
Decidability of trace equivalence for protocols with
nonces

Rémy Chrétien1, Véronique Cortier2 and Stéphanie Delaune1

1LSV, ENS Cachan & CNRS & INRIA Saclay Île-de-France

2LORIA - CNRS

25th February 2015

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 1 / 30

Cryptographic protocols everywhere

Cryptographic protocols
small programs designed to secure
communication (e.g. secrecy)
use cryptographic primitives (e.g.
encryption, signature,)

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 2 / 30

Protocols and Security

A difficult design:

Needham-Shroeder protocol (1978), correction and attack by Lowe (1995):
an attacker could pretend to be an honest agent.
Google Single-Sign-On protocol (2008): an attacker can log in to the Google
services of a user.
French e-passport (2010): an attacker can trace a particular user.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 3 / 30

Motivation

Many security properties are equivalence properties: strong secrecy,
anonymity, unlinkability...
Trace equivalence is undecidable in general (and for large subclasses: one
variable and choice is enough).

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 4 / 30

Where does undecidability come from?

Undecidability encodings rely on two key aspects:
the ability for the protocol to securely forward messages (with honest
encryption)
the ability for the protocol to loop, i.e. re-use messages from the end of a
session into a new one.

We need to restrict these properties while keeping our class practical...

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 5 / 30

Approach

How to find a decidable class of protocols?
1 CONCUR’14 to focus on well-typed attacks only,
2 dependancy graphs to isolate potential causal dependancies between actions

in a well-typed execution,
3 prove each well-typed execution is compatible with the dependancy graph,
4 consider protocols with acyclic dependancy graph to bound the length of

attack traces.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 6 / 30

The result

Decidability of trace equivalence
Let P and Q be two simple protocols type-compliant w.r.t. some
structure-preserving typing systems (TP , δP) and (TQ , δQ), and with acyclic
dependency graphs. The problem of deciding whether P and Q are in trace
equivalence (i.e. P ≈ Q) is decidable.

Some intuition:
simple : protocols with explicit execution flow,
type-compliant w.r.t. structure-preserving typing sytems : tagged protocols,
acyclic dependancy graph : no loop for the attacker to abuse.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 7 / 30

The result

Decidability of trace equivalence
Let P and Q be two simple protocols type-compliant w.r.t. some
structure-preserving typing systems (TP , δP) and (TQ , δQ), and with acyclic
dependency graphs. The problem of deciding whether P and Q are in trace
equivalence (i.e. P ≈ Q) is decidable.

Some intuition:
simple : protocols with explicit execution flow,
type-compliant w.r.t. structure-preserving typing sytems : tagged protocols,
acyclic dependancy graph : no loop for the attacker to abuse.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 7 / 30

1 Introduction

2 The model

3 Typing and dependancy graphs

4 Refinements

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 8 / 30

The protocols

Our primitives: pairs and symmetric encryption.
We only allow encryption with atomic keys.
Our grammar:

P,Q := 0 | α : in(c , u).P | α : out(c , u).P | (P | Q) | !P |
new n.P | new c ′.out(c , c ′).P

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 9 / 30

Semantics

(α : in(c , u).P ∪ P;φ)
in(c,R)−−−−→ (Pσ ∪ P;φ) where R is a recipe such that Rφ↓

is a message and Rφ↓ = uσ for some σ with dom(σ) = vars(u)

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 10 / 30

Semantics

(α : out(c , u).P ∪ P;φ)
out(c,wi+1)−−−−−−−→ (P ∪ P;φ ∪ {wi+1 . u})

where u is a message and i is the number of elements in φ

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 10 / 30

Semantics

(new c ′.out(c , c ′).P ∪ P;φ)
out(c,chi)−−−−−−→ (P{chi/c′} ∪ P;φ)

where chi is the “next” fresh channel name available in Chfresh

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 10 / 30

Semantics

(new n.P ∪ P;φ)
τ−→ (P{n′/n} ∪ P;φ) where n′ is a fresh name in N

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 10 / 30

Semantics

(!P ∪ P;φ)
τ−→ (P ∪ !P ∪ P;φ)

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 10 / 30

Equivalences

Static equivalence
φ1 and φ2 are statically equivalent, φ1 ∼ φ2, when dom(φ1) = dom(φ2) and:

for any recipe R, Rφ1 is a message iff Rφ2↓ is a message;
for all recipes R1 and R2 such that R1φ1↓,R2φ1↓ are messages, we have that
R1φ1↓ = R2φ1↓ iff R1φ2↓ = R2φ2↓.

