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Abstract. We aim at finding a set of timing parameters for which a
given timed automaton has a “good” behavior. We present here a novel
approach based on the decomposition of the parametric space into be-
havioral tiles, i.e., sets of parameter valuations for which the behavior of
the system is uniform. This gives us a behavioral cartography according
to the values of the parameters. It is then straightforward to partition
the space into a “good” and a “bad” subspace, according to the behavior
of the tiles. We extend this method to probabilistic systems, allowing to
decompose the parametric space into tiles for which the minimal (resp.
maximal) probability of reaching a given location is uniform. An imple-
mentation has been made, and experiments successfully conducted.

1 Introduction

The admissible behaviors of timed automata are determined by sets of linear con-
straints over timing parameters. The parameters in these constraints represent
constants or values chosen by the designer. The behavior is very sensitive to the
values of these parameters, and it is rather difficult to find their correct values.
The good parameters problem is the following (see [14]): Given a parametrized
timed automaton A and a rectangular real-valued parameter domain, what is
the largest set of parameters values for which A behaves well? We say that A
behaves well if it satisfies a certain set of properties. We are interested here in
properties that are invariant for automata having the same set of traces (alter-
nating sequences of locations and actions, i.e., time-abstract runs) [3]. This is in
particular the case of linear-time properties [7].

Related Work. The parameter design problem for timed automata was formu-
lated in [15], where a straightforward solution is given, based on the generation
of the whole parametric state space until a fixpoint is reached. Unfortunately, in
all but the most simple cases, this is is prohibitively expensive due, in particular,
to the brute exploration of the whole parametric state space.

The problem of parameter synthesis for timed automata has been applied to
two main domains: telecommunication protocols and asynchronous circuits. For
example, concerning telecommunication protocols, the Bounded Retransmission
Protocol has been verified in [24] using Uppaal [22] and Spin [17], and the Root

? This work is partially supported by the Agence Nationale de la Recherche, grant
ANR-06-ARFU-005.



Contention Protocol in [13] using TReX [6]. Concerning asynchronous circuits,
Clarisó and Cortadella have proposed methods with approximations [11].

In [14], the authors propose an extension based on the counterexample guided
abstraction refinement (CEGAR) [12]. When finding a counterexample, the sys-
tem obtains constraints on the parameters that make the counterexample in-
feasible. When all the counterexamples have been eliminated, the resulting con-
straints describe a set of parameters for which the system is safe.

We propose here an alternative approach. We generate a constraint on the
parameters (“tile”) for each integer point located within a given rectangle V0.
Such a tile is called “behavioral tile” because A behaves similarly under any
parameter valuation corresponding to a point of the tile: the sets of traces coin-
cide [3]. This allows us to decompose the parametric space into behavioral tiles.
Then, it is easy to partition the parametric space into a subset of “good” tiles
(which correspond to “good behaviors”) and a subset of “bad” ones. Often in
practice, what is covered is not the bounded and integer subspace of the param-
eter rectangle, but two major extensions: first, not only the integer points but
all the real-valued points of the rectangle is covered by the tiles; second, the tiles
are often unbounded and cover most of the parametric space beyond V0.

Plan of the Paper. We first recall Parametric Timed Automata in Section 2. We
then state the good parameters problem in Section 3 using an example of flip-
flop circuit. We then present the behavioral cartography algorithm in Section 4,
apply it to the example, and give a sufficient condition to get a full coverage
of the parametric space. We present an extension to probabilistic systems in
Section 5, summarize experiments in Section 6, and conclude in Section 7.

2 Parametric Timed Automata

Throughout this paper, we assume a fixed set X = {x1, . . . , xH} of clocks. A clock
is a variable xi with value in R≥0. All clocks evolve linearly at the same rate.
We define a clock valuation as a function w : X → R≥0 assigning a non-negative
real value to each clock.

