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Abstract

For several decades two different communities have been working on the formal security
of cryptographic protocols. Many efforts have been made recently to take benefit of both
approaches, in brief: the comprehensiveness of computational models and the automatiz-
ability of formal methods. The purpose of this paper is to investigate an original approach
to relate the two views, that is: to extend existing Dolev-Yao models to account for random
polynomial-time (Las Vegas) computability. This is done first by noticing that Dolev-Yao
models can be seen as transition systems, possibly infinite. We then extend these transition
systems with computation times and probabilities. The extended models can account for
normal Dolev-Yao transitions as well as nonstandard operations such as inverting a one-way
function. Our main contribution consists of showing that under sufficient realistic assump-
tions the extended models are equivalent to standard Dolev-Yao models as far as security
is concerned. Thus our work enlarges the scope of existing decision procedures.

Keywords: Cryptographic protocols, random polynomial time, Dolev-Yao model, Markov de-
cision processes.

1 Introduction

Proving the security of cryptographic protocols has been a major concern ever since flaws were
first discovered in some established protocols, the most well-known example being [20]. Rigorous
approaches now exist and have allowed the analysis of many protocols with respect to various
security models, depending on the attacker’s capabilities and purposes [13, 22, 34]. However
this variety of approaches may tend to puzzle the practitioner. Indeed two families of models
with very little in common have been used for twenty years by two different communities.

A first class of models is the computational ones. In those models security is defined in
a semantic way by requiring the probability of success of any attacker to be negligible [12].
The class of attacks considered here include virtually all logical attacks implementable by a
probabilistic polynomial-time Turing machine. In this approach a proof of security consists in
a reduction proof: from any hypothetical attack it shows how to build a random polynomial
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algorithm that solves a reputedly intractable problem. Computational security proofs, when
they can be achieved, are thus considered strong evidence of security.

A second class of models is used by the community of formal methods, and includes typically
the Dolev-Yao model [11] and the Spi-calculus [1]. By focusing on the protocol layer, these
models aim to account for a variety of attacks resulting from complex interactions between an
active attacker and a possibly unbounded number of parallel sessions. This is indeed a very hard
task in the computational models, where already a passive attacker may lead to highly complex
reduction proofs. In the approach based on formal methods, principals exchange structured
messages rather than bit-strings. Cryptographic primitives such as hashing, symmetric and
asymmetric encryption are assumed perfect in the sense that no attacker is able to retrieve any
information from a ciphertext (resp. from a hash-code) without the appropriate key. Formal
models are the basis for many automatic tools used to verify protocols ([21, 26, 16, 25, 7] and
many others).

Motivated by these observations, efforts have been made to relate the two views of cryp-
tography [3, 19, 34, 15, 6]. Better understanding the links between the two approaches would
indeed benefit both communities:

• For the formal-method approaches, this would help providing more precise justifications
and give directions for extending the expressivity of the models and the automatic ana-
lyzers.

• For the computational models, it would give elements toward partially automatizing the
security proofs. One could imagine e.g. proofs in two steps: the first would establish
sufficient computational-security hypotheses on the cryptographic primitives, the second
would deal with the protocol aspects by an automatic procedure.

The purpose of this paper is to investigate an original approach in this direction, which is
to bring the existing Dolev-Yao models closer to the computational models. We show that it
is possible to introduce the notion of random polynomial-time calculability in a large class of
Dolev-Yao models at no cost. More precisely we prove that the augmented models are equivalent
to the standard ones as far as security is concerned. Hence our work enlarges the scope of existing
decision procedures.

Related work. Previous work on this theme includes the pioneering paper of Abadi and
Rogaway [3], further refined by [2, 23, 18]. There a logic of indistinguishability is introduced
and is shown computationally secure against pure eavesdropping attacks. Another approach is
investigated by Lincoln et al. [19, 27, 31] by means of a probabilistic process calculus.