Trace equivalence
A protocol P is trace included in a protocol Q, written P v Q, if for every
(tr, φ) ∈ trace(P), there exists (tr′, φ′) ∈ trace(Q) such that tr = tr′ and φ ∼ φ′.
The protocols P and Q are trace equivalent, written P ≈ Q, if P v Q and Q v P.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 11 / 30

Equivalences

Static equivalence
φ1 and φ2 are statically equivalent, φ1 ∼ φ2, when dom(φ1) = dom(φ2) and:

for any recipe R, Rφ1 is a message iff Rφ2↓ is a message;
for all recipes R1 and R2 such that R1φ1↓,R2φ1↓ are messages, we have that
R1φ1↓ = R2φ1↓ iff R1φ2↓ = R2φ2↓.

Trace equivalence
A protocol P is trace included in a protocol Q, written P v Q, if for every
(tr, φ) ∈ trace(P), there exists (tr′, φ′) ∈ trace(Q) such that tr = tr′ and φ ∼ φ′.
The protocols P and Q are trace equivalent, written P ≈ Q, if P v Q and Q v P.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 11 / 30

Simple protocols

A simple protocol P is a protocol of the form

!new c ′1.out(c1, c
′
1).B1 | ... | !new c ′m.out(cm, c ′m).Bm

| Bm+1 | . . . | Bm+n

where each Bi is a ground process on channel c ′i (resp. ci) built using the
following grammar:

B := 0 | α : in(c ′i , u).B | α : out(c ′i , u).B | new n.B

Moreover, we assume that c1, . . . , cn, cn+1, . . . , cn+m are pairwise distinct.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 12 / 30

1 Introduction

2 The model

3 Typing and dependancy graphs

4 Refinements

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 13 / 30

Structure-preserving typing systems

Typing system
A structure-preserving typing system is a pair (T0, δ0) where T0 is a set of elements
called atomic types, and δ0 is a function mapping atomic terms in Σ0 ∪N ∪ X to
types τ generated using the following grammar:

τ, τ1, τ2 = τ0 | 〈τ1, τ2〉 | enc(τ1, τ2) with τ0 ∈ T0.

Then, δ0 is extended to constructor terms as follows:

δ0(f(t1, . . . , tn)) = f(δ0(t1), . . . , δ0(tn)) with f ∈ Σc.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 14 / 30

Type-compliant protocols

Type-compliant protocols, ex: tagged protocols

Type-compliant protocols
P is type-compliant w.r.t. (T , δ) if for every t, t ′ ∈ ESt(unfold2(P)),

t and t unifiable⇒ δ(t) = δ(t ′)

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 15 / 30

Example
Denning-Sacco protocol
1. A→ S : A,B
2. S → A : {B,Kab, {Kab,A}Kbs

}Kas

3. A→ B : {Kab,A}Kbs

The formal specification
P = ! new c1.out(cA, c1).PA | ! new c2.out(cB , c2).PB

| ! new c3.out(cS , c3).PS

PA = α1 : out(c1, 〈a, b〉).
α2 : in(c1, enc(〈b, xAB , xB〉, kas)).
α3 : out(c1, xB)

PB = β1 : in(c2, enc(〈yAB , a〉, kbs)).
β2 : out(c2, enc(m1, yAB))

PS = γ1 : in(c3, 〈a, b〉). new kab.
γ2 : out(c3, enc(〈b, kab, enc(〈kab, a〉, kbs)〉, kas))

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 16 / 30

Example

PA = α1 : out(c1, 〈a, b〉).
α2 : in(c1, enc(〈b, xAB , xB〉, kas)).
α3 : out(c1, xB)

PB = β1 : in(c2, enc(〈yAB , a〉, kbs)).
β2 : out(c2, enc(m1, yAB))

PS = γ1 : in(c3, 〈a, b〉). new kab.
γ2 : out(c3, enc(〈b, kab, enc(〈kab, a〉, kbs)〉, kas))

the typing function δ

δ(a) = τa δ(b) = τb δ(m1) = τm
δ(kAB) = τkab δ(kAS) = τkas δ(kBS) = τkbs
δ(xAB) = τkab δ(yAB) = τkab

δ(xB) = enc(〈τkab, τa〉, τkbs)

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 17 / 30

Dependancy graph

What is the dependancy graph of P made of?
Vertices : the labels of P
Edges : of 3 kinds

1 sequential dependancy: if two actions follow each other in Pδ,
2 data dependancy: if a deducible subterm of an input in Pδ appears as a

deducible subterm of an output in Pδ,
3 key dependancy: if a key in an output in Pδ can be deduced with the aid of

another key, deducible in another ouput in Pδ.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 18 / 30

Dependancy graph

PAδ, PBδ and PSδ

α1 : out(c1, 〈τa, τb〉).
α2 : in(c1, enc(〈τb, τkab,

enc(〈τkab, τa〉, τkbs)〉, τkas)).
α3 : out(c1, enc(〈τkab, τa〉, τkbs))

β1 : in(c2, enc(〈τkab, τa〉, τkbs))

γ1 : in(c3, 〈τa, τb〉). new τkab.
γ2 : out(c3, enc(〈τb, τkab,

enc(〈τkab, τa〉, τkbs)〉, τkas))

α3

α2

α1

β2

β1

γ2

γ1

ε

ε

τa, τb are public types; τkbs and τkas are honest types.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 19 / 30

A more complex scenario

What happens when A and S communicate with C dishonest (α′
i and γ

′
i) and

when B and S talk with C (β′′
i and γ′′i)?