Throughout this paper, we assume a fixed set P = {p1, . . . , pM} of parame-
ters. A parameter valuation π is a function π : P → R≥0 assigning a nonnegative
real value to each parameter. There is a one-to-one correspondence between val-
uations and points in (R≥0)M . We will often identify a valuation π with the
point (π(p1), . . . , π(pM )).

Definition 1 (Constraint). A linear inequality on the parameters P (resp.
linear inequality on the clocks X and parameters P ) is an inequality e ≺ e′,
where ≺∈ {<,≤}, and e, e′ are two linear terms of the form

Σiαipi + c, (resp. Σiαipi +Σjβjxj + c)

where 1 ≤ i ≤ M, 1 ≤ j ≤ H and αi, βj , c ∈ N. A constraint on the parameters
(resp. constraint on the clocks and parameters) is a conjunction of inequalities
on P (resp. on X and P ).



Given a parameter valuation π and a constraint C, C[π] denotes the con-
straint obtained by replacing each parameter p in C with π(p). Likewise, given
a clock valuation w, C[π][w] denotes the expression obtained by replacing each
clock x in C[π] with w(x). A clock valuation w satisfies constraint C[π] (denoted
by w |= C[π]) if C[π][w] evaluates to true. We say that a parameter valuation π
satisfies a constraint C, denoted by π |= C, if the set of clock valuations that
satisfy C[π] is nonempty.

Likewise, we say that a parameter valuation π satisfies a constraint K on
the parameters, denoted by π |= K, if the expression obtained by replacing each
parameter p in K with π(p) evaluates to true. We consider True as a constraint
on the parameters, corresponding to the set of all possible values for P .

We assume familiarity with timed automata [1]. The following definition is an
extension of timed automata to the parametric case. Parametric timed automata
allow within guards and invariants the use of parameters in place of constants [2].

Definition 2 (PTA). Given a set of clocks X and a set of parame-
ters P , a parametric timed automaton (PTA) A is a 6-tuple of the form
A = (Σ,Q, q0,K, I,→), where Σ is a finite set of actions, Q is a finite set of
locations, q0 ∈ Q is the initial location, K is a constraint on the parameters,
I is the invariant assigning to every q ∈ Q a constraint Iq on the clocks and
the parameters, and → is a step relation consisting in elements of the form
(q, g, a, ρ, q′) where q, q′ ∈ Q, a ∈ Σ, ρ ⊆ X is a set of clocks to be reset by the
step, and g (the step guard) is a constraint on the clocks and the parameters.

In the sequel, we consider the PTAA = (Σ,Q, q0,K, I,→). We simply denote
this PTA by A(K), in order to emphasize the fact that only K will change in A.

For every parameter valuation π = (π1, . . . , πM ), A[π] denotes the PTA

A(K), where K is
∧M

i=1 pi = πi. This corresponds to the PTA obtained from A
by substituting every occurrence of a parameter pi by constant πi in the guards
and invariants. We say that pi is instantiated with πi. Note that, as all param-
eters are instantiated, A[π] is a standard timed automaton. (Strictly speaking,
A[π] is only a timed automaton if π assigns an integer to each parameter.)

Also recall that the composition of several PTAs (Network of Parametric
Timed Automata, or NPTA) results in a PTA (see, e.g., [3]).

Definition 3 (State). A (symbolic) state s of A(K) is a couple (q, C) where
q is a location, and C a constraint on the clocks and the parameters.

For each valuation π of the parameters P , we may view a state s as the set
of pairs (q, w) where w is a clock valuation such that w |= C[π]. The initial state

of A(K) is a state s0 of the form (q0, C0), where C0 = K∧Iq0 ∧
∧H−1

i=1 xi = xi+1.
K is the initial constraint, Iq0 is the invariant of the initial state, and the rest
of the expression lets clocks evolve from the same initial value.