Recently Warinschi [34] gave for the first time a computational proof for the Needham-
Schroeder-Lowe protocol. A substantial progress was achieved by Backes et al. [6] by providing
a generic cryptographic library and its idealized Dolev-Yao-like version. The key result is a
simulatability theorem which states that every random polynomial-time attack on the real cryp-
tosystem must have a counterpart in the ideal one unless cryptographic primitives are broken.
This framework is applied in [5] to give another computational proof of the Needham-Schroeder-
Lowe protocol. These works constitute important advances in so far as they allow computational
security to be proved on full protocols, by relying on (strong) standard cryptographic assump-
tions on primitives. Yet in each case studying a different protocol still requires a new proof by
hand. Indeed the idealized library of [6] seems to remain far from the Dolev-Yao models handled
by typical automatic analyzers [21, 16, 25, 26, 7]. It also rests on a sophisticated computation
and communication model. Although we do not consider arbitrary Turing machines as attackers,
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we can argue that our model is simpler and more transparent. It is based on (infinite) transition
systems with (probabilistic) durations.

Outline of the paper. In Section 2, we describe an abstract view of a general class of
formal models including Dolev-Yao variants. The abstraction consists in modeling Dolev-Yao
security as the unreachability of certain unsafe states —where for instance a secret has been
illegitimately obtained— in possibly infinite transition systems. We then extend this model
to include two features absent from the simplistic Dolev-Yao-like models: computation times
(Section 3), and probabilistic computations (Section 4).

In Section 3, we only consider the extension of the simplistic models of Section 2 to include
deterministic computation times for each action. This can be seen as the first ring of our
approach. This is done by labeling transitions by functions of a complexity parameter n. Usual
operations of the Dolev-Yao intruder are modeled by polynomially-bounded (polynomial) times.
The benefit of this model is its simplicity: it accounts for so-called extraordinary operations
—such as guessing a key or breaking a cryptographic primitive— by means of new transitions
labeled with non-polynomial times. Security is defined as the fact that no unsafe state can be
reached in polynomial time. Our contribution here lies in proving that under sufficient realistic
assumptions the security of our extended model is equivalent to the security of the underlying
Dolev-Yao model.

We deal with the expected generalization to a probabilistic framework in Section 4. There
tractable operations are those for which a random polynomial-time (Las Vegas) algorithm exists.
Reachability is defined as the results of 11

2 -player games between the attacker and a probabilistic
opponent (a.k.a. Markov decision processes). We show again that the security of the underlying
Dolev-Yao model is equivalent to the security of the extended model, defined as the fact that
no strategy can reach the set of unsafe states with a non-negligible probability. We conclude in
Section 5.

2 Dolev-Yao models and transition systems

Dolev-Yao models distinguish themselves from other models by several particularities:

• First cryptographic primitives are assumed to be perfect: there is no way to retrieve any
information about a message from its hash-code or from its encryption unless we have the
adequate key.

• More generally Dolev-Yao models suppose that the attacker is not interested in —and does
not exploit— partial or probabilistic information. In other words, messages are considered
secret unless they are entirely and definitely compromised.

• The network is modeled in the most pessimistic way. Namely the principals’ messages can
not only be read but also deleted whereas new messages can be forged by the attacker. In
this context, it is natural to assimilate the network to the intruder itself.

These choices lead to a modeling where the principals and the attacker are represented by a
set of inference rules. Each rule intuitively states that under certain conditions about previously
seen messages, the network might learn some other messages, either by receiving them from a
principal or by inferring them from its knowledge.

As an illustration let us consider the Diffie-Hellman Key-Exchange protocol [10]. Suppose a
prime number p, a generator g of Z

∗
p and some acknowledgment message Ack have been chosen
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in advance. We write {X}K for the encryption of message X with key K by some symmetrical
encryption algorithm. A session of the protocol between two principals A and B can be described
as follows:

1. A → B : gNa

2. B → A : gNb

3. A → B : {Ack}gNaNb

where Na and Nb design private randomly-chosen fresh numbers. The claim of this protocol is
that at the end gNaNb is a secret shared between the two principals A and B. They both know
it because gNaNb = (gNa)Nb = (gNb)Na so the only thing to do is to exponentiate the other’s
message with one’s number. For one session the claim of secrecy is known as the intractability
of the (computational/decisional) Diffie-Hellman problem.

