled Transition Systems, Petri nets, etc.) [12,6]. The platform WSAT [8,9]
enables designers of a Web service composition to check properties expressed by LTL
formulas with SPIN tool. The formal semantics is obtained by gluing patterns for each
BPEL construction. One pattern is connected from its final state to the initial state of
next pattern according to the BPEL description with local transitions. This work does
not cover the time features and it focuses only on message exchanges: the conversation
is obtained by a virtual watcher that is supposed to record all messages sequences sent
by each peer enrolled in the composition.

Another research about Web services formal semantics is based on a BPEL to Finite
State Processes (FSP) translation [7]. This work lies on message sequence charts and
the core of the verification mechanism consists to check trace equivalence. Again, the
time features of the specification are not taken into account.

The work [24] uses the notation CRESS (Chisel Representation Employing System-
atic Specification) to formalise Web services. This model presents two main advantages:
automatic translation into formal languages for analysis as well as into implementation
languages for deployment. Then the CRESS specification is translated into LOTOS and
analysed with tools like TOPO, LOLA and CADP. Again, the temporal aspects are not
present.

These different contributions share with our approach the design of a formal seman-
tics for Web services. However they study the BPEL execution process and not the
interaction protocol, they do not include the time features of BPEL and they perform
component verification whereas we perform component synthesis.

AOP and Web services. In [4] and [5], the authors define specific AOP languages to
add dynamically new behaviours to BPEL processes. But, neither of these approaches
address the client interaction issue. The client has no mean to handle the interactions
that can be added or modified during the process execution.

Client Synthesis for Aspect Oriented Web Services 41

The Web Service Management Layer (WSML) [25] is an AOP-based platform for
WSs that allows a more loosely coupling between the client and the server sides. WSML
handles the dynamic integration of new WSs in client applications to solve client exe-
cution problems. WSML dynamically discovers WSs based on matching criteria such
as: method signature, interaction protocol or quality of service (QOS) matching. In a
complementary way, our work proposes to adapt a client to a modified WS.

5 Conclusion

In this paper, we proposed a solution based on AOP and process algebra to handle dy-
namic changes in the context of Web services. We extended our previous AOP approach
to support BPEL processes and to handle interaction issues. We also use process algebra
formalism to specify change-prone BPEL processes and generate dynamic clients.

As future works, we want to take into account the client execution context. We also
want to formally handle the aspect interactions issue (aspects applied at the same join-
point). Finally, we plane to improve the current ASW prototype as proof-of-concepts.

References

1. AspectWerkz. AspectWerkz 2, http://aspectwerkz.codehaus.org
2. Ben Hmida, M., Tomaz, R.F., Monfort, V.: Applying AOP Concepts to Increase Web Ser-

vices Flexibility. In: Proceedings of the International Conference on Next Generation Web
Services Practices (NWESP 2005). IEEE Computer Society, Los Alamitos (2005)

3. Bergstra, J.A., Klop, J.W.: Process Algebra for Synchronous Communication. Information
and Control 60(1-3), 109–137 (1984)

4. Charfi, A., Mezini, M.: Aspect-Oriented Web Service Composition with AO4BPEL. In:
Zhang, L.-J., Jeckle, M. (eds.) ECOWS 2004. LNCS, vol. 3250, pp. 168–182. Springer, Hei-
delberg (2004)

5. Courbis, C., Finkelstein, A.: Weaving Aspects into Web Service Orchestrations. In: IEEE
International Conference on Web Services (ICWS 2005), pp. 219–226. IEEE Computer So-
ciety Press, Los Alamitos (2005)

6. Ferrara, A.: Web Services: a Process Algebra Approach. In: 2nd international Conference on
Service Oriented Computing, ICSOC 2004, pp. 242–251. ACM Press, New York (2004)

7. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Model-based Verification of Web Service Com-
positions. In: 18th IEEE International Conference on Automated Software Engineering (ASE
2003), pp. 152–163. IEEE Computer Society, Los Alamitos (2003)