The symbolic semantics of a PTA is given in the following. Given a constant
d ∈ R≥0, we useX+d to denote the set {x1+d, . . . , xH+d}. Given a constraint C,
we rename the set of variables X = {x1, . . . , xH} as X ′ = {x′1, . . . , x′H}. We use
the notation C(X) (resp. C(X ′)) to indicate that X (resp. X ′) is the set of clocks



occurring in C. We use X ′ = ρ(X), where X ′ is a renaming of X, to denote the
conjunction of equalities x′i = 0 for all xi ∈ ρ, and x′i = xi otherwise. Given a
state s = (q, C), a step of the automaton from s is defined below:

– (q, C)
a→ (q′, C ′) if (q, g, a, ρ, q′) ∈ →, and C ′ is a constraint on the clocks

and parameters defined, using the set of (renamed) clocks X ′, by:
C ′(X ′) = (∃X : (C(X) ∧ g(X) ∧X ′ = ρ(X) ∧ Iq′(X ′))).

– (q, C)
d→ (q, C ′), where d is a new parameter with values in R≥0, which

means that C ′ is given by: C ′(X ′) = (∃X : (C(X)∧X ′ = X + d∧ Iq(X ′))).

– (q, C)
a⇒ (q′, C ′) if ∃C ′′ such that (q, C)

a→ (q′, C ′′) and (q′, C ′′)
d→ (q′, C ′),

i.e., C ′ is a constraint on the clocks and the parameters obtained by removing
X and d from the following expression:
C ′(X ′) = (∃X, d : (C(X)∧ g(X)∧X ′ = ρ(X) + d∧ Iq′(X ′ − d)∧ Iq′(X ′))).
It can be shown that C ′ can be put under the form of a constraint on the
clocks and the parameters.

Definition 4 (Run). A run of A(K) is a finite alternating sequence of states

and actions of the form s0
a0⇒ s1

a1⇒ · · · am−1⇒ sm, such that for all i = 0, . . . ,m−1,
ai ∈ Σ and si

ai⇒ si+1 is a step of A(K).

Definition 5 (Trace associated to a run). Given a PTA A and a run R

of A of the form (q0, C0)
a0⇒ · · · am−1⇒ (qm, Cm), the trace associated to R is the

alternating sequence of locations and actions q0
a0⇒ · · · am−1⇒ qm.

The trace set of A refers to the set of traces associated to the runs of A.
In the following, we are interested in verifying properties on the trace set ofA.

For example, given a predefined set of “bad locations”, a reachability property
is satisfied by a trace if this trace never contains a bad location; such a trace is
“good” w.r.t. this reachability property. A trace can also be said to be “good” if
a given action always occurs before another one within the trace (see example in
Section 3). Actually, the good behaviors that can be captured with trace sets are
relevant to linear-time properties [7], which can express properties more general
than reachability properties.

Formally, given a property on traces, we say that a trace is good if it satisfies
the property, and bad otherwise. Likewise, we say that a trace set is good if all
its traces are good, and bad otherwise.

3 The Good Parameters Problem

We consider an example of asynchronous “D flip-flop” circuit described in [11]
and depicted in Figure 1 left. It is composed of 4 gates (G1, G2, G3 and G4)
interconnected in a cyclic way, and an environment involving two input sig-
nals D and CK . The global output signal is Q. Each gate Gi has a delay in the
parametric interval [δ−i , δ

+
i ], with δ−i ≤ δ+i . There are 4 other parameters (viz.,

THI , TLO , Tsetup , and THold) used to model the environment. The output signal
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Fig. 1. Flip-flop circuit (left) and its environment (right)

of a gate Gi is named gi (note that g4 = Q). The rising (resp. falling) edge of
signal D is denoted by D↑ (resp. D↓) and similarly for signals CK , Q, g1, . . . , g4.

