Decidability of trace equivalence for protocols with
nonces

Rémy CHRETIEN!, Véronique CORTIER? and Stéphanie DELAUNE!

1LSV, ENS Cachan & CNRS & INRIA Saclay fle-de-France

2LORIA - CNRS

25th February 2015

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 1/30

Cryptographic protocols everywhere

Cryptographic protocols

@ small programs designed to secure
communication (e.g. secrecy)

@ use cryptographic primitives (e.g.

Paypal encryption, signature,)

Rémy Chrétien (LSV) GdT SECSI 25th February 2015

2 /30

Protocols and Security

A difficult design:
@ Needham-Shroeder protocol (1978), correction and attack by Lowe (1995):
an attacker could pretend to be an honest agent.
@ Google Single-Sign-On protocol (2008): an attacker can log in to the Google
services of a user.
@ French e-passport (2010): an attacker can trace a particular user.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 3/ 30

Motivation

@ Many security properties are equivalence properties: strong secrecy,
anonymity, unlinkability...

@ Trace equivalence is undecidable in general (and for large subclasses: one
variable and choice is enough).

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 4/ 30

Where does undecidability come from?

Undecidability encodings rely on two key aspects:

@ the ability for the protocol to securely forward messages (with honest
encryption)

@ the ability for the protocol to loop, i.e. re-use messages from the end of a
session into a new one.

We need to restrict these properties while keeping our class practical...

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 5/ 30

Approach

How to find a decidable class of protocols?
© CONCUR'14 to focus on well-typed attacks only,

© dependancy graphs to isolate potential causal dependancies between actions
in a well-typed execution,

© prove each well-typed execution is compatible with the dependancy graph,

@ consider protocols with acyclic dependancy graph to bound the length of
attack traces.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 6/ 30

The result

Decidability of trace equivalence

Let P and @ be two simple protocols type-compliant w.r.t. some
structure-preserving typing systems (7p,dp) and (7g,d¢), and with acyclic
dependency graphs. The problem of deciding whether P and Q are in trace
equivalence (i.e. P = Q) is decidable.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 7/ 30

The result

Decidability of trace equivalence

Let P and @ be two simple protocols type-compliant w.r.t. some
structure-preserving typing systems (7p,dp) and (Tg,d¢), and with acyclic
dependency graphs. The problem of deciding whether P and Q are in trace
equivalence (i.e. P = Q) is decidable.

Some intuition:
@ simple : protocols with explicit execution flow,
@ type-compliant w.r.t. structure-preserving typing sytems : tagged protocols,
@ acyclic dependancy graph : no loop for the attacker to abuse.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 7/ 30

© The model

o = = E DA
Rémy Chrétien (LSV) GdT SECSI

The protocols

@ Our primitives: pairs and symmetric encryption.
@ We only allow encryption with atomic keys.
@ Our grammar:

P,Q:= 0| a:in(c,u).P | a:out(c,u).P | (P|Q) |!P |
new n.P | new c".out(c,c’).P

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 9/ 30

Semantics

(a:in(c,u).PUP; ¢) —— in(R), (PoUP;¢) where R is a recipe such that R¢|

is a message and R¢J = uo for some o with dom(c) = vars(u)

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 10 / 30

Semantics

out(c,wjy1)

(v s out(c, u).PUP;9) (PUP;pU{wji1>u})
where u is a message and / is the number of elements in ¢

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 10 / 30

Semantics

out(c,chj)
EE—

(new c’.out(c, c').PUP; @) (P{hi /.Y UP; ¢)

where ch; is the "next” fresh channel name available in Chfresh

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 10 / 30

Semantics

(new n.PUP;¢) = (P{",/n}U'P; })

where n’ is a fresh name in

o =) = = D¢
Rémy Chrétien (LSV) GdT SECSI

Semantics

(IPUP;¢) 5 (PUIPUP;¢)

=] F = = DA
Rémy Chrétien (LSV) GdT SECSI

Equivalences

Static equivalence
¢1 and ¢, are statically equivalent, ¢1 ~ ¢2, when dom(¢p1) = dom(¢y) and:
o for any recipe R, R¢; is a message iff R¢ol is a message;

o for all recipes Ry and R» such that Ry¢1l, Ra¢1l are messages, we have that
Rig1] = Raal iff Rigal = Radpal.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 11 / 30

Equivalences

Static equivalence
¢1 and ¢, are statically equivalent, ¢1 ~ ¢2, when dom(¢p1) = dom(¢y) and:
o for any recipe R, R¢; is a message iff R¢ol is a message;

o for all recipes Ry and R» such that Ry¢1l, Ra¢1l are messages, we have that
Rig1] = Raal iff Rigal = Radpal.