α3

α2

α1

β2

β1

γ2

γ1

ε

ε α′
3

α′
2

α′
1

γ′2

γ′1

ε

β′′
1

γ′′2

γ′′1

1.2.2

P ′′
B = β′′

1 : in(c2, enc(〈yCB , c〉, kbs)).
P ′′
S = γ1 : in(c3, 〈c , b〉). new kcb.

γ′′2 : out(c3, enc(〈b, kcb, enc(〈kcb, c〉, kbs)〉, kcs))

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 20 / 30

The result

Decidability of trace equivalence
Let P and Q be two simple protocols type-compliant w.r.t. some
structure-preserving typing systems (TP , δP) and (TQ , δQ), and with acyclic
dependency graphs. The problem of deciding whether P and Q are in trace
equivalence (i.e. P ≈ Q) is decidable.

Denning-Sacco and Wide-Mouthed Frog fall into this class.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 21 / 30

1 Introduction

2 The model

3 Typing and dependancy graphs

4 Refinements

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 22 / 30

Refined dependancy graph

Needham-Schroeder protocol

1. A→ S : A,B,Na

2. S → A : {Na,B,Kab, {Kab,A}Kbs
}Kas

3. A→ B : {Kab,A}Kbs

4. B → A : {req,Nb}Kab

5. A→ B : {rep,Nb}Kab

α5

α4

α3

α2

α1

β4

β3

β2

β1

γ2

γ1

ε

ε

ε

ε

1.2
1.2

1.2

1.2

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 23 / 30

Refined dependancy graph

How to deal with these acyclic graphs?
introduce a (semantic) notion of marking to pinpoint terms which are useless
to the attacker,
propose a (syntactic) criterion to generate such markings in practice,
and use a refined notion of the dependancy graph.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 24 / 30

Refined dependancy graph

Needham-Schroeder protocol

1. A→ S : A,B,Na

2. S → A : {Na,B,Kab, {Kab,A}Kbs
}Kas

3. A→ B : {Kab,A}Kbs

4. B → A : {req,Nb}Kab

5. A→ B : {rep,Nb}Kab

→ we can pinpoint position 1.2 in α5. α5

α4

α3

α2

α1

β4

β3

β2

β1

γ2

γ1

ε

ε

ε

ε

1.2
1.2

1.2

1.2

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 25 / 30

The (refined) result

Decidability of trace equivalence
Let P and Q be two simple protocols type-compliant w.r.t. some
structure-preserving typing systems (TP , δP) and (TQ , δQ), and with acyclic refined
dependency graphs. The problem of deciding whether P and Q are in trace
equivalence (i.e. P ≈ Q) is decidable.

Dependency graph In our
Normal Refined class

Denning-Sacco X X yes
Needham-Schroeder X yes
Otway-Rees X yes
Yahalom (Paulson) X yes
Wide-Mouthed-Frog X X yes
Yahalom no
Kao-Chow (modified) X yes

Figure : A X means that the corresponding dependency graph is acyclic.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 26 / 30

Proof outline

Our proof can be summarised as follows:
1 We first rely on our type-compliance assumption. We show that we can

restrict our attention to witnesses that are well-typed and we further show
that each message occurring in such a trace can be computed as soon as
possible.

2 Then, we show that all the dependencies occurring in such a well-typed and
asap trace comply with the dependency graph. Hence, we bound the width as
well as the depth of such a witness exploiting the acyclicity of our dependency
graph.

3 Lastly, we explain how to bound the length of a minimal witness:

2(1 + ‖outP‖)depth(GP)+1(1 + ‖inP‖(1 + ‖outP‖)depth(GP)+1)depth(GP)+1.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 27 / 30

Conclusion

We obtained:
a decidability result for equivalence of simple acyclic type-compliant protocols,
which extends existing results for reachability;
along with syntactic/semantic criterion to easily obtain acyclic protocols,
and most of the studied examples fall into this class.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 28 / 30

Future work

What remains to be done:
extend our signature to asymmetric cryptography,
relax the hypothesis of simple protocols (to action-determinate)
implement a tool to automatically compute et verify the acyclicity of any
protocol.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 29 / 30

Thank you for your attention.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 30 / 30

	Introduction
	The model
	Typing and dependancy graphs
	Refinements