We consider an environment starting from D = CK = Q = 0 and g1 = g2 =
g3 = 1, with the following ordered sequence of actions for inputs D and CK : D↑,
CK ↑, D↓, CK ↓, as depicted in Figure 1 right. Therefore, we have the implicit
constraint Tsetup ≤ TLO ∧ THold ≤ THI . Each gate is modeled by a PTA, as well
as the environment. We consider a bi-bounded inertial model for gates (see [8,
23]), where any change of the input may lead to a change of the output (after
some delay). The PTA A modeling the system results from the composition of
those 5 PTAs. The initial location q0 corresponds to the initial levels of the
signals according to the environment. The initial constraint C0 (regardless of
the equality between the clock variables, see Section 2) is:

Tsetup ≤ TLO ∧ THold ≤ THI ∧
∧

i=1,..,4 δ
−
i ≤ δ

+
i

We consider that the circuit has a good behavior if it verifies the following
property Prop1: “every trace contains both Q↑ and CK ↓, and Q↑ occurs before
CK ↓”. We are now interested in identifying parameter valuations for which the
system has such a good behavior.

More generally, the good parameters problem can be stated as follows [14]:

Given a PTA A and a rectangular real-valued parameter domain V0, what
is the largest set of parameters values within V0 for which A behaves well?

4 The Behavioral Cartography Algorithm

4.1 The Inverse Method

We first recall the inverse method algorithm, as defined in [3]. Given a PTA A
and a valuation π of the parameters, the inverse method IM (A, π) generates a
constraint K on the parameters, such that:

1. π |= K, and
2. For all π1, π2 |= K, the trace sets of A[π1] and A[π2] are equal.

We informally describe the algorithm IM in the following. Starting with
K = True, we iteratively compute a growing set of reachable states. When a
π-incompatible state (q, C) is encountered (i.e., when π 6|= C), K is refined as
follows: a π-incompatible inequality J (i.e., such that π 6|= J) is selected within



the projection of C onto the parameters and ¬J is added to K. The procedure is
then started again with this new K, and so on, until no new state is computed.
We finally return the intersection of the projection onto the parameters of all
the constraints associated to the reachable states.

A more detailed version of the inverse method is given in Algorithm 1. Given
a linear inequality J of the form e < e′ (resp. e ≤ e′), the expression ¬J denotes
the negation of J and corresponds to the linear inequality e′ ≤ e (resp. e′ < e).
Given a constraint C on the clocks and the parameters, the expression ∃X : C
denotes the constraint on the parameters obtained from C after elimination of
the clocks, i.e., {π | π |= C}. We define Post iA(K)(S) as the set of states reachable
from S in exactly i steps, and Post∗A(K)(S) as the set of all states reachable from

S in A(K) (i.e., Post∗A(K)(S) =
⋃

i≥0 Post iA(K)(S)). Given two sets of states S
and S′, we write S v S′ iff ∀s ∈ S, ∃s′ ∈ S′ s.t. s = s′.

Algorithm 1: IM (A, π)

input : A PTA A of initial state s0 = (q0, C0)
input : Valuation π of the parameters
output: Constraint K on the parameters

1 i← 0 ; K ← True ; S ← {s0}
2 while True do
3 while there are π-incompatible states in S do
4 Select a π-incompatible state (q, C) of S (i.e., s.t. π 6|= C) ;
5 Select a π-incompatible J in (∃X : C) (i.e., s.t. π 6|= J) ;
6 K ← K ∧ ¬J ;

7 S ←
⋃i

j=0 Post
j
A(K)({s0}) ;

8 if PostA(K)(S) v S then return K ←
⋂

(q,C)∈S(∃X : C)

9 i← i+ 1 ;

10 S ← S ∪ PostA(K)(S) ; // S =
⋃i

j=0 Post
j
A(K)({s0})

The termination of IM is not guaranteed in general. However, we provide
in [3] sufficient condition for termination; in particular, IM is guaranteed to
terminate for a form of acyclic automata.