8. Fu, X., Bultan, T., Su, J.: Analysis of Interacting BPEL Web Services. In: 13th International
Conference on World Wide Web, WWW 2004, pp. 621–630. ACM, New York (2004)

9. Fu, X., Bultan, T., Su, J.: WSAT: A Tool for Formal Analysis of Web Services. In: Alur, R.,
Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 510–514. Springer, Heidelberg (2004)

10. Haddad, S., Melliti, T., Moreaux, P., Rampacek, S.: Modelling Web Services Interoperability.
In: Sixth International Conference on Enterprise Information Systems, ICEIS 2004, pp. 287–
295 (2004)

11. Haddad, S., Moreaux, P., Rampacek, S.: Client Synthesis for Web Services by Way of a
Timed Semantics. In: Eighth International Conference on Enterprise Information Systems,
ICEIS 2006, pp. 19–26 (2006)

http://aspectwerkz.codehaus.org

42 M. Ben Hmida and S. Haddad

12. Hamadi, R., Benatallah, B.: A Petri Net-based Model for Web Service Composition. In:
Proceedings of the 14th Australasian Database Conference, ADC 2003. CRPIT, vol. 17, pp.
191–200. Australian Computer Society (2003)

13. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs
(1985)

14. IBM, BEA Systems, Microsoft, SAP AG, and Siebel Systems. Business Process Execution
Language for Web Services version 1.1.,
http://www.ibm.com/developerworks/
library/specification/ws-bpel/

15. JBoss. JBossAOP, http://www.jboss.org
16. Juric, M.: BPEL and Java,

http://www.theserverside.com/articles/article.tss?l=BPELJava
17. Juric, M.: Business Process Execution Language for Web Services BPEL and BPEL4WS,

2nd edn. Packt Publishing (2006)
18. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-M., Irwin,

J.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

19. Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming. Manning Publica-
tions Co. (2003)

20. Milner, R.: Communication and concurrency. Prentice-Hall, Inc., Englewood Cliffs (1989)
21. Spring. Spring AOP Platform, http://www.springsource.org/
22. Staab, S., van der Aalst, W., Benjamins, V., Sheth, A.P., Miller, J.A., Bussler, C., Maed-

che, A., Fensel, D., Gannon, D.: Web Services: Been There, Done That? IEEE Intelligent
Systems 18(1), 72–85 (2003)

23. Tomaz, R.F., Ben Hmida, M., Monfort, V.: Concrete Solutions for Web Services Adaptability
Using Policies and Aspects. Int. J. Cooperative Inf. Syst. (IJCIS) 15(3), 415–438 (2006)

24. Turner, K.J.: Formalising Web Services. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731,
pp. 473–488. Springer, Heidelberg (2005)

25. Verheecke, B., Cibran, M.A., Jonckers, V.: AOP for Dynamic Configuration and Man-
agement of Web Services. In: Jeckle, M., Zhang, L.-J. (eds.) ICWS-Europe 2003. LNCS,
vol. 2853, pp. 137–151. Springer, Heidelberg (2003)

26. W3C. Web Services Description Language (WSDL) 1.1. W3C Note (March 15, 2001),
http://www.w3.org/TR/wsdl

27. W3C. XML Path Language (XPath) Version 1.0. W3C Recommendation (November 16,
1999), http://www.w3.org/TR/xpath

http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://www.jboss.org
http://www.theserverside.com/articles/article.tss?l=BPELJava
http://www.springsource.org/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/xpath

	Client Synthesis for Aspect Oriented Web Services
	Introduction
	Client Synthesis for Web Services
	A Formal Semantics for BPEL Abstract Processes
	Interaction Relation
	Client Automaton Synthesis
	Client Interpreter

	Aspect Oriented Programming and Web Services
	Principles of AOP
	Adapting BPEL Processes
	Extended BPEL Generator
	The Extended Interaction Protocol
	The New Operational Rules
	The Dynamic Client Interpreter
	Execution Scenario

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