Trace equivalence

A protocol P is trace included in a protocol @, written P C Q, if for every
(tr, @) € trace(P), there exists (tr', ¢') € trace(Q) such that tr = tr’ and ¢ ~ ¢'.
The protocols P and Q are trace equivalent, written P~ Q, if PC Q and Q C P.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 11 / 30

Simple protocols

A simple protocol P is a protocol of the form

Inew c;.out(cy, ¢f).Br |‘ |‘!new ¢ .out(cm, cl,).Bm
| Bust | .. | Brin

where each B; is a ground process on channel ¢/ (resp. ¢;) built using the
following grammar:

B:=0]|a:in(c/,u).B|a:out(c,u).B|newn.B

Moreover, we assume that ¢1,..., ¢y, Coi1,- - -5 Chim are pairwise distinct.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 12 / 30

© Typing and dependancy graphs

=] F = = DA
Rémy Chrétien (LSV) GdT SECSI

Structure-preserving typing systems

Typing system

A structure-preserving typing system is a pair (7o, do) where Tg is a set of elements
called atomic types, and &g is a function mapping atomic terms in Yo UN U X to
types 7 generated using the following grammar:

T, 71,72 =To | {11,72) | enc(m1, m2) with 79 € To.

Then, g is extended to constructor terms as follows:

(50(f(t1, ey tn)) = f(éo(t1)7 800 ,(50(1.',1)) with f € X.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 14 / 30

Type-compliant protocols

Type-compliant protocols, ex: tagged protocols
Type-compliant protocols
P is type-compliant w.r.t. (T7,4) if for every t, t' € ESt(unfold*(P)),

t and t unifiable = §(t) = 4(t)

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 15 / 30

Example

Denning-Sacco protocol

1. A»>S: AB
2. S = A: {B,Kap, {Kab, A} ks, t k.
3. A= B: {Kap, Alk,

The formal specification
P = lnew cj.out(ca,c1).Pa | ! new cy.out(cg, c2).Ps

| 'new cs.out(cs, c3).Ps

Pr = oj:out(c, (a,b)).
ap :in(cy, enc((b, xag, xg), kas))-
as :out(cy, xg)

Pg = p1:in(c,enc((yas,a), kss))-
B2 : out(ca, enc(my, yag))

Ps = 1 :in(cs,(a,b)). new kap.
vz : out(cs, enc((b, kap, enc((kap,a), kbs)), Kas))

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 16 / 30

Example

PA = Q1.
Qo
s out(cy, xg)

as

Pe = pi:
B

Ps = m:
: out(cs, enc((b, kap, enc((kap, @), kbs)), Kas))

V2

out(cy, (a, b)).
in(cl, enc((b, XAB XB>, kas))~

in(cz2, enc({yag, a), kps))-
out(cy, enc(my, yag))

in(cs, (a,b)). new kap.

the typing function ¢

o(a) =7, o(b) = 7p o(my) = Tm
O(kaB) = Tkab O(kas) = Tkas 0(kBs) = Tkbs
d(xaB) = Tkab 0(¥AB) = Tkab

d(x8) = enc((Tkabs Ta) s Tkbs)

Rémy Chrétien (LSV) GdT SECSI 25th February 2015

17 / 30

Dependancy graph

What is the dependancy graph of P made of?
o Vertices : the labels of P
o Edges : of 3 kinds

© sequential dependancy: if two actions follow each other in Pd,

© data dependancy: if a deducible subterm of an input in P appears as a
deducible subterm of an output in P§,

© key dependancy: if a key in an output in P§ can be deduced with the aid of
another key, deducible in another ouput in PJ.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 18 / 30

Dependancy graph

PA5, PB5 and P55

aq :out(cy, (Ta, Tb)).
Qo in(cl, enc(<7'b, Tkabs

enc(<7—kaba Ta>7 kas)>a Tkas))'
ag : out(cy, enc((Tkab, Ta)s Tkbs))

B :in(c2, enc((Tkabs Ta), Tkbs))

1 i in(cs, (Ta, Tb)). NEW Tkap.
~2 : out(cs, enc({Th, Tkab,
enc(<7-kabaTa>v7-kbs)>v7-kas))

E-®

V.