The output K of IM is a behavioral tile in the following sense: A constraint K
is said to be a behavioral tile (or more simply a tile), if for all π1, π2 ∈ K, the
trace sets of A[π1] and A[π2] are equal. Note that a tile corresponds to a convex
and dense set of real-valued points. Given a tile K, the trace set of A(K) will
be simply referred to as “the trace set of K”. Note that such a trace set is a
(possibly infinite) set of finite traces.

Given a tile K and a trace property Prop, we say that K is good if its trace
set is good. From the inverse method [3], in order to decide whether K is good
or bad, it is sufficient to select any π |= K and check the truth of Prop for A[π].



4.2 The Behavioral Cartography Algorithm

Principle. By iterating the above inverse method IM over all the integer points
of a rectangle1 V0 (of which there are a finite number), one is able to decompose
(most of) the parametric space included into V0 into behavioral tiles. Formally:

Algorithm 2: Behavioral Cartography Algorithm BC (A, V0)

input : A PTA A, a finite rectangle V0 ⊆ RM
≥0

output: Tiling : list of tiles (initially empty)

1 repeat
2 select an integer point π ∈ V0;
3 if π does not belong to any tile of Tiling then
4 Add IM (A, π) to Tiling ;

5 until Tiling contains all the integer points of V0;

Note that two tiles with distinct trace sets are necessarily disjoint. On the
other hand, two tiles with the same trace sets may overlap.

In many cases, all the real-valued space of V0 is covered by Tiling (see Sec-
tion 6). Besides, the space covered by Tiling often largely exceeds the limits of V0
(see Section 4.4 for a sufficient condition of full coverage of the parametric space).

Partition Between Good and Bad Tiles. If now a decidable trace property is given
then one can check which tiles are good (i.e., the tiles whose trace set satisfies
the property), and which ones are bad. One can thus partition the rectangle V0
into a good (resp. bad) subspace, i.e., a union of good (resp. bad) tiles.

Advantages. First, the cartography itself does not depend on the property one
wants to check. Only the partition between good and bad tiles involves the
considered property. Moreover, the algorithm is interesting because one does
not need to compute the set of all the reachable states. On the contrary, each
call to the inverse method algorithm quickly reduces the state space by removing
the incompatible states. This allows us to overcome the state space explosion
problem, which prevents other methods, such as the computation of the whole
set of reachable states (and then the intersection with the bad states) [15], to
terminate in practice. Finally note that the algorithm could easily be parallelized,
e.g., by performing different calls to the inverse method in parallel, which is not
possible in general when computing the set of all reachable states.

4.3 Application to the Flip-Flop Example

We are interested in studying the correctness of the flip-flop described in Sec-
tion 3. For the sake of simplicity, we consider a model with only 2 parameters,

1 Actually, V0 can be a convex set containing a finite number of integer points.



with the following V0: δ+3 ∈ [8, 30] and δ+4 ∈ [3, 30]. The other parameters are
instantiated as follows:

THI = 24 TLO = 15 TSetup = 10 THold = 17 δ−1 = 7
δ+1 = 7 δ−2 = 5 δ+2 = 6 δ−3 = 8 δ−4 = 3

We compute the cartography of the flip-flop circuit according to δ+3 and δ+4 ,
depicted in Figure 2. The dashed rectangle corresponds to V0.

1 2 3 4 5

6 78

δ+3

δ+4

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

Fig. 2. Behavioral cartography of the flip-flop according to δ+3 and δ+4

First note that the whole (real-valued) V0 is covered. Note also that tiles 5
to 8 are unbounded. Actually, this cartography covers the whole2 real-valued
parametric space R≥0 × R≥0. According to the nature of the trace sets, we
can easily partition the tiles into good and bad tiles w.r.t. property Prop1 (see
Section 3).