In order to study several sessions in parallel, one can resort to an abstracted Dolev-Yao
model. A possible model could be sketched as follows. Messages are terms defined by:

M ::= N nonces N ∈ N
| Ack acknowledgment message
| {M1}M2

symmetric encryption
| e(M) modular exponentiation of g by M

| M1 ⊕ M2 product inside exponents

where ⊕ is an associative-commutative (AC) symbol and the other symbols are free. Formal
models with non-free symbols, that is, satisfying algebraic theories such AC or XOR, have been
studied among others in [24, 9, 33, 14]; practical results on the GDH protocol were achieved
in [29, 9, 32].

Each principal i ∈ I has an internal state qi that contains for each opened session s =
(srole , sname , sstep , snonce , sdata) ∈ qi where it is involved:

• its role in the protocol srole ∈ {A,B}

• the name of the correspondent sname ,

• the number of the expected next message in the protocol sstep ∈ {1, 2, 3, done},

• the private nonce snonce ,

• the received data sdata (here this is the e(N) sent by the correspondent).

The intruder’s state is the set of all messages E that he knows (from the network or from its
deductions). The global state of the system is the product of the states of all the principals
and the intruder q = ((qi)i∈I , E). The global state can evolve according to two kinds of rules:
communication rules and deduction rules. Communication rules specifically describe the rules
of the protocol. Here for instance the rules 2 and 3 seen by the role A would be:

if a principal i has initiated a session as A with some j, if its private session num-
ber is N , and if the network knows a message e(N ′), he may send the message
{Ack}e(N⊕N ′).
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Formally this is written:

if s = (A, j, 2, N, sdata) ∈ qi and e(N ′) ∈ E

then (q, E) −→ (q′, E′)
where q′l = ql for l 6= i, q′i = qi − {s} ∪ {s′}, s′ = (A, sname , done, snonce , e(N

′)),
E′ = E ∪ { {Ack}e(N⊕N ′)}.

The deduction rules are protocol independent. They describe the possible deductions for the
attacker. Typical deduction rules are:

• encryption: if M ∈ E and K ∈ E then (q, E) −→ (q, E ∪ {{M}K}),

• decryption: if {M}K ∈ E and K ∈ E then (q, E) −→ (q, E ∪ {M}),

• exponentiation: if e(M) ∈ E and M ′ ∈ E then (q, E) −→ (q, E ∪ {e(M ⊕ M ′)}).

Our point is that these rules can always be seen as an (infinite) transition system. In many
cases security can be defined as a safety property, i.e. the fact that certain unsafe states are
unreachable. We will concentrate on this notion in the following. This includes for instance
secrecy and various forms of authentification [4].

3 Transition systems with computation times

In the previous section we have outlined the fact that Dolev-Yao models can be seen as transition
systems. In this section, we consider a slightly more complex model where the transitions are
labeled by computation times. These times are functions of a security parameter n, meant to
represent the overall strength of the cryptographic schemes, such as the size of the keys.

Formally, a transition system with computation times is a triple T = (Q, q0, δ) where Q is the
set of states, q0 is the initial set, and δ : N×Q×Q → [0,∞] is a weight function that maps every
n ∈ N and every transition to a non-negative real number or to infinity (modeling an impossible

transition). Besides we write q1
f(n)
−−−→ q2 when for all n, δ(n, q1, q2) = f(n). Notice that we do

not assume that Q is finite. Practical implementations of Dolev-Yao models are usually based
on some finite representations of such infinite graphs.

Doing so, we gain the ability to include nonstandard transitions in the model, such as in-
verting a one-way function or guessing a key. In the previous example, typical nonstandard
transitions would be:

• illegitimate decryption: if {M}K ∈ E then (q, E)
f0
1 (n)

−−−→ (q, E ∪ {M}),

• key guessing: if {M}K ∈ E (and M ∈ E) then (q, E)
f0
2 (n)

−−−→ (q, E ∪ {K}),

• discrete logarithm: if e(M) ∈ E then (q, E)
f0
3 (n)

−−−→ (q, E ∪ {M}).