Ta, Tp are public types; Tkps and 74as are honest types.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 19 / 30

A more complex scenario

What happens when A and S communicate with C dishonest («/ and ~/) and
when B and S talk with C (8! and ~/)?

Py = By :in(c2,enc((yca; c), kbs))-
P = ~1:in(cs, (c,b)). new kep.

~4 : out(cs, enc((b, kep, enc({kep, €), Kbs)) s kes))

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 20 / 30

The result

Decidability of trace equivalence

Let P and @ be two simple protocols type-compliant w.r.t. some
structure-preserving typing systems (7p,dp) and (7g,dq), and with acyclic
dependency graphs. The problem of deciding whether P and Q are in trace
equivalence (i.e. P = Q) is decidable.

Denning-Sacco and Wide-Mouthed Frog fall into this class.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 21/ 30

o Refinements

GdT SECSI

Refined dependancy graph

Needham-Schroeder protocol

.A—=S: ABN,

.S A: {Na, B, Kab, {K3b7A}Kbs}Kas
. A— B: {Kab7A}Kb5

B— A: {req,Np}k,

. A— B {rep, Np}k,

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 23/ 30

Refined dependancy graph

How to deal with these acyclic graphs?
@ introduce a (semantic) notion of marking to pinpoint terms which are useless
to the attacker,
@ propose a (syntactic) criterion to generate such markings in practice,

@ and use a refined notion of the dependancy graph.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 24 / 30

Refined dependancy graph

Needham-Schroeder protocol

A= S: AB,N,

S = A: {N,, B, Kap, { Kab, A} Ko } Ko
A— B: {KalﬂA}Kbs

B— A: {req,Np}k,

A— B: {rep, Np}k,,

gL

— we can pinpoint position 1.2 in as.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 25 / 30

The (refined) result

Decidability of trace equivalence

Let P and @ be two simple protocols type-compliant w.r.t. some
structure-preserving typing systems (7p,dp) and (Tg,dg), and with acyclic refined
dependency graphs. The problem of deciding whether P and Q are in trace

equivalence (i.e. P = Q) is decidable.

Dependency graph | In our

Normal Refined class
Denning-Sacco v v yes
Needham-Schroeder v yes
Otway-Rees v yes
Yahalom (Paulson) v yes
Wide-Mouthed-Frog v v yes
Yahalom no
Kao-Chow (modified) v yes

Figure : A v means that the corresponding dependency graph is acyclic.

Rémy Chrétien (LSV) GdT SECSI

25th February 2015

26 / 30

Proof outline

Our proof can be summarised as follows:

© We first rely on our type-compliance assumption. We show that we can
restrict our attention to witnesses that are well-typed and we further show
that each message occurring in such a trace can be computed as soon as
possible.

© Then, we show that all the dependencies occurring in such a well-typed and
asap trace comply with the dependency graph. Hence, we bound the width as
well as the depth of such a witness exploiting the acyclicity of our dependency
graph.

© Lastly, we explain how to bound the length of a minimal witness:

2(1 + HoutPH)depth(Gp)+1(1 + HinP”(l + ||0Utp||)depth(GP)+1)dEpth(GP)+1.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 27 / 30

Conclusion

We obtained:

@ a decidability result for equivalence of simple acyclic type-compliant protocols,
@ which extends existing results for reachability;

@ along with syntactic/semantic criterion to easily obtain acyclic protocols,

@ and most of the studied examples fall into this class.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 28 / 30

Future work

What remains to be done:
@ extend our signature to asymmetric cryptography,
o relax the hypothesis of simple protocols (to action-determinate)

@ implement a tool to automatically compute et verify the acyclicity of any
protocol.

Rémy Chrétien (LSV) GdT SECSI 25th February 2015 29 / 30

Thank you for your attention.

=] F = = DA
Rémy Chrétien (LSV) GdT SECSI

	Introduction
	The model
	Typing and dependancy graphs
	Refinements