For example, the trace set of tile 3 (corresponding to the constraint δ+3 +δ+4 <
24 ∧ δ+3 ≥ 17 ∧ δ+4 ≥ 3) is given in Figure 3. This tile is a good tile because Q↑

occurs before CK ↓ for all traces.
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Fig. 3. Trace set of tile 3 for the flip-flop case study

2 Apart from the irrelevant zone originating from the model (δ+3 < 8 or δ+4 < 3).



Likewise, the trace set of tile 7 (corresponding to the constraint δ+3 ≥ 24 ∧
δ+4 ≥ 7) is given in Figure 4. This is a bad tile because there exist traces where Q↑

occurs after CK ↓.
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Fig. 4. Trace set of tile 7 for the flip-flop case study

One sees more generally that tiles 1 to 3 are good while tiles 4 to 8 are bad.
From this partition into good and bad tiles, we infer the following constraint:

δ+3 + δ+4 ≤ 24 ∧ δ+3 ≥ 8 ∧ δ+4 ≥ 3

which gives the maximal set of good parameters, thus solving the good param-
eters problem for this example.

Comparison with other methods. By computing in a brute manner the whole set
of reachable states for all possible valuations of the parameters, and performing
the intersection with the set of bad locations, we get the same constraint ensuring
the good behavior of the system. Note that this comparison is possible because
this example is rather simple; for bigger examples, such a computation would be
impossible because of the state space explosion problem (see the Root Contention
Protocol in Section 5.3). In [11], a constraint guaranteeing a good behavior is
given. The projection of this constraint onto δ+3 and δ+4 gives δ+3 < 11∧δ+3 +δ+4 <
18 ∧ δ+3 ≥ 8 ∧ δ+4 ≥ 3, which is strictly included in our constraint3.

4.4 A Sufficient Condition for Full Coverage

In this section, we show that for “acyclic” automata, a variant of the cartography
algorithm allows us to cover the whole real-valued space of parameters within V0.

3 Actually, the comparison is not completely fair, because the two models are slightly
different.



The graphical representation of a PTA A is an oriented graph where vertices
correspond to locations, and edges correspond to actions of A. We say that a
PTA is graphically acyclic (or, more simply, acyclic) if its graph is acyclic.

Lemma 1 (Termination). Given an acyclic PTA A and a rectangle V0, the
algorithm BC (A, V0) always terminates.

Proof. Based on the termination of the inverse method (see Proposition 23 in [3])
and the finite number of integer points in V0.

Note that the acyclicity of the PTA is a sufficient, but non-necessary, termi-
nation condition of BC . See Section 5.3 for an example of non acyclic PTA for
which the cartography algorithm terminates.

The algorithm BC guarantees to cover the integer points within V0. How-
ever, there may exist a finite number of “small holes” within V0 (containing no
integer point) that are not covered by any tile of Tiling . In order to fill these
holes, one can refine the algorithm in a simple way. This variant, say BC ′, is
obtained from BC by repeatedly generating at the end of BC new tiles of the
form IM (A, π), where π is a rational (instead of integer) point selected within
the holes. In the case of acyclic PTAs, the termination of BC ′ is guaranteed.
This is due to the finiteness of the number of different tiles which can be output
by IM (A, π), for any rational point π of V0. Formally:

Proposition 1. Let A be an acyclic PTA. The set of tiles {IM (A, π) | π ∈
V0 ∩Q≥0} is finite.

Moreover, one can show that BC covers the whole parametric space be-
yond V0, for a “sufficiently large” V0. Formally:

Proposition 2. Let A be an acyclic PTA. Then there exists a rectangle V0 such
that BC (A, V0) covers the whole real-valued parametric space outside V0.

5 Application to the Probabilistic Framework

5.1 Extending the Inverse Method to Probabilistic Systems

Probabilistic Timed Automata are an extension of Timed Automata to the prob-
abilistic case [19]. Parametric Probabilistic Timed Automata (PPTAs) are an ex-
tension of those Probabilistic Timed Automata to the parametric case [4]. In this
framework, the discrete actions are distributions of actions. Roughly speaking,
instead of going from a location to another location, one goes from a location to
a distributions of locations. A scheduler is a mapping which associates to every
state one output distribution. For each scheduler σ, one can define a probabil-
ity space for a given probabilistic timed automaton A[π]. In particular, one can
define the probability of reaching a given location for A[π] under a given σ. Such
probabilities can be computed using the Prism model-checker [16].