For these extraordinary operations it is fair to assume time-complexities f0
i (n) to be in-

tractable. Following a standard asymptotic approach we define tractable transitions as those
labeled by a polynomially-bounded (in short, polynomial) function of n.

5



Definition 1. q1
f(n)
−−−→ q2 is called tractable if f(n) is bounded by a polynomial, or equivalently

if log f(n)
log n

is bounded from above (n ≥ 2).

Clearly enough, defining intractability as the negation of tractability is not sufficient for
security purposes. Such a definition would not eliminate e.g. primitives that are breakable for
even values of n but secure for odd values. For this reason, intractable transitions has to be
defined in a stricter way.

Definition 2. q1
f(n)
−−−→ q2 is called intractable if limn→∞

log f(n)
log n

= ∞.

This is the same as requiring that f(n) eventually reaches —and remains higher than— any
polynomial, or that 1

f(n) is negligible in the usual cryptographic sense [12, 13].

Let us define now the set of states that can be reached in polynomial time from the initial

state. To do so, we define the n-duration of a path γ : q0
f1(n)
−−−→ q1

f2(n)
−−−→ . . .

fp(n)
−−−→ qp as the

sum of its internal durations:

|γ|n =

p
∑

i=1

fi(n)

The n-time cost of a state q is the greatest lower bound of the durations of the paths γ going
from the initial state q0 to q:

|q|n = inf{|γ|n, γ : q0 → . . . → q}

Finally we will say that a state q can be reached in polynomial time if |q|n is polynomial i.e. if
log |q|n
log n

is bounded from above (n ≥ 2).

Security is defined as the fact that all polynomially-reachable states satisfy a given security
property. The question at this point is whether or not the security of our extended model reduces
to the security of the underlying standard Dolev-Yao model, obtained by removing intractable
transitions, then ignoring computation time altogether.

3.1 Reduction theorem for finite graphs

We start proving a reduction theorem in the case of finite transition systems.

Theorem 1. Let T = (Q, q0, δ) be a transition system with computation times, assume Q finite.
Suppose that every transition is either tractable or intractable. Then a state q is reachable in

polynomial time if and only if there exists a path γ : q0 = q0
f1(n)
−−−→ q1

f2(n)
−−−→ . . .

fp(n)
−−−→ qp = q

such that every fi(n) (1 ≤ i ≤ p) is polynomial in n.

The interpretation of this theorem is that extending a (finite) Dolev-Yao model with extraor-
dinary but intractable transitions does not change the set of tractably reachable states. Thus
both systems are equivalent as far as security is concerned.

Proof. The right-to-left implication is clear. Let us consider a state q such that |q|n is polyno-
mially bounded: let M > 0 be such that ∀n ≥ 2, |q|n ≤ nM .

For each intractable transition q1
f(n)
−−−→ q2, by definition there exists a n0 such that: ∀n ≥

n0, f(n) ≥ nM+1. Recall that Q is finite, so the number of intractable transitions is finite.
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Therefore for n0 ≥ 2 large enough, the previous inequality holds for every intractable transition
at the same time.

Now suppose that every path γ from q0 to q contains at least one intractable transition.
Since weights are positive, this would imply for all n ≥ n0, for all such γ, |γ|n ≥ nM+1. Thus
|q|n ≥ nM+1 > nM . Contradiction.

3.2 Reduction theorem for infinite graphs

We now try to generalize the previous result to the infinite case. Some care must be taken because
the existence of a uniform value n0 of n in the previous proof is not guaranteed: intuitively we
may have an infinite sequence γ0, γ1,. . . , γk, . . . of paths from q0 to q such that each |γk|n is

null for n ≤ k, which implies |q|n = 0 for all n, and yet for all k, limn→∞
log |γk|n

log n
= ∞.

Fortunately this case is unlikely to happen for our purpose. Recall that intractable transitions
model some new extraordinary rules in the Dolev-Yao approach. Although rules may have
infinitely many instances (e.g. sending M over the network would be implemented by as many
“send” transitions as there are possible messages, and messages are terms in Dolev-Yao models,
of which there are infinitely many), most likely a finite number of rules is applied to a finite
number of cryptographic primitives. For that reason, intractable transitions in practice are
labeled by (copies of) a finite number of time functions f0

i (n). Therefore it is fair to assume
that the intractable transitions of the system are uniformly intractable in the following sense.