Given a PPTA A, one considers the non-probabilistic version A∗ of A [4]:
this is done roughly speaking by replacing each distribution of actions by a set



of standard non-deterministic actions. We have shown in [4] that the minimum
(resp. maximum) probability prob of reaching a given location in A[π] is uniquely
determined by the trace set of A∗[π]. Hence, in order to determine prob for A[π],
it is sufficient to proceed as follows:

1. Compute K = IM (A∗, π);
2. Compute prob (using, e.g., Prism) for A[π′], for some π′ ∈ K.

One advantage of this method is that one can take π′ small enough in order
to make the computation of Prism easier, because the performance of Prism
depends on the size of the state space of the model used as input, which in turn
depends on the size of the constants used in the probabilistic timed automata.

5.2 Extending the Cartography to the Probabilistic Framework

Using the cartography described in Section 4 and the result of [4], we can con-
struct a cartography of a probabilistic system. We get a set of tiles such that, for
any point in a given tile, the minimum (resp. maximum) probability of reaching
a given location is the same. Formally, given a PPTA A, a rectangle V0 and a
reachability property rp:

1. Compute Tiling = BC (A∗, V0);
2. For each tile K ∈ Tiling , select π |= K, and compute the minimum (resp.

maximum) probability of satisfying rp in A[π] (using, e.g., Prism).

Note that, if one wants to consider another reachability property rp′, one can
keep Tiling as computed in step 1, and only needs to redo step 2.

This cartography method is useful for finding appropriate timing parameters,
e.g., in randomized protocols. To our knowledge, no other method allows the
synthesis of constraints on the parameters within which the values of reachability
probabilities are preserved.

5.3 Example: Root Contention Protocol

This case study concerns the Root Contention Protocol of the IEEE 1394
(“FireWire”) High Performance Serial Bus, considered in the parametric frame-
work in [20]. We consider the following valuation π0 of the parameters given
in [20]: rc fast min = 76, rc fast max = 85, rc slow min = 159, rc slow max =
167, and delay = 30. We are interested in computing the minimum probabil-
ity prob1 of satisfying the following property rp1: “a leader is elected after three
rounds or less”. Using Prism, it is possible to determine that prob1 = 0.75 for π0.
To study this probability for other points around π0, we compute a cartography
with the following V0: rc slow min ∈ [140, 200], rc slow max ∈ [140, 200] and
delay ∈ [1, 50]. The two other parameters remain constant, as in π0.

The cartography is given in Figure 5. For the sake of clarity, we project onto
delay and rc slow min. In each tile, the parameter rc slow max is only bound
by the implicit constraint rc slow min ≤ rc slow max .
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Fig. 5. Behavioral cartography of the Root Contention Protocol according to delay
and rc slow min

Note that tiles 1 and 6 are infinite towards dimension rc slow min, and all
tiles are infinite towards dimension rc slow max . Moreover, although all the
integer points within V0 are covered (from the algorithm), note that the real-
valued part of V0 is not fully covered, because there are some “holes” (real-
valued zones without integer points) in the lower right corner. It would not be
possible to fill completely those holes, using the refinement of the algorithm BC
given in Section 4.4, because Proposition 1 does not hold any longer here. Note
that, nevertheless, our method is still capable of giving valuable information by
partitioning most of the parametric space within V0 into good and bad tiles.
Finally note that the computation of the whole set of reachable states (see, e.g.,
[15]) does not terminate in this example, due to the infinite number of generated
traces (with incomparable constraints).



Partition into good and bad subspaces. Applying Prism to one point of each tile,
we find prob1 = 0.75 for tile 1. For tiles 2, 3 and 6, we have prob1 = 0.625.
For the other tiles, prob1 = 0.5. Let us suppose that a tile is good when the
probability prob1 is greater than 0.7, and bad otherwise. In this case, only tile 1
is a good tile, and the others are bad tiles.

An advantage of the cartography algorithm is that, if one considers another
property than rp1, there is no need to re-compute the cartography again. Various
other properties have been considered (e.g., the election of a leader after five
rounds or less), leading to different partitions into good and bad subspaces.

6 Case Studies

An implementation of the behavioral cartography algorithm has been made,
called Imitator II. This program is a complete new version, written in OCaml,
of the prototype Imitator [5]. The execution of Imitator II is fully automated,
from the source file to the generation of the behavioral tiles and the correspond-
ing trace sets under a graphical form. Imitator II makes use of the library
APRON for the manipulation of constraints [18].

Results are presented in the table below. The input rectangle V0 in each
case study was chosen for containing the reference valuation π0 of the model,
corresponding to a reference behavior (see, e.g., [3]). We give from left to right
the name of the example, the number of PTAs composing the global system A,
the lower and upper bounds on the number of locations per PTA, the number
of clocks, of non-instantiated parameters, of integer points within V0, of tiles
computed, the average number per tile of states and transitions of the trace set,
and the computation time in seconds.

Example PTAs loc./PTA |X| |P | |V0| tiles states trans. Time

SR-latch 3 [3, 8] 3 3 1331 6 5 4 0.3

Flip-flop [11] 5 [4, 16] 5 2 644 8 15 14 3

SPSMALL [9] 10 [3, 8] 10 2 3149 259 60 61 1194

CSMA/CD [21] 3 [3, 8] 3 3 2000 140 349 545 269

RCP [20] 5 [6, 11] 6 3 186050 19 5688 9312 7018

Note that the version of the algorithm that we used in Imitator II is the
classical algorithm (viz., BC , and not BC ′). Also note that only the SR-latch
case study is modeled with an acyclic PTA (see Section 4.4).

For all those examples, the cartography covers 100 % of the real-valued space
of V0, except for the Root Contention Protocol, where “only” 99,99 % of V0 is
covered (see Section 5.3). Moreover, a significant part of the real-valued space
outside V0 is also covered. Those examples, as well as other case studies, can be
found on Imitator II’s Web page4.

Finally note that it is possible to find examples (such as the “And–Or” circuit
considered in [10, 3]) for which the algorithm BC does not terminate for some V0,
because the algorithm IM does not terminate for some π ∈ V0.

4 http://www.lsv.ens-cachan.fr/~andre/IMITATOR2/



7 Final Remarks

In this paper, we presented a cartography algorithm, which covers most of the
parametric space with tiles, for which the behavior is uniform. This gives a
new approach for solving the good parameters problem. Our algorithm has been
successfully applied to various examples of asynchronous circuits and protocols.
Our cartography algorithm often covers the whole real-valued space of V0 as well
as a significant part of the space beyond V0.

This method extends naturally to probabilistic systems. This allows us to
decompose the parametric space into tiles which are uniform w.r.t. probabilistic
reachability properties. The tiles generated by the cartography are always the
same, whatever the considered probabilistic property is. Only the partition into
good and bad subspaces changes.

Our approach has the following limitation: the equivalence relation on pa-
rameters that leads to “tiles” as equivalence classes is strong (because of the
equality of trace sets). This may lead to a big (even infinite) number of small
equivalence classes (as shown in Section 5.3). It would be interesting to consider
a more general inverse method in order to weaken the equivalence relation.

As suggested in Section 4.4, it is interesting to consider variants of BC with
a strategy of dynamic point selection for IM : instead of starting from the set
of all integer points of V0, one starts from a sparse subset of points, and fill
incrementally the uncovered zones by selecting (non-necessarily integer) points
in the “holes”.

Finally, it would be interesting to extend the method to hybrid systems,
where clocks evolve at different rates.
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