Definition 3. The intractable transitions are called uniformly intractable if for each M > 0,

there exists a n0 such that for every intractable transition q1
f(n)
−−−→ q2, we have ∀n ≥ n0,

log f(n)
log n

≥
M .

Under this assumption, the same proof as before now provides the expected generalization
of the reduction theorem.

Theorem 2. Let T = (Q, q0, δ) be a transition system with computation times. Suppose that
every transition is either tractable or intractable, and that the intractable transitions are uni-
formly intractable. Then a state q is reachable in polynomial time if and only if there exists a

path γ : q0 = q0
f1(n)
−−−→ q1

f2(n)
−−−→ . . .

fp(n)
−−−→ qp = q such that every fi(n) (1 ≤ i ≤ p) is polynomial

in n.

4 Transition systems with probabilistic computation times

In the previous section, we have shown how to account for intractable operations in a Dolev-Yao
model with deterministic computation times. In practice yet, algorithms may be probabilistic,
and it is more relevant to consider the class of tractable problems to be random polynomial-time
rather than polynomial-time. By random polynomial-time algorithms we mean here polynomial-
time algorithms using a random oracle, which succeed (give a correct result) with a probability
at least 1

2 and fail (give no result) otherwise. This definition corresponds to the so-called Las
Vegas algorithms (see e.g. [28]).

As we have been interested in durations previously, it is more natural to state this class in
terms of computation time, using the following characterization.
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Proposition 3. A computational problem P admits a Las Vegas algorithm if and only if there
exists an algorithm A which always succeeds in giving an answer to P within probabilistic time
F (n) —where n is the size of the entry— and such that:

∃M > 0,∃N > 0,∃n0,∀n ≥ n0, P
(

F (n) ≤ nM
)

≥ n−N

Proof. The left-to-right implication is clear. Suppose that P admits an algorithm A satisfying
the given property for certain M > 0, N > 0 and n0:

∀n ≥ n0, P
(

F (n) ≤ nM
)

≥ n−N

We build a Las Vegas algorithm LV parametrized by n1 ≥ n0 and by a polynomial function
f(n) as the following:

• if n < n1, return the correct pre-computed answer (only finitely many entries have a size
less than n1).

• if n ≥ n1, execute A on the entry during at most nM steps, repeat the execution at most
f(n) times, or until success.

By construction LV is polynomial-time and succeeds at least with probability:

ρn = 1 −
(

1 − P
(

F (n) ≤ nM
))f(n)+1

≥ 1 −
(

1 − n−N
)f(n)+1

Using the log function, we see that ρn → 1 if f(n)+1
nN → ∞. We conclude by choosing f(n) =

nN+1 and n1 big enough such that ∀n ≥ n1, ρn ≥ 1
2 .

4.1 The probabilistic model

We now extend our previous model with probabilities. A transition system with probabilistic
computation times is a triple T = (Q, q0, δ) as before but where the values of the weight function
δ(n, q1, q2) are independent random variables over some probabilistic space (Ω,A, P) 1. For
simplicity we shall assume that the set of states Q is countable (this is the case for our extended

Dolev-Yao models). We write q1
F (n)
−−−→ q2 to say that F (n) is the random variable such that, for

all drawing of lots, δ(n, q1, q2) = F (n).

There remains to define a suitable notion of security. Intuitively a system is secure if for every
attacker the probability to reach an unsafe state within a polynomial time is negligible. More
precisely let P be a security property, that is the choice of a subset QP ⊆ Q of safe states. To
define a suitable notion of reachability we consider for every fixed n ∈ N and t0 ≥ 0 a 1 1

2 -player
game between the attacker and a probabilistic opponent. Such probabilistic nondeterministic
systems are also known as Markov decision processes (see e.g. [30]). The game G(QP , n, t0) is
set up as follows:

• The attacker begins in the state q0 with a time zero.

• Let q be the attacker’s state and t the time at the beginning of a turn:

1This means δ(n, q1, q2) is implicitly a (measurable) function of the drawing of lots ω ∈ Ω.
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– if t ≤ t0 and q 6∈ QP the attacker wins,

– otherwise the attacker (possibly randomly) chooses a transition q
F (n)
−−−→ q′ from its

current state. The actual value d of F (n) is drawn. The attacker then moves to state
q and at time t + d.

The goal of the attacker is to reach the set of unsafe states within a fixed amount of time
with the highest probability. Since durations are positive numbers, paths that contains cycles
are useless for this purpose. So it is fair to assume that every reasonable strategy of the attacker
can be described by a function σ : Q× [0,∞]×Q → [0, 1] that gives for a current state q and a
clock t the probability σ(q, t, q′) of choosing q′ as the next state. Let us note P(Gσ(QP , n, t0))
the probability for the strategy σ to win in the game G(QP , n, t0).

Definition 4. We will say that P is verified against every random polynomial attacker if the
probability to reach the unsafe states Q − QP within a polynomial time is negligible for every
strategy:

∀M > 0,∀N > 0,∃n0,∀n ≥ n0,∀σ, P(Gσ(QP , n, nM )) ≤ n−N

To state our reduction theorem, there remains to define tractable and intractable transi-
tions. To capture the notion of Las Vegas computability, we define tractability as suggested by
Proposition 3.

Definition 5. q1
F (n)
−−−→ q2 is called tractable if

∃M > 0,∃N > 0,∃n0,∀n ≥ n0, P
(

F (n) ≤ nM
)

≥ n−N

For the same reason as before, intractability has to be stated in a little stronger way than
just by negating tractability:

Definition 6. q1
F (n)
−−−→ q2 is called intractable if

∀M > 0,∀N > 0,∃n0,∀n ≥ n0, P
(

F (n) ≤ nM
)

≤ n−N

This definition is satisfactory as it matches the classical definitions of cryptographic security
that require the probability of e.g. successfully inverting a one-way function in probabilistic
non-polynomial time to be negligible. For infinite systems, as in the deterministic case, we have
to introduce the notion of uniform intractability and require the n0 above to be chosen uniformly
over the intractable transitions.

Definition 7. The intractable transitions of the system are called uniformly intractable if

∀M > 0,∀N > 0,∃n0,∀n ≥ n0,∀q1
F (n)
−−−→ q2 intractable, P

(

F (n) ≤ nM
)

≤ n−N

Again this hypothesis is realistic because a finite number of extraordinary rules and primitives
is used.

4.2 Reduction theorem for infinite probabilistic graphs

We can now state the corresponding reduction theorem:
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Theorem 4. Let T = (Q, q0, δ) be a transition system with probabilistic computation times and
P be a security property. Assume Q countable. Suppose that every transition is either tractable
or intractable, and that the intractable transitions are uniformly intractable. Then P is verified

against every random polynomial attacker if and only if there exists no path γ : q0 = q0
F1(n)
−−−→

q1
F2(n)
−−−→ . . .

Fp(n)
−−−−→ qp = q such that every Fi(n) (1 ≤ i ≤ p) is tractable and q 6∈ QP .

Proof. The left-to-right implication is obvious (if there exists such a polynomial path, one can
define a strategy that follows it). Suppose that P is not verified: there exists M > 0 and
N > 0 such that: ∀n0,∃n ≥ n0,∃σ, P(Gσ(QP , n, nM )) > n−N . Since intractable transitions are
uniformly intractable, we deduce there exist n and σ such that: P(Gσ(QP , n, nM )) > n−N and

for every intractable transition q1
F (n)
−−−→ q2, P

(

F (n) ≤ nM
)

≤ n−N .

Before we proceed we have to express more precisely the probability of gain P(Gσ(QP , n, nM )).
To do so let p(q, t, k) be the probability for σ to win in the current game from the state q and
the time t in at most k steps. Using the fact that the drawings are independent from each other,
the definitions of the game and the strategy σ imply that:

• p(q, t, k) = 1 if t ≤ nM and q 6∈ QP ,

• otherwise, p(q, t, 0) = 0 and the probability to win in (k + 1) steps can be written as a
sum of the probability to win in k steps conditioned by the choice of the attacker and the
drawing of the next duration:

p(q, t, k + 1) =
∑

q
F (n)
−−−→q′

σ(q, t, q′)

∫

Ω

p(q′, t + F (n)(ω), k) dP(ω) (4.1)

Now we can rewrite the probability of gain as:

P(Gσ(QP , n, nM )) = sup
k∈N

p(q0, 0, k)

Since p(q0, 0, k) is monotone in k, the hypothesis implies that there exists a k0 such that
p(q0, 0, k0) > n−N . We prove the auxiliary lemma:

Lemma 5. For all q, t, k such that p(q, t, k + 1) > n−N we have t ≤ nM and

either q 6∈ QP

or ∃q
F (n)
−−−→ q′,∃t′ ≥ t, P(F (n) ≤ nM ) > n−N and p(q′, t′, k) > n−N

Using this lemma it is straightforward to prove by recurrence on k0 that there exists a

path from q0 that leads to a state q 6∈ QP and of which every transition q
F (n)
−−−→ q′ satisfies

P(F (n) ≤ nM ) > n−N and thus is tractable.

Let us now proceed and prove the auxiliary lemma. First we note that t > nM always implies
p(q, t, k) = 0 so t ≤ nM . Second, in the case where q ∈ QP we use Formula 4.1. This quantity
is greater than n−M by assumption. By definition of σ, we have

∑

q′ σ(q, t, q′) = 1. Thus for

the inequality to hold, we must have for some transition q
F (n)
−−−→ q′:

∫

Ω

p(q′, t + F (n)(ω), k) dP(ω) > n−N
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But since p(q, t, k) = 0 whenever t > nM , this integral is also bounded from above by:

(

sup
t′≥t

p(q′, t′, k)

)

P
(

F (n) ≤ nM
)

As the two factors are not greater than 1, they must be both greater than n−N .

5 Conclusion

A recent and important trend in security protocol verification is to try and relate the computa-
tional models of security, based on networks of probabilistic polynomial-time Turing machines,
and the formal ones, based on ideas originating from Dolev and Yao [11]. While the former
are precise, the latter offer potential for automated verification. Although these two families of
models are very far apart, Abadi and Rogaway [3] were the first to find a connection, in specific
cases. This was then extended by several authors. This trend currently culminates with Backes
et al.’s work [6], whose simulatability result states that every random polynomial-time attack
on the real cryptosystem must have a counterpart in a corresponding idealized protocol, unless
the cryptographic primitives are broken. The proofs are technical, and the result rests on some
specific assumptions.

In this work, we took the opposite route, and we answered the question: how much do Dolev-
Yao style models really prove? We first noticed that, from a sufficiently abstract perspective,
Dolev-Yao style models were just transition systems, possibly infinite. Extending these transition
systems with computation times and probabilities is natural, and makes it possible to account
for probabilistic polynomial-time computations, in the Las Vegas sense. Informally, our main
contribution is to show that, if there is any attack in the latter, extended model, then some unsafe
state was already reachable in the initial Dolev-Yao model, where only tractable transitions
are kept. This applies to synchronous as well as asynchronous models, to static or adaptive
models. Also, compared to previous work, our model is conceptually simpler and the proofs
are short. On the other hand, we do assume that the intruder capabilities can be accounted by
a probabilistic nondeterministic transition system (Markov decision process) where transitions
are either tractable or uniformly intractable as a function of the security parameter. We believe
that this is reasonably acceptable assumption.

Our approach applies to any security property that can be expressed as random polynomial-
time (Las Vegas) unreachability. This includes secrecy, various forms of authentication [4], but
also more sophisticated requirements, such as those found in e-commerce protocols [8]. An
interesting avenue is whether this can be extended to more complex properties, not expressible
by reachability, such as those used in fair contract signing [17], which cannot even be expressed
in say, linear time temporal logic, but profit from game semantics.

Acknowledgements. We are grateful to Jean Goubault-Larrecq and Florent Jacquemard
for comments on earlier versions of the paper, to Thierry Cachat and Stéphane Messika for
interesting talks about probabilistic games.
